Copper-Catalyzed Hydride Transfer from LiAlH₄ for the Formation of Alkylidenecyclopropane Derivatives

Samah Simaan and Ilan Marek

The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry. Technion-Israel Institute of Technology, Haifa 32000 Israel.

Supporting Information

General experimental procedures	2S
Characterization data 1 H and 13 C NMR	
spectra for the compounds 6a-e	3S-5S
Figure S1. ¹ H NMR of <mark>6a</mark>	6S
Figure S2. ¹³ C NMR of 6a	7S
Figure S3. ¹ H NMR of 6a(D)	8S
Figure S4. ¹³ C NMR of 6a(D)	9S
Figure S5. ¹ H NMR of 6b	10S
Figure S6. ¹³ C NMR of 6b	11S
Figure S7. ¹ H NMR of 6c	12S
Figure S8. ¹³ C NMR of 6c	13S
Figure S9. ¹ H NMR of 6d	14S
Figure S10. ¹³ C NMR of <mark>6d</mark>	15S
Figure S11. ¹ H NMR of <mark>6e</mark>	16S
Figure S12. ¹³ C NMR of 6e	17S
Figure S13. ¹ H NMR of 6f	18S
Figure S14. ¹³ C NMR of 6f	19S
Figure S15. ¹ H NMR of 6f(D)	20S
Figure S16. ¹³ C NMR of 6f(D)	21S
Figure S17. ¹ H NMR of <mark>6g</mark>	22S
Figure S18. ¹³ C NMR of 6g	23S
Figure S19. ¹ H NMR of 6h	24S
Figure S20. ¹³ C NMR of 6h	25S

General Remarks:

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were analytical grade. Analytical thin-layer chromatography (TLC) was performed on silica gel plates with F-254 indicator, visualized by irradiation with UV light. Column chromatography was carried out using silica gel Grace (particle size 0.040- 0.063 mm).

¹H NMR, ¹³C NMR were recorded on a Bruker AV 300 spectrometer in CDCl₃. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated as *bs* (broadened singlet), *s* (singlet), *d* (doublet), *t* (triplet), *q* (quartet), *m* (multiplet); coupling constants (*J*) are in Hertz (Hz).

General Procedure for the Preparation of Alkylidenecyclopropane Derivatives:

1 mmol of cyclopropenylcarbinol **3** was added to a dry three necked flask containing 0.2 mmol of CuI in 20 mL of dry ether. The temperature was lowered to - 50 °C and 1.0 mL of 1M solution of LiAlH₄ in THF was added.

The reaction mixture was heated slowly to room temperature over night. After quenching with an aqueous saturated solution of ammonium chloride, the aqueous layer was extracted with ether (3×20 mL), the organic phases were combined and washed with brine (1×20 mL), separated, dried and evaporated. The crude product was purified by column chromatography, eluent: hexane.

1,1-Diphenylmethylene-2-methylcyclopropane 6a:

Colorless oil isolated in 87% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.07 (*dd*, *J*₁ = 9.0 Hz, *J*₂ = 9.0 Hz 1H), 1.23 (*d*, *J* = 6.0 Hz, 3H), 1.56 (*dd*, *J*₁ = 9.0 Hz, *J*₂ = 5.9 Hz 1H), 1.71-1.80 (*m*, 1H), 7.20-7.49 (*m*, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 10.7, 11.1, 17.7, 126.7, 126.8, 128.0, 128.3, 128.3, 131.2, 140.8.

1,1-Diphenylmethylene-2-deuterio-2-methylcyclopropane 6a(D):

Colorless oil isolated in 85% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.01 (*d*, *J* = 9.3 Hz, 1H), 1.18 (*s*, 3H), 1.51 (*d*, *J* = 9.0 Hz, 1H), 7.19-7.40 (*m*, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 10.7, 11.1, 17.7, 126.7, 126.8, 128.0, 128.3, 128.3, 131.2, 140.9.

1,1-Diphenylmethylene-2-butylcyclopropane 6b:

Colorless oil isolated in 82% yield. ¹H NMR (300 MHz, CDCl₃) δ 0.79-0.92 (*m*, 3H), 1.05-1.09 (*m*, 1H), 1.23-1.34 (*m*, 5H), 1.48 (*dd*, $J_1 = 9.0$ Hz, $J_2 = 9.0$ Hz 1H), 1.61- 1.74 (*m*, 2H), 7.14-7.44 (*m*, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 10.1, 14.0, 16.2, 22.5, 31.2, 32.5, 126.1, 126.7, 128.0, 128.2, 128.4, 128.5, 128.9, 130.4, 141.0.

2-Ethylpropylidene-2-methylcyclopropane 6c:

Colorless oil isolated in 40% yield. ¹H NMR (300 MHz, CDCl₃) δ 0.56-0.58 (*m*, 1H), 1.11 (*d*, *J* = 3.6 Hz, 3H), 1.12-1.15 (*m*, 1H), 1.28-1.41 (*m*, 1H), 1.52-1.55 (*m*, 6H), 2.21-2.23 (*m*, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 9.5, 18.0, 26.7, 27.9, 28.1, 33.3, 33.5, 118.8, 128.2.

Benzylidene-2-methylcyclopropane 6d:

Colorless oil isolated in 60% yield, E/Z = 91:9. ¹H NMR (300 MHz, CDCl₃) δ 0.94-1.04 (*m*, 1H), 1.18 (*d*, J = 5.7 Hz, 3H for *E* isomer 2H), 1.19 (*d*, J = 6.0 Hz, 3H for *Z* isomer 2H), 1.44-1.60 (*m*, 2H), 6.65 (*m*, 1H for *Z* isomer), 6.74 (*q*, J = 2.1 Hz, 1H for *E* ismoer), 7.18 (*t*, J = 7.2 Hz, 1H), 7.30 (*t*, J = 7.5 Hz, 2H), 7.52 (*d*, J = 8.0 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 7.7, 8.8, 11.8, 17.2, 17.9, 117.4, 126.5, 126.6, 128.4, 128.5, 131.4, 138.3.

Benzylidene-2-butylcyclopropane 6e:

Colorless oil isolated in 61% yield, E/Z = 58:42. ¹H NMR (300 MHz, CDCl₃) δ 0.82-0.87 (*m*, 1H), 0.91-0.97 (*m*, 6H), 1.02-1.10 (*m*, 2H), 1.27-1.60 (*m*, 15H), 1.74-1.78 (*m*, 1H), 1.96-2.05 (*m*, 1H), 6.70 (*q*, J = 1.8 Hz, 1H for Z isomer), 6.77 (*s*, 1H for E isomer), 7.20 (*t*, J = 7.2 Hz, 2H for E isomer), 7.33 (*t*, J = 7.1 Hz, 2H for Z isomer), 7.47 (*d*, J = 7.2 Hz, 2H for Z isomer), 7.56 (*d*, J = 7.2 Hz, 2H for E isomer). ¹³C NMR (75 MHz, CDCl₃) δ 7.5, 10.8, 13.3, 14.1, 17.1, 22.5, 22.6, 31.0, 31.6, 31.7, 32.8, 117.4, 118.6, 126.5, 126.5, 126.6, 126.7, 130.4, 130.6, 138.1, 138.3.

3-Phenylpropylidene-2-methylcyclopropane 6f:

Colorless oil isolated in 68% yield, E/Z = 86:14. ¹H NMR (300 MHz, CDCl₃) δ 0.58-0.63 (*m*, 1H), 1.17 (*d*, J = 11.1 Hz, 3H), 1.21-1.22 (*m*, 1H), 1.42-1.47 (*m*, 1H), 2.53-2.60 (*m*, 2H), 2.81-2.87 (*m*, 2H), 5.82-5.84 (*m*, 1H for Z isomer), 5.86-5.93 (*m*, 1H for E isomer), 7.22-7.35 (*m*, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 9.4, 9.6, 10.0, 17.9, 18.1, 33.5. 33.8, 35.8, 36.0, 116.4, 117.4, 125.6, 125.7, 128.1, 128.2, 128.4, 128.5, 129.1,

3-Phenylpropylidene-2-deuterio-2-methylcyclopropane 6f(D):

Colorless oil isolated in 70% yield, E/Z = 60:40. ¹H NMR (300 MHz, CDCl₃) δ 0.54 (*dd*, $J_1 = 7.2$ Hz, $J_2 = 17.4$ Hz, 1H), 1.04 (*s*, 3H), 1.1 (*dd*, $J_1 = 7.2$ Hz, $J_2 = 17.4$ Hz, 1H), 2.41-2.48 (*m*, 2H), 2.68-2.76 (*m*, 2H), 5.67-5.81 (*m*, 2H for *E* and *Z* isomers), 5.86-5.93 (*m*, 1H for *E* isomer), 7.14-7.25 (*m*, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 9.3, 9.4, 9.6, 9.9, 10.1, 17.8, 17.9, 18.1, 33.5, 33.8, 35.8, 36.0, 116.4, 117.4, 125.6, 125.7, 126.1, 128.2, 128.2, 128.5, 128.5, 128.8, 129.1, 142.3.

2-Phenylethylidene-2-methylcyclopropane 6g:

Colorless oil isolated in 76% yield, E/Z = 93:7. ¹H NMR (300 MHz, CDCl₃) δ 0.52-0.62 (*m*, 1H), 1.06 (*d*, J = 6.3 Hz, 3H), 1.12-1.20 (*m*, 1H), 1.37-1.39 (*m*, 1H), 3.44 (*d*, J = 6.9 Hz, 2H), 5.85-5.91 (*m*, 1H), 7.10-7.25 (*m*, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 9.4, 9.6, 10.0, 17.9, 18.1, 33.5. 33.8, 35.8, 36.0, 116.4, 117.4, 125.6, 125.7, 128.1, 128.2, 128.4, 128.5, 129.1, 142.2.

4-((2-methylcyclopropylidene)methyl)benzoic acid 6h:

6h

Colorless oil isolated in 83% yield, E/Z = 93:7. ¹H NMR (300 MHz, CDCl₃) δ 1.10-1.06 (*m*, 1H), 1.16 (*d*, J = 5.7 Hz, 3H for *E* isomer), 1.23 (*d*, J = 6.3 Hz, 3H for *Z* isomer), 1.48-1.63 (*m*, 2H), 6.70 (*q*, J = 1.5 Hz, 1H for *Z* isomer), 6.77 (*q*, J = 1.8 Hz, 1H for *E* isomer), 7.46 (*d*, J = 8.1 Hz, 2H for *Z* isomer), 7.55 (*d*, J = 8.4 Hz, 2H for *E* isomer), 8.01 (*d*, J = 8.4 Hz, 2H for *E* isomer), 8.02 (*d*, J = 8.1 Hz, 2H for *Z* isomer). ¹³C NMR (75 MHz, CDCl₃) δ 8.1, 9.1, 11.6, 12.0, 17.0, 17.7, 116.9, 118.1, 126.4, 126.5, 127.1, 130.5, 130.6, 135.9, 143.8, 172.2.

```
Figure S1. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>) of 6a
```



```
Figure S2. ^{13}\text{C} NMR spectrum (75 MHz, CDCl_3) of 6a
```


Figure S3. ¹H NMR spectrum (300 MHz, CDCl₃) of **6a(D)**


```
Figure S4. <sup>13</sup>C NMR spectrum (75 MHz, CDCl_3) of 6a(D)
```


Figure S5. ^1H NMR spectrum (300 MHz, CDCl_3) of 6b

Figure S7. ¹H NMR spectrum (300 MHz, CDCl₃) of 6c

Figure S8. $^{\rm 13}{\rm C}$ NMR spectrum (75 MHz, CDCl_3) of $\rm 6c$

Figure S9. $^1\mathrm{H}$ NMR spectrum (300 MHz, CDCl_3) of $\mathbf{6d}$

15S

Figure S11. ¹H NMR spectrum (300 MHz, CDCl₃) of 6e


```
Figure S12. ^{\rm 13}{\rm C} NMR spectrum (75 MHz, CDCl_3) of 6e
```


Figure S13. ¹H NMR spectrum (300 MHz, CDCl₃) of 6f

ppm 140 120 100 H³C 6f 80 5-8-20 0

Figure S14. $^{13}\mathrm{C}$ NMR spectrum (75 MHz, CDCl_3) of $6\mathrm{f}$

Figure S15. ¹H NMR spectrum (300 MHz, CDCl₃) of 6f(D)

Figure S16. ¹³C NMR spectrum (75 MHz, CDCl₃) of 6f(D)

Figure S17. ¹H NMR spectrum (300 MHz, CDCl₃) of 6g

Figure S19. ¹H NMR spectrum (300 MHz, CDCl₃) of 6h

