Revised Supporting Information for B817728G

Facile Dichloromethane Activation and Phosphine Methylation. Isolation of Unprecedented Zwitterionic Organozinc and Organocobalt Intermediates

by Roberto Pattacini,^a Suyun Jie,^{a,b} and Pierre Braunstein^{*a}

^a Laboratoire de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France, Fax: (+33) (0)3 90 24 13 22.
E-mail: braunstein@chimie.u-strasbg.fr
^b Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

Crystallographic data

X-ray data collection, structure solution and refinement for all compounds

Suitable crystals for the X-ray analysis of all compounds were obtained as described below. The intensity data were collected at 173(2) K on a Kappa CCD diffractometer^[S-1] (graphite monochromated MoK_{α} radiation, $\lambda = 0.71073$ Å). Crystallographic and experimental details for the structures are summarized in Tables S1 and S2. The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least-squares procedures (based on F^2 , SHELXL-97)^[S-2] with anisotropic thermal parameters for all the non-hydrogen atoms. The hydrogen atoms were introduced into the geometrically calculated positions (SHELXS-97 procedures) and refined riding on the corresponding parent atoms. In the crystals of 5, a molecule of hexane was found disordered in proximity to the symmetry center. A satisfactory definition of the complete model was unsuccessful. A PLATON-SQUEEZE procedure^[3] was run using the complete molecular model of compound 5. The calculation (estimated residual electron density: 203 e/unit cell, total void volume in the unit cell: 560 $Å^3$) is consistent with the presence of 4 molecules of hexane. The modified reflection data were then used for the refinement of the molecular structure of 5, resulting in improved refinement parameters. The ADDSYM algorithm of the package PLATON^[3] detects an additional non-space group translation, resulting in the halving of the asymmetric unit in a 4-ZnCl₂. The analysis and the refinement of the alternative model (featuring two slightly disordered orientations for each phenyls) induced us to discard this option, the missing operation being "pseudo". The non-metallated ZnCl₂ groups are disordered in two positions, having no atom in common. This, along with the poor quality of the crystals (resulting in a low observed/unique reflections ratio) lowers the structure quality. The model is in fact affected by a low C-C bond precision and poor anisotropic parameters, especially on the phenyls which are close to the disorder involving heavy atoms. CCDC 697021 (PhPMe₃)₂(ZnCl₄), 697022 (Ph₃PMe)[ZnCl₃(DMF)], 697023 (Ph₃PMe)₂(ZnCl₄), 697024 (Ph₃PMe)[ZnCl₃(H₂O)], 697025 (5·1/2C₆H₁₄), 697026 (2_{ox}), 697027 (2_{th}), 697028 (4), 697029 (4·ZnCl₂), 697030 $(Ph_3PMe)_2(Zn_2Cl_6)$ contain the supplementary crystallographic data for this paper that can be the Cambridge Crystallographic obtained free of charge from Data Center via www.ccdc.cam.ac.uk/data request/cif.

Table S1. Data collection and refinement parameters for $(Ph_3PMe)_2(ZnCl_4)$, $(Ph_3PMe)_2(Zn_2Cl_6)$, $(Ph_3PMe)[ZnCl_3(DMF)]$ (DMF = dimethylformamide), $(Ph_3PMe)[ZnCl_3(H_2O)]$ and $(PhPMe_3)_2(Zn_2Cl_6)$.

Compound	(Ph ₃ PMe) ₂ (ZnCl ₄)	(Ph ₃ PMe) ₂ (Zn ₂ Cl ₆)	(Ph ₃ PMe)[ZnCl ₃ (DMF)]	(Ph ₃ PMe)[ZnCl ₃ (H ₂ O)]	(PhPMe ₃) ₂ (ZnCl ₄)
formula	$C_{38}H_{36}Cl_4P_2Zn$	$C_{38}H_{36}Cl_{6}P_{2}Zn_{2} \\$	C22H25Cl3NOPZn	$C_{19}H_{20}Cl_3OPZn$	$C_{19}H_{29}Cl_7P_2Zn$
M_r	761.78	898.09	522.12	467.04	632.88
Cell setting,	Cubic,	Triclinic,	Monoclinic,	Monoclinic,	Monoclinic,
space group	<i>P</i> 2 ₁ 3	<i>P</i> -1	$P2_1/c$	$P2_1/c$	$P2_1/c$
a (Å)	15.4168(6)	10.0538(3)	9.2816(4)	11.5221(5)	9.3861(3)
<i>b</i> (Å)	15.4168(6)	13.6096(4)	14.9139(4)	8.8570(2)	15.8823(8)
c (Å)	15.4168(6)	15.0143(4)	17.8177(7)	20.7669(5)	19.1608(9)
α (°)	90	91.832(2)	90	90	90
β (°)	90	102.291(2)	98.461(2)	94.549(2)	97.869(2)
γ (°)	90	98.875(2)	90	90	90
$V(\text{\AA}^3)$	3664.4(2)	1978.8(1)	2439.7(2)	2112.6(1)	2829.4(2)
Ζ	4	2	4	4	4
D_x (Mg m ⁻³)	1.381	1.507	1.421	1.468	1.485
$\mu \ (mm^{-l})$	1.075	1.725	1.414	1.622	1.649
Crystal size (mm)	0.10×0.10×0.10	0.08×0.08×0.06	0.16×0.12×0.12	0.20×0.15×0.15	0.12x0.12x0.10
Meas, indep.,	2785, 2785,	12696, 9033,	14722, 5894,	12513, 4770,	11111, 6462,
obsvd. Refl.	2004	6746	4170	3508	4445
R _{int}	0.079	0.018	0.050	0.056	0.036
θ _{max} (°)	27.45	27.48	28.00	27.48	27.50
$R[F^2>2\sigma(F^2)],$	0.046,	0.036,	0.037,	0.038,	0.038,
$wR[(F^2>2\sigma(F^2)],$	0.081, 1.01	0.094, 1.07	0.081, 1.01	0.096, 1.06	0.067, 1.04
S					
parameters	138	435	265	235	378
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.739, -0.300	0.501, -0.712	0.347, -0.567	0.481, -0.689	0.409, -0.372
Flack parameter	-0.02(2)				

Compound	4	$4 \cdot ZnCl_2$	5.1/2C ₆ H ₁₄	2 _{0x}	2 _{th}	
formula	$C_{38}H_{34}Cl_4P_2Zn_2$	$C_{76}H_{68}Cl_{12}P_4Zn_6$	$C_{37}H_{32}Cl_2CoP_2 \cdot 0.5(C_6H_{14})$ $C_{17}H_{19}Cl_3NOPZ_3$		$C_{17}H_{19}Cl_3NPSZn$	
M_r	825.13	1922.80	668.45	456.02	472.08	
Cell setting,	Monoclinic,	Triclinic,	Monoclinic,	Monoclinic,	Monoclinic,	
space group	C2/c	<i>P</i> -1	C2/c	$P2_1/c$	$P2_1/c$	
<i>a</i> (Å)	14.5489(7)	10.261(2)	24.424(1)	12.8862(3)	8.9222(2)	
<i>b</i> (Å)	13.7296(3)	20.439(3)	12.4343(9)	8.4311(2)	17.2090(9)	
<i>c</i> (Å)	18.8997(8)	21.995(3)	22.853(1)	18.2833(6)	13.8494(7)	
α (°)	90	63.454(7)	90	90	90	
β (°)	104.530(2)	86.058(9)	90.804(4)	98.131(1)	100.946(3)	
γ (°)	90	83.865(8)	90	90	90	
$V(\text{\AA}^3)$	3654.5(2)	4101.8(11)	6939.7(7)	2439.73(16)	2087.8(2)	
Ζ	4	2	8	4	4	
$D_x ({\rm Mg}\;{\rm m}^{-3})$	1.500	1.557	1.279	1.540	1.502	
$\mu (mm^{-1})$	1.720	2.236	0.769	1.742	1.736	
Crystal size (mm)	0.12×0.12×0.10	0.10×0.08×0.06	0.06x0.04x0.02	0.10×0.10×0.08	0.12×0.12×0.08	
Meas, indep.,	12656, 5318,	20257, 14092,	10466, 6128,	8557, 4749,	7536, 4340,	
obsvd. Refl.	3964	5537	3170	3158	2911	
$R_{\rm int}$	0.043	0.056	0.060	0.043	0.029	
θ_{max} (°)	30.03	25.05	25.05	28.00	26.50	
$R[F^2 > 2\sigma(F^2)],$	0.035,	0.086,	0.075,	0.040,	0.036,	
$wR[(F^2>2\sigma(F^2)], S$	0.089, 1.05	0.183, 0.98	0.206, 1.01	0.084, 1.00	0.092,0.99	
parameters	208	939	379	218	218	
$\Delta \rho_{max}, \Delta \rho_{min} \left(e \ {\rm \AA}^{-3} ight)$	0.484, -0.854	0.516, -0.617	0.452, -0702	0.478, -0.607	0.315, -0.323	

Table S2	: Data	collection	and refinemen	t parameters	for 4 . 4	4.ZnCl ₂ .	$5 \cdot 1/2 C_6 H_{14}$	$2_{\rm ox}$ and $2_{\rm th}$.
	• Data	concetion		e parameters	··· ·,	$\cdot = 12, \cdot$	-1/2 = -01114	

The crystal structures of the phosphoniums salts $(Ph_3PCH_3)_2(ZnCl_4)$, $(Ph_3PCH_3)_2(Zn_2Cl_6)$, $(Ph_3PCH_3)[ZnCl_3(DMF)]$ (DMF = dimethylformamide), $(Ph_3PCH_3)[ZnCl_3(H_2O)]$ and $(PhPMe_3)_2(ZnCl_4)$ were determined by single crystal X-ray diffraction. Their ORTEP plots are reported in Figures S1-S5. An ORTEP plot of the molecular structure of 2_{th} is reported in Figure S6.

Figure S1. ORTEP view of the molecular structure of $(Ph_3PCH_3)_2(ZnCl_4)$. Ellipsoids at 50% probability level. Only one of the two independent phosphonium cations is depicted. Symmetry operations used to generate equivalent atoms: -1/2+y, 1/2-z, -x ('''), -z, 1/2+x, 1/2-y (''), -1/2+z, 1/2-x, 1-y (') and 1/2-y, 1-z, 1/2+x ('''').

Figure S2. ORTEP view of the molecular structure of $(Ph_3PCH_3)_2(Zn_2Cl_6)$. Ellipsoids at 50% probability level. Only one of the two independent phosphonium cation is depicted. Symmetry operation used to generate equivalent atoms: -x, -y, -z (').

Figure S3. ORTEP view of the molecular structure of (Ph₃PCH₃)[ZnCl₃(DMF)]. Ellipsoids at 50% probability level.

Figure S4. ORTEP view of the molecular structure of (Ph₃PCH₃)[ZnCl₃(H₂O)]. Ellipsoids at 50% probability level.

Figure S5. ORTEP view of the molecular structure of (PhPMe₃)₂(ZnCl₄). Ellipsoids at 50% probability level. Only one of the two independent phosphonium cations is reported.

Figure S6. ORTEP view of the molecular structure of 2_{th} . Ellipsoids at 50% probability level.

Synthesis data

General Considerations

All manipulations were carried out under inert dinitrogen atmosphere, using standard Schlenk-line conditions and dried and freshly distilled solvents. The ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded unless otherwise stated on a Bruker Avance 300 instrument at 300.13, 75.48 and 121.49 MHz, respectively, using TMS, or H₃PO₄ (85% in D₂O) as external standards with downfield shifts reported as positive. FT-IR spectra in the range of 4000–650 cm⁻¹ were recorded on a Thermo Nicolet 6700 instrument, equipped with SMART Orbit Diamond ATR accessory. Elemental C, H, N analyses were performed by the "Service de microanalyses",

Université Louis Pasteur, Strasbourg. The ligands 2-[(diphenylphosphino)methyl]oxazoline $(1_{0x})^{S-4}$ and 2-[(diphenylphosphino)methyl]thiazoline $(1_{th})^{S-5}$ were prepared according to literature procedures. Other chemicals were commercially available and used as received.

Zwitterion-salt equilibrium for 2_{ox} and 2_{th}

In solution, a zwitterion-salt equilibrium was observed by variable temperature ${}^{1}H$, ${}^{31}P{}^{1}H$ and ${}^{13}C{}^{1}H$ NMR (Scheme S1) for 2_{ox} and 2_{th} . At room temperature, this equilibrium is shifted to the left for 2_{ox} and to the right for 2_{th} . The corresponding enamino tautomer of 1_{ox} has been previously postulated on the basis of its reactivity towards Ph₂PCl.^{S-6}

Preparation of 2_{ox}/3_{ox}

Solid 1_{ox} (0.066 g, 0.25 mmol) was added to a suspension of anhydrous CoCl₂ (0.032 g, 0.25 mmol) in dichloromethane (15 mL). The solution was stirred for 20 min. and zinc powder (0.250 g, 3.85 mmol) was added. The deep blue suspension was stirred at room temperature for 2 days, giving rise to a colourless solution which was filtered. Diethyl ether was layered onto the solution, affording colourless crystals of 2_{ox} (0.092 g, yield = 82.2%). FT-IR ($v_{C=N}$): 1660 cm⁻¹. 2_{ox} : ¹H NMR (300.13 MHz, d_6 -DMSO): $\delta = 2.80$ (d, 3H, ${}^2J_{P-H} = 14.8$ Hz, PCH₃), 3.69 (t, 2H, ${}^3J_{H-H} = 9.5$ Hz, NCH₂), 4.15 (t, 2 H, ${}^{3}J_{H-H} = 9.5$ Hz, OCH₂), 4.51 (d, 2H, ${}^{2}J_{P-H} = 15.6$ Hz, PCH₂), 7.58–7.98 (m, 10 H, phenyls) ppm. ${}^{31}P{}^{1}H{}$ (121.5 MHz, d_6 -DMSO): $\delta = 23.5$ (s) ppm. ${}^{13}C{}^{1}H{}$ (75.48 MHz, d_6 -DMSO): 6.9 (d, ${}^{1}J_{P-C} = 54.5$ Hz, PCH₃), 22.8 (d, ${}^{1}J_{P-C} = 57.4$ Hz, PCH₂), 54.6 (s, NCH₂), 68.5 (s, OCH₂), 119.8 –135.1 (m, phenyls), 160.8 (br, O-C=N) ppm. ${}^{31}P{}^{1}H{}$ (121.49 MHz, CD₂Cl₂): $\delta =$ 23.0 (s) ppm. **3**_{ox}: ¹H NMR (300.13 MHz, d_6 -DMSO): $\delta = 2.47$ (d, 3H, ² $J_{P-H} = 14.1$ Hz, PCH₃), 3.37 (d, 1H, ${}^{2}J_{P-H}$ = 11.8 Hz, PCH), 3.61 (t, 2H, ${}^{3}J_{H-H}$ = 7.9 Hz, NCH₂), 4.40 (t, 2H, ${}^{3}J_{H-H}$ = 7.9 Hz, OCH₂), 7.65–7.76 (m, 10 H, phenyls), 8.83 (s, br, 1H, NH) ppm. ${}^{13}C{}^{1}H{}$ (75.48 MHz, d_6 -DMSO): $\delta = 11.2$ (d, ${}^{1}J_{P-C} = 62.8$ Hz, PCH₃), 35.9 (d, ${}^{1}J_{P-C} = 121.4$ Hz, PCH), 43.1 (s, NCH₂), 70.5 (s, OCH₂), 119.8–135.1 (m, phenyls), 169.5 (s, O-C-NH) ppm. ${}^{31}P{}^{1}H{}$ (121.49 MHz, d_6 -DMSO): $\delta =$ 14.4 (s) ppm. Anal. Calcd for C₁₇H₁₉Cl₃NOPZn (456.06): C, 44.77; H, 4.20; N, 3.07. Found: C, 44.75; H, 4.12; N, 3.01.

Preparation of 2_{th}/3_{th}

Solid 1_{th} (0.286 g, 1.00 mmol) was added to a suspension of anhydrous CoCl₂ (0.065 g, 0.50

mmol) in dichloromethane (20 mL) and zinc powder (0.163 g, 2.51 mmol) was added. The deep blue suspension was stirred at room temperature for 2 days giving rise to a pale brown solution which was filtered. Evaporation of the volatiles vielded a brown solid which was washed with Et₂O (3 x 30 mL). Evaporation of the volatiles gave 2_{th} as a colourless powder (yield: 0.347 g, 73.3%). Complex 2_{th} can be recrystallized from a saturated CH₂Cl₂ solution. FT-IR ($v_{C=N}$): 1593 cm⁻¹. 2_{th} : ¹H NMR (300.13 MHz, d_6 -DMSO): $\delta = 2.78$ (d, 3H, ² $J_{P-H} = 14.8$ Hz, PCH₃), 3.33 (t, 2H, ³ $J_{H-H} = 8.4$ Hz, SCH₂), 4.06 (t, 2H, ${}^{3}J_{H-H}$ = 8.4 Hz, NCH₂), 4.72 (d, 2H, ${}^{2}J_{P-H}$ = 15.1 Hz, PCH₂), 7.50–7.94 (m, 10H, phenyls) ppm. ¹³C{¹H} (75.48 MHz, d_6 -DMSO): $\delta = 7.2$ (d, ¹ $J_{P-C} = 55.1$ Hz, PCH₃), 27.2 (d, ${}^{1}J_{P-C}$ = 53.9 Hz, PCH₂), 34.7 (s, SCH₂), 65.0 (s, NCH₂), 120–135 (m, phenyls), 160.8 (d, ${}^{2}J_{P-C}$ = 8.0 Hz, S-C=N) ppm. ${}^{31}P{}^{1}H{}$ (121.49 MHz, d_{6} -DMSO): $\delta = 24.0$ (s) ppm. $\mathbf{3}_{th}$: ${}^{1}H$ NMR (300.13 MHz, d_{6} -DMSO): $\delta = 2.54$ (d, partially masked by DMSO, 3H, ${}^{2}J_{P-H} \approx 14$ Hz, PCH₃), 3.26 (t, 2H, ${}^{3}J_{H-H} =$ 6.9 Hz, SCH₂), 3.64 (t, 2H, ${}^{3}J_{H-H}$ = 6.9 Hz, NCH₂), 4.37 (d, 1H, ${}^{2}J_{P-H}$ = 13.2 Hz, PCH), 7.50–7.94 (m, 10H, phenyls), 8.83 (s, br, 1H, NH) ppm. ${}^{13}C{}^{1}H{}$ (75.48 MHz, d_6 -DMSO): $\delta = 11.2$ (d, ${}^{1}J_{P-C} =$ 62.5 Hz, PCH₃), 32.7 (s, SCH₂), 48.5 (s, NCH₂), 54.4 (d, ${}^{1}J_{P-C} = 121.2$ Hz, PCH), 120–135 (m, phenyls), 170.7 (d, ${}^{2}J_{P-C}$ = 9.7 Hz, S-C-NH) ppm. ${}^{31}P{}^{1}H{}$ (121.49 MHz, d_{6} -DMSO): δ = 15.2 (s) ppm. Anal. Calcd for C₁₇H₁₉Cl₃NPSZn (472.13): C, 43.25; H, 4.06; N, 2.97. Found: C, 43.28; H, 4.11; N. 2.95. ¹H NMR spectra at variable temperatures are reported in Figure S6. The labeling scheme is given in Scheme S1.

Scheme S1.

Figure S-6. Variable Temperature ¹H NMR spectrum of $2_{ox}/3_{ox}$ in d_6 -DMSO (see labeling in Scheme S1)

General procedure for the synthesis of $[Ph_{3-n}PMe_{n+1}]_2(ZnCl_4)$ (n = 0, 1 or 2).

To a suspension of anhydrous CoCl₂ (0.100 g, 0.77 mmol) in CH₂Cl₂ (15 mL) was added PR'R₂ (1.54 mmol, 0.403 g for R = R' = Ph, 0.308 g for R = Ph, R' = Me, 0.213 g for R = Me, R' = Ph). The suspension was stirred for 20 min, giving rise to a deep blue suspension to which Zn powder was added (0.325 g, 5.00 mmol). The reaction mixture was stirred until discoloration (12 h). Dichloromethane (50 mL) was added and the solution was filtered. Distilled water was added (50 mL) to this solution A, the suspension stirred for 1 h and the organic part was collected. After drying with Na₂SO₄, the volatiles were removed under vacuum giving [Ph_{3-n}P(CH₃)_{n+1}]₂(ZnCl₄) as colourless powders. Yields, based on phosphorus: (1.34 mmol, 0.451 g for R = R' = Ph (87%); 1.43 mmol, 0.456 g for R = Ph, R' = Me (92%); 1.20, 0.308 g for R = Me, R' = Ph (78%). Crystals of (Ph₃PMe)₂(Zn₂Cl₆) were obtained by addition of 2M HCl instead of water to solution A, while (Ph₃PMe)₂(Zn₂Cl₆).

(**Ph₃PMe**)₂(**ZnCl₄**): ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 3.21$ (d, 6H, ²*J*_{P-H} = 13.0 Hz, PCH₃), 7.68–7.87 (m, 30 H, phenyls) ppm. ¹³C{¹H} (75.48 MHz, CD₂Cl₂): $\delta = 10.5$ (d, ¹*J*_{P-C} = 56.7 Hz, PCH₃), 118.9–134.9 (m, phenyls) ppm. ³¹P{¹H} (121.49 MHz, CD₂Cl₂): $\delta = 22.8$ (s) ppm. Anal. Calcd for C₃₈H₃₆Cl₄P₂Zn (761.84): C, 59.91; H, 4.76. Found: C, 60.20; H, 4.74. (Ph₃PMe)₂[ZnCl₃(DMF)]: ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 2.94$ (s, 3H, NCH₃, *coord*. DMF), 3.02 (s, 3H, NCH₃, *coord*. DMF), 3.03 (d, 3H, ²*J*_{P-H} = 13.2 Hz, PCH₃), 7.67–7.92 (m, 15H, phenyls), 8.15 (s, 1H, O=CH) ppm. ¹³C{¹H} (75.48 MHz, CD₂Cl₂): $\delta = 10.3$ (d, ¹*J*_{P-C} = 57.9 Hz, PCH₃), 32.2 (s, NCH₃), 37.5 (s, NCH₃), 118.4–135.2 (m, phenyls), 165.3 (s, HC=O) ppm. ³¹P{¹H} (121.49 MHz, CD₂Cl₂): $\delta = 22.5$ (s) ppm. Anal. Calcd for C₂₂H₂₅Cl₃NOPZn (522.16): C, 50.60; H, 4.83; N, 2.68. Found: C, 50.25; H, 4.91; N, 2.60.

[**Ph₂PMe₂**](**ZnCl₄**): ¹H NMR (300.13 MHz, CD₃CN): $\delta = 2.58$ (d, 12H, ²*J*_{P-H} = 14.2 Hz, PCH₃), 7.67–7.92 (m, 20H, phenyls) ppm. ¹³C{¹H} (75.48 MHz, CD₃CN): $\delta = 8.8$ (d, ¹*J*_{P-C} = 57.0 Hz, PCH₃), 120.5–134.6 (m, phenyls) ppm. ³¹P{¹H} (121.49 MHz, CD₃CN): $\delta = 22.1$ (s) ppm. Anal. Calcd for C₂₈H₃₂Cl₄P₂Zn (637.70): C, 52.74; H, 5.06. Found: C, 52.72; H, 4.84.

[**PhPMe₃**]₂(**ZnCl**₄): ¹H NMR (300.13 MHz, CD₃OD): $\delta = 2.21$ (d, 18H, ²*J*_{P-H} = 14.6 Hz, PCH₃), 7.64–7.98 (m, 10H, phenyls) ppm. ¹³C{¹H} (75.48 MHz, CD₃OD): $\delta = 8.27$ (d, ¹*J*_{P-C} = 57.0 Hz, PCH₃), 129.6–134.1 (m, phenyls) ppm. ³¹P{¹H} (121.49 MHz, CD₃OD): $\delta = 23.4$ (s) ppm. Anal. Calcd for C₁₈H₂₈Cl₄P₂Zn (513.56): C, 42.09; H, 5.49. Found: C, 41.83; H, 5.21.

In the case of PMePh₂, a zincated zwitterionic compound similar to 4 (*vide infra*) was detected by *in situ* NMR experiments. Its sensitivity towards hydrolysis prevented its isolation. *In situ* ¹H NMR (300.13 MHz, CD₂Cl₂): δ 1.25 (d, 4H, ²J_{P-H} = 16.0 Hz, PCH₂-Zn), 2.40 (d, 6H, ²J_{P-H} = 13.2 Hz, PCH₃), 7.48–7.84 (m, 20 H, phenyls). ¹³C{¹H} (75.48 MHz, CD₂Cl₂): 0.6 (d, ¹J_{P-C} = 39.7 Hz, PCH₂), 12.0 (d, ¹J_{P-C} = 62.8 Hz, PCH₃), 126.9–133.0 (m, phenyls). ³¹P{¹H} (121.49 MHz, CD₂Cl₂): δ 28.3 (s).

Reaction with P(*n*-Bu₃)

We achieved methylation of $P(n-Bu_3)$ following the same procedure as described above for PPh₃ (using 0.23 g of $P(n-Bu)_3$, 0.28 mL, 1.14 mmol). The conversion, based on NMR, is 98%. Selected data of the phosphonium cation.

 $[(n-Bu)_3PMe]_2(ZnCl_4)$: ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 0.87-0.97$ (m, 9H, -CH₂CH₂CH₂CH₃),

1.35-1.60 (m, 12H, $-CH_2CH_2CH_2CH_3$), 1.90-2.03 (m, 6H, $-CH_2CH_2CH_2CH_3$), 2.24 (m, 3H, simulated, ${}^{2}J_{P-H} = 11.4$ Hz, ${}^{4}J_{H-H} = 4.3$ Hz, P-CH₃) ppm. ${}^{13}C\{{}^{1}H\}$ (75.48 MHz, CD₂Cl₂): $\delta = 8.8$ (d, ${}^{1}J_{C-H} = 48$ Hz). ${}^{31}P\{{}^{1}H\}$ (121.49 MHz, CD₂Cl₂): $\delta = 32.6$ (s) ppm.

Using MeCN (10 mL) together with CH₂Cl₂ as solvent and without the hydrolysis step, a complex likely to be analogous to **4** was observed. Selected spectroscopic data: ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 0.55$ (d, 3H, ²*J*_{P-H} = 15.2 Hz; P-CH₃); ¹³C{¹H} (75.48 MHz, CD₂Cl₂): $\delta = -3.5$ (d, ¹*J*_{C-P} = 37.7 Hz; P-CH₃). ³¹P{¹H} (121.49 MHz, CD₂Cl₂): $\delta = 37.9$ (s) ppm.

Synthesis of 4.

PPh₃ (0.403 g, 1.54 mmol) was added to a suspension of anhydrous CoCl₂ (0.100 g, 0.77 mmol) in CH₂Cl₂ (20 mL) and MeCN (20 mL). The suspension was stirred for 20 min, giving rise to a deep blue solution to which Zn powder was added (0.325 g, 5.00 mmol). The colour of the reaction mixture turned green and was stirred until discoloration (12 h). The suspension was filtered *via* a cannula. Diethyl ether was layered onto the solution, giving colourless crystals of **4**, which were washed with Et₂O. Yield, based on PPh₃: 0.530 g, 85%. ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 1.48$ (d, 4H, ²*J*_{P-H} = 15.8 Hz, PCH₂), 7.45–7.75 (m, 30H, phenyls) ppm. ¹³C{¹H} (75.48 MHz, CD₂Cl₂): $\delta = 0.63$ (d, ¹*J*_{P-C} = 39.6 Hz, PCH₂), 124.8–133.1 (m, phenyls) ppm; ³¹P{¹H} (121.49 MHz, CD₂Cl₂): $\delta = 32.1$ (s) ppm. Anal. Calcd for C₃₈H₃₄Cl₄P₂Zn₂ (825.21): C, 55.31; H, 4.15. Found: C, 55.18; H, 4.43.

Compound 4·ZnCl₂ was prepared in a similar manner, without MeCN as a co-solvent, by layering pentane on the dichloromethane solution obtained after filtration. Its NMR spectra are similar to those of 4. In the solid state, 4·ZnCl₂ is much more sensitive towards hydrolysis then 4, preventing to obtain satisfactory elemental analyses.

Reaction of [CoCl(PPh₃)₃] with CH₂Cl₂, crystallization of 5·1/2C₆H₁₄.

Complex $[CoCl(PPh_3)_3]$ (0.300 g, 0.340 mmol) was dissolved in CH₂Cl₂ (50 mL). The green reaction mixture was stirred for 20 min, whereupon its colour turned blue progressively. Hexane was layered onto the solution, giving colourless crystals of PPh₃, deep blue crystals of $[CoCl_2(PPh_3)_2]$ and blue crystals of 5·1/2C₆H₁₄. Its sensitivity towards hydrolysis prevented its isolation from the aforementioned species.

References

- [S-1] Bruker-Nonius, *Kappa CCD Reference Manual*, Nonius BV, The Netherlands, **1998**.
- [S-2] Sheldrick., M; SHELXL-97, Program for crystal structure refinement; University of Göttingen: Germany, 1997.
- [S-3] A. L. Spek, J. Appl. Cryst., 2003, 36, 7-13
- [S-4] P. Braunstein, M. D. Fryzuk, M. Le Dall, F. Naud, S. J. Rettig, F. Speiser, J. Chem. Soc., Dalton Trans. 2000, 1067–1074.
- [S-5] A. Kermagoret, R. Pattacini, P. C. Vasquez, G. Rogez, R. Welter, P. Braunstein, Angew. Chem. Int. Ed. 2007, 46, 6438–6441.
- [S-6] R. Pattacini, G. Margraf, A. Messaoudi, N. Oberbeckmann-Winter, P. Braunstein, *Inorg. Chem.* 2008, 47, 9886-9897.