Supporting Information

High-Throughput Screening of Catalytically Inactive Mutants of Protein Tyrosine Phosphatases (PTPs) in a Phosphopeptide Microarray

Hongyan Sun,¹ Lay Pheng Tan,² Liqian Gao,^{1,3} and Shao Q Yao^{1,2,3,*}

¹Department of Chemistry, ²Department of Biological Sciences and ³NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543 *correspondence author (chmyaosq@nus.edu.sg)

<u>1. Materials and Methods</u>

1.1 *Materials.* All chemicals were purchased at the highest grade and used without further purification, unless otherwise noted. Fmoc-amino acids, HOBT, HBTU, TIS, TFA were from GL Biochem (China). Piperidine was from Merck (USA). HPLC profiles and ESI mass spectra were acquired in the positive or negative mode by using a Shimadzu IT-TOF. Analytical and semi-preparative RP-HPLC separations were performed on Phenomex C₁₈ analytical (150 x 3.0 mm) and semi-preparative (250 x 21.2 mm) columns, respectively, using a Shimadzu Prominence HPLC system equiped with a Shimadzu SPD-20A detector. Eluents A (0.1 % TFA/acetonitrile) and B (0.1 % TFA/water) were used as the mobile phases. PTP proteins were expressed and purified in house. Plain glass slides were purchased from Sigma Aldrich (USA), and modified to generate the corresponding avidin-coated surface as previously described.¹ Pro-QTM Diamond dye was bought from Invitrogen (USA).

1.2 *Microarray preparation.* All peptide stocks were prepared in an 1:1 DMSO/PBS spotting solution (to 1 mM final concentration), and were distributed in 384-well plates. All peptides were shown to be completely soluble in this spotting solution. Previously, we have shown that 500 μ M spotting concentration of peptides was sufficient to completely saturate available biotin-binding surface.¹ Slides were spotted on an ESI SMA arrayer (Ontario, Canada) with the printhead installed with 8 Stealth SMP8B Microspotting pins (Telechem, U.S.A.). Spots generated were of approximately 350 μ m diameter and were printed with a spot-spot spacing of 450 μ m. The pins were rinsed in between samples using two cycles of wash (for 10 s) and sonication (for 10 s) in reservoirs containing 70 % ethanol followed by drying under reduced pressure (for 10 s). The slides were allowed to stand for 1 h on the printer platform and stored at 4 °C until use. Before incubation with the labeled protein, the slides were rinsed with TBS (pH 7.4) for 10 min and blocked with TBS-containing 1 % BSA for 1 h.

1.3 *Pro-Q*TM *staining and detection.* Pro-QTM staining was routinely carried out on spotted slides to ensure the consistency and quality of the slides. The slide was washed with H₂O and stained with Pro-QTM Diamond dye for 1 h at room temperature. Subsequently the slide was destained with a solution of 20 % acetonitrile in sodium acetate (pH = 4) for 0.5 h and visualized with the microarray scanner under the Cy3 channel ($\lambda_{Ex} = 548$ nm; $\lambda_{Em} = 595$ nm).

1.4 *Site-directed mutagenesis.* The active site mutants of 5 different PTPs (PTP1B, TCPTP, SHP1, SHP2 and LMWPTP) as well as their domains (Scheme S1) were mutated by using the commercially available site directed mutagenesis Kit. The two catalytic domains of SHP1 and SHP2 were generated by introducing an extra stop codon between the SH2 and the catalytic domain of the corresponding PTPs. Primers were designed to introduce the desired mutation site. Appropriate primer sequences were chosen to ensure that the Tm melting temperature was above 78 °C. PCR amplification was first carried out to amplify the whole

sequence of gene with the primer containing desired mutation site. The PCR products were run with gel analysis to ensure the desired PCR band. Dpn I enzyme was used to digest the template to remove the false positives. The PCR product after Dpn I digestion was then transformed into top-10 competent cells. DNA sequencing was carried out to confirm the presence of mutation site and proper frame shift of the gene. After verification with DNA sequencing, the gene was transformed into expression host Bl21 DE3 for protein expression. In total, 8 proteins/domains were obtained for the study (Scheme S1).

Table S1. List of PT	Ps used in this study.			
PTPs	Gene symbol	Mutation site	Classification	Used in this study
PTP1B	PTN1	C215S	Tyr ppase	\checkmark
TCPTP	PTPN2	C216S	Tyr ppase	\checkmark
SHP1 ^{1*}	PTPN6	C453S	Tyr ppase	\checkmark
SHP2*	PTPN11	C459S	Tyr ppase	\checkmark
LMW PTP		C13S	Tyr ppase	✓

Both the full length and the catalytical domain (Δ SHP1 and Δ SHP2) of the proteins were used in the study.

Scheme S1. Schematic representation of the structure of different PTP mutants and domains used in this study.

1.5 Protein expression and purification. Overnight cultures were diluted 1:100 in LB media supplemented with 100 µg/mL of ampicillin or kanamycin and grown at 37 °C. At OD₆₀₀~0.6, expression was induced by addition of IPTG (isopropyl-b-D thiogalactopyranoside) and cultures were grown further at either RT or 30 °C overnight. Sufceessful overexpression of the proteins was verified by coomassie blue staining and immunoblot analysis with anti-GST antibody or anti-His antibody (Amersham Biosciences). After cell harvest and lysis (at pH 7.4. 20 mM tris-HCl, 150 mM NaCl) by sonication (6X pulses of 15 s each at half maximal power, on ice), the solution was clarified by centrifugation at 10 000 g, 30 min, 4 °C and affinity purified following vendor's protocols. Fractions containing the desired fusion protein were pooled and

dialysed into a suitable buffer, and stored at -20 °C. Protein concentration was determined using the Bradford protein assay (Bio-Rad). Protein purity was determined by separation on a 12 % SDS-PAGE gel.

1.6 Protein labeling and screening on the peptide microarray. Protein samples were minimally labeled with either Cy3 or Cy5 N-hydroxysuccinimide ester (Amersham, GE Healthcare, USA) for 1 h on ice, following the manufactor's protocols and our previously published procedures.¹ The unreacted dye was quenched with a 10-fold molar excess of hydroxylamine for a further 1 h. The excess dye was further removed by extensive dialysis at 4 °C overnight (Amersham, GE Healthcare, USA). After analysis by SDS-PAGE gel to ensure successful labeling and purity, the labeled protein was reconstituted in a final buffer volume of 80 µl TBS (pH 7.4) containing 1% bovine serum albumin (BSA). In a standard microarray experiment, the labeled protein $(1 \ \mu M; 80 \ \mu L)$ was applied to the array. In a dose-dependent experiment for K_D measurements, various concentrations of the protein (i.e. 5000 nM to 50 nM) were applied to different subarrays on the same slide, as previously described.¹ For denaturing experiments (e.g. Fig S4), the labeled protein was firsted boiled for 5 min, cooled before being applied to the peptide microarray. For dual-color screening experiments, an equal amount of a Cy3-labeled protein and a Cy5-labeled protein was mixed and applied together to the slide.¹ The samples were incubated with the array in a humidified chamber for 1 h at room temperature, before repeated rinses with TBS + 0.05% Tween 20, typically 3 x 10 min washes with gentle shaking. Slides were scanned using an ArrayWoRx microarray scanner installed with the relevant filters (Cy3: $\lambda ex/em = 548/595 \text{ nm}$; Cy5: $\lambda ex/em = 633/685 \text{ nm}$).

1.7 Data extraction and analysis. Microarray data was extracted using the ArrayWoRx software. Values from duplicated points were background subtracted and averaged (Duplicated spots with a standard deviation > 0.2 were rejected). The dataset was presented as colored heatmaps, using the Treeview software (http://rana.lbl.gov/EisenSoftware.htm). Other data analysis was carried out with Microsoft Excel. Venn diagrams were generated to identify the potent binders against PTP mutants, using the Venn Diagram Generator (http://www.pangloss.com/seidel/Protocols/venn.cgi). For microarray K_D experiments, the corresponding K_D was generated by fitting the data to the following equation as previously described,¹ under the assumption that equilibrium is achieved during the incubation period:

Observed fluorescence of x = [Maximum fluorescence, x] x [Protein concentration] $K_D + Protein concentration$

1.8 *Microplate PTP enzymatic assay.* Solution-based enzymatic assay was performed as previously described,² and measured in 384-well microplates with a total reaction volume of 40 μ L. 10 μ M solutions of the peptides in Hepes buffer (50 mM Hepes, 100 mM NaCl, 2 mM EDTA, 0.01% Brij, 1 mM DTT, pH 7.0) were incubated with optimum concentrations of PTP1B or TCPTP for different time points (ranging from 5 min, 15 min, 30 min, 60 min to 120 min) at 25 °C. The kinetic data for each peptide was determined in duplicate. The reaction was stopped by addition of malachit green solution containing sulfuric acid. After incubation with the malachit green solution for 10 min, the absorbance of the malachit green-phosphate complex was measured at 650 nm. The microplate data was processed with the software Graphpad Prism v. 4.03 (GraphPad, San Diego, USA) and fitted with the following equation to derive the kinetic data. Abs_{Obs} represents the absorbance reading at time x. Abs_{Max} represents the fitted constant which should correspond to the maximum absorbance obtained when the enzymatic reaction is complete.

Abs $_{Obs}$ = Abs $_{Max}$ x (1-exp(-k $_{obs}$ x time))

2. Peptide Synthesis

Scheme S2. Schematic representation of peptide synthesis

Peptide synthesis was performed by using standard Fmoc Strategy combined with IRORI™ directed sorting technology, as previously described.¹ Rink amide resin was used as the solid support. Standard HOBT/HBTU/DIEA coupling method was used throughput the whole process. Each microreactor contains around 40 mg of rink amide resin and a unique R_f tag for sorting application. The resin was swelled in HPLC-grade DMF for 1 h at room temperature. Subsequently the Fmoc group was deprotected by treatment of 20% piperidine for 1 h at room temperature. Following removal of the piperidine, the resin was washed extensively with DMF and DCM. The microreactors were then dried thoroughly under the high vaccum. Next, the microreactors were sorted and distributed into several reaction vessels, and each containing a unique Fmoc amino acid (4.0 eq), preactivated with HBTU/HOBt/DIEA (1/1/2 ratio relative to the amino acid). The resins were swelled in DMF for half an hour before coupling. The coupling reactions were carried out for 8 h at room temperature with shaking. At the end, the microreactors were collected and washed thoroughly with DMF and DCM. Any unreacted resin residue was capped with a solution of Ac₂O (10 eq), DIEA (20 eq) in DCM (200 mL), and the reaction mixture was allowed to react for 2 h at room temperature, followed by extensive wash with DCM and DMF. Subsequently the resin was deprotected with 20% piperidine again and ready for next coupling cycle. Repeat the above cycle until the last amino acid has been coupled. (Biotin)-GG was attached at the N-terminus of peptides for microarray immobilization.¹ After the whole coupling process was finished, the microreactors were collected, washed thoroughly and dried under high vaccum for 2 h at RT. The microreactors were then decoded and cleaved under 95% TFA, 2.5% TIS, 2.5% H₂O for 4 h at room temperature. For those peptides containing cysteine or methionine residue, the peptides were cleaved from the resin by using 94.5% TFA, 2.5% EDT, 2.5% H₂O and 1% TIS. Following prolonged concentration *in vacuo* until >80% of cleavage cocktail was removed. Cold ether (chilled to -20 °C) was added to the liquid residue to precipitate the peptides. The peptides were allowed to precipitate at -20 °C for overnight. At the end, the ether layer was decanned and the precipitates were dried thoroughly *in vacuo*. This process was repeated for a couple more times. The resulting peptide solids were dissolved in 1 ml DMSO and stored at -20 °C. LCMS was performed, as previously described,¹ to ensure the peptides were of correct mass and sufficient purity for subsequent microarray experiments.

Table S2. List of 144 peptides used in this study. These PTP putative substrates are derived from (1) known literature; (2) human protein reference database at <u>www.hprd.org</u>, and (3) <u>http://www.phosphosite.org/</u>. The table below shows the identity and sequence of each peptide, the molecular weight as determined by LCMS, the corresponding PTP targeted and its original protein source.

NO	ID	Peptide Sequence	MW ^a	Enzyme Targeted ^b	Oroginal Protein Source (pTyr site)
1	A01	AEKPF <mark>pY</mark> VNVEF	1762	PTP1B	BCR (177)
2	A02	AEMTG <mark>pY</mark> VVTRW	1732		Mitogen kinase
3	A03	AENAE <mark>pY</mark> LRVAP	1652	SHP1	EGF receptor (1197)
4	A04	DEELH <mark>PY</mark> ASLNF	1757	SHP1	CD33 (340)
5	A05	DEGIH <mark>pY</mark> SELIQ	1723	SHP1	SIGLEC2 (822)
6	A06	DEKVD <mark>pY</mark> VQVDK	1757	SHP1, SHP2	Gab2 (643)
7	A07	DERVDpYVVVDQ	1756	SHP2	Gab1 (689)
8	A08	DESVD <mark>pY</mark> VPMLD	1702	SHP2, TCPTP	PDGF (751)
9	A09	DKQVE <mark>pY</mark> LDLDL	1770	SHP2	GAB1 (657)
10	A10	DSGGF <mark>pY</mark> ITSRT	1623		Src-1
11	A11	DTETV <mark>pY</mark> SEVRK	1746	SHP1	CD31 (713)
12	A12	EANSH <mark>pY</mark> GHNDD	1678	SHP1	CD31 (663)
13	A13	EDEDY <mark>pY</mark> KASVT	1739	Type 12	
14	A14	EDGGV <mark>pY</mark> SSSGL	1489		Photooncogene FER kinase
15	A15	EDGIS <mark>pY</mark> TTLRF	1721	SHP1	SIGLEC2 (762)
16	A16	EDSTY <mark>pY</mark> KASKG	1668		Fak chick kinase
17	A17	EDTLT <mark>pY</mark> ADLDM	1706	SHP2	SIRP (470)
18	A18	EGVAT <mark>pY</mark> AAAVL	1484	SHP1	CATENIN (654)
19	A19	EGDNDpYIIPLP	1665	TCPTP	PDGF (1021)
20	A20	ENGLN <mark>pY</mark> IDLDL	1698	SHP2,PTP1B	IRS1 (1179)
21	A21	EPNVS <mark>pY</mark> ICSRY	1750		Kinase gsk3
22	A22	ESDGS <mark>pY</mark> QKPSY	1680	SHP2	SELECTIN E (603)
23	A23	ESDGG <mark>pY</mark> MDMSK	1638	SHP2	PDGF (740)
24	A24	ETDKE <mark>pY</mark> YTVKD	1810	TCPTP	JANUS KINASE1 (1022)
25	B01	FEEDDpYESPND	1779	SHP1	SLP76 (113)
26	B02	FGMTR <mark>pY</mark> VLDDE	1765		Tyrosine kinase TXK
27	B03	FLFNMpYLTRER	1909	SHP1	HOAX1 (343)
28	B04	FMMTP <mark>pY</mark> VVTRY	1827		JNK-2 kinase
29	B05	GFLTE <mark>pY</mark> VATRW	1762	PTP1B	ERK2 (187)
30	B06	GNNYV <mark>pY</mark> IDPTQ	1703	SHP1	KIT (570)
31	B07	GSAAP <mark>pY</mark> LKTKF	1602	TCPTP	STAT3 (705)
32	B08	GWMED <mark>pY</mark> DYVHL	1847		P130cas
33	B09	GWMVH <mark>pY</mark> TSKDT	1744		protein kinase c
34	B10	HNSAL <mark>pY</mark> SQVQK	1694		p62dok

35	B11	HRQLN <mark>pY</mark> IQVDL	1818	SHP2	FRS2 (436)
36	B12	IEDNE <mark>pY</mark> TAREG	1716	SHP1	LYN (397)
37	B13	IEDED <mark>pY</mark> YKASV	1751	Type 12	
38	B14	IEDNE <mark>pY</mark> TARQG	1715	SHP1,type 18,TCPTP	C-SRC (419)
39	B15	IESDI <mark>pY</mark> AEIPD	1684	Type 12	
40	B16	IESSN <mark>pY</mark> MAPYD	1709	PTP1B,TCPTP	PDGF (771)
41	B17	IRYHR <mark>pY</mark> HGRSA	1835		Protooncogene kinase, PIM 1
42	B18	IYETD <mark>pY</mark> YRKGG	1784	TCPTP	INSULIN (1189)
43	B19	KAVDG <mark>pY</mark> VKPQI	1637	SHP2, PTP1B	STAT5B (699)
44	B20	KDRMS <mark>pY</mark> HVRSH	1835		Myc Zinc protein
45	B21	KKRCP <mark>pY</mark> TKHQT	1809	SHP1	HOAX10 (326)
46	B22	KVVAL <mark>pY</mark> DYMPM	1749		BTK kinase
47	B23	LISSDpYELLSD	1674	ТСРТР	JAK3 (785)
48	B24	LNSDG <mark>p</mark> YTPEPA	1583	LMW	ZAP70 (292)
49	C01	LNSKG <mark>pY</mark> TKSID	1645		Erk kinase
50	C02	LPPEG <mark>pY</mark> VVVVK	1619	SHP2	PTK2B (906)
51	C03	MDTSV <mark>pY</mark> ESPYS	1698		Tyrosine kinase Zap 70
52	C04	MKDEE <mark>pY</mark> EQMVK	1849	type 13	
53	C05	MTGDT <mark>pY</mark> TAHAG	1544	type 12	
54	C06	NNHTE <mark>pY</mark> ASIQT	1697	SHP1, SHP2	SIRP (453)
55	C07	NQSSG <mark>pY</mark> RYGTD	1667		Fyn kinase
56	C08	NSDVQ <mark>pY</mark> TEVQV	1701	SHP1, SHP2	CD31 (690)
57	C09	NSKRDpYTGCST	1651	SHP2	MYELIN (200)
58	C10	NVVPL <mark>pY</mark> DLLLE	1707	PTP1B	ESTROGEN RECEPTOR (537)
59	C11	PEGLNpYACLTH	1637	SHP1	ROS1 (2334)
60	C12	PEGHEpYpYRVRE	1934	PTP1B	TYK2 (1054)
61	C13	PEQDE <mark>pY</mark> DIPRH	1818		P130cas
62	C14	PGSLE <mark>pY</mark> LCLPA	1582	SHP1, SHP2	INTERLUKIN 3 RECEPTOR (628)
63	C15	PKGTG <mark>pY</mark> IKTEL	1626	SHP2,TCPTP	STAT1 (701)
64	C16	PLDKD <mark>pYpY</mark> VVRE	1896	TCPTP	JAK3 (981)
65	C17	PPDHQpYYNDFP	1812	TCPTP	SHC (349)
66	C18	PQDKEpYYKVKE	1846	SHP2,PTP1B	JANUS KINASE2 (1007)
67	C19	PSFSEpYASVQV	1633	SHP2	SIRP (496)
68	C20	PSTRDpYEIQRE	1813		Fak kinase
69	C21	PQDKE <mark>pYpY</mark> KVKE	1926		JAK kinase
70	C22	QGPVI pYAQLDH	1660	SHP2	MYELIN (241)
71	C23	QKQPI <mark>pY</mark> IVMEL	1781		FES kinase
72	C24	QQQEVpYGMMPR	1786	LMW	SPECTRIN (1176)
73	D01	RNEGVpYTAIAV	1612	Type 12	
74	D02	REGLNpYMVLAT	1686	SHP1	ROS1 (2274)
75	D03	SAEPQpYQPGDQ	1639		PHotooncogene FGR kinase
76	D04	SDDVRpYVNAFK	1733	SHP2	VEGF (1213)
77	D05	SDGHEpYIYVDP	1714	ТСРТР	PDGF (579)
78	D06	SEEPIDYIVTFY	1762	SHP1	C-SRC (338)
79	D07	SESVVpYADIRK	1686	SHP2	MYELIN (263)
80	D08	SETDDDYAFIID	1690	Type 12	
81	D09	SPPALDYAEPI D	1592	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P62dok
82	D10	SSNPEDYL SASD	1589	ТСРТР	
52	210		1000		

83	D11	SSSSE <mark>pY</mark> GSVSP	1505		Mitogen kinase
84	D12	SSTVQ <mark>pY</mark> STVVH	1627	SHP2 INTERLUKIN 6 RECEPTOR (7	
85	D13	STEPQ <mark>pY</mark> QPGEN	1669	SHP1,PTP1B	C-SRC (530)
86	D14	TDKEY <mark>pY</mark> TVKDD	1796	TCPTP	JANUS KINASE 1 (1023)
87	D15	TGGSV <mark>pY</mark> TEDND	1576	Туре 3	
88	D16	TNDIT <mark>pY</mark> ADLNL	1672	SHP2	SIRP (429)
89	D17	TSKLI <mark>pY</mark> DFIED	1763	Type 12	
90	D18	TSSVL <mark>pY</mark> TAVQP	1585	SHP2	PDGF (1009)
91	D19	VDADE <mark>pY</mark> LIPQQ	1710	SHP2, PTP1B	EGFR (1016)
92	D20	VDTPH <mark>pY</mark> PRWIT	1804	PKC Kinase	
93	D21	VNTTL <mark>pY</mark> EKFTY	1798	SHP2	TEK KINASE (1108)
94	D22	VYESP <mark>p</mark> YSDPEE	1734		Tyrosine kinase zap-70
95	D23	YETDY <mark>pY</mark> RKGGK	1799	PTP1B,TCPTP	INSULIN (1190)
96	D24	YFMTE <mark>pY</mark> VATRW	1886		Mitogen kinase
97	E01	AEGSA <mark>pY</mark> EEVPT	1572		PLC-r
98	E02	AENPE <mark>pY</mark> LSEFS	1705		Erb2 receptor
99	E03	FDNLY <mark>pY</mark> WDQDP	1895		Erb2 receptor
100	E04	AFGTV <mark>pY</mark> KGIWI	1674		Erb2 receptor
101	E05	AFQFS <mark>pY</mark> TAVFG	1657		CAAX Protease
102	E06	AKIQD <mark>pY</mark> HILTR	1777		Jak2
103	E07	APAEM <mark>pY</mark> DIMKT	1689		Stem cell growth factor
104	E08	ASEQG <mark>pY</mark> EEMRA	1690		Erb3
105	E09	ATVGH <mark>pY</mark> TAVQN	1580		Cyclin kinase activator
106	E10	AYRQL <mark>pY</mark> LNPKG	1741		Chromosomal associate protein
107	E11	CPEKV <mark>pY</mark> ELMRA	1758		Abl 1
108	E12	DINSL <mark>pY</mark> DVSRM	1732		PLC-r
109	E13	DRFIQ <mark>pY</mark> ANPAF	1761		Camp Phosphodiesterase
110	E14	DVSRMpYVDPSE	1717		PLC-r
111	E15	EDIKS <mark>pY</mark> YTVRQ	1821	PTP1B	
112	E16	EEIRF <mark>pY</mark> QLGEE	1832		Potassium gate
113	E17	EKIQD <mark>pY</mark> EKMPE	1829		IL-1
114	E18	ELGYE <mark>pY</mark> MDVGS	1682		Erb-3
115	E19	AELEF <mark>pY</mark> MDYEA	1800	PTP1B	Alanine scanning
116	E20	FGAKP <mark>pY</mark> DGIPA	1555		Erb2 receptor
117	E21	GPQDI <mark>pY</mark> DVPPV	1619		P130cas
118	E22	GQESE <mark>pY</mark> GNITY	1680	PTN6	
119	E23	GRETI <mark>pY</mark> PNASL	1640		Carcinoembroyonic antigen
120	E24	IGEGT <mark>pY</mark> GTVFK	1591		Cell division kinase 5
121	F01	IYIHR <mark>pY</mark> ENVSI	1826		ATP cyclase
122	F02	KAEDE <mark>pY</mark> VNEPL	1726		Erb2 receptor
123	F03	KPKQE <mark>pY</mark> LNPVE	1764		Erb4
124	F04	LARDM <mark>pY</mark> DKEYY	1886		Met growth factor
125	F05	LDSTF <mark>pY</mark> RSLLE	1763		Erb2 receptor
126	F06	LGQRI <mark>pY</mark> QYIQS	1788		Dual specificity regulated kinase
127	F07	LLANA <mark>pY</mark> IYVVQ	1686		Neural cell adhesion
128	F08	LMGHE <mark>pY</mark> MEMKN	1802		Cell division cycle protein 23
129	F09	LNKQG <mark>pY</mark> KCRQC	1760		Protein kinase C
130	F10	NKPTV <mark>pY</mark> GVSPN	1595		Abl

131	F11	PPDHQ <mark>pY</mark> YNDFP	1812	SHC transforming protein
132	F12	PEDTF <mark>pY</mark> FDPEF	1826	ISPK-1 Kinase
133	F13	PEPGP <mark>pY</mark> AQPSV	1561	Adaptor crk
134	F14	RHDSG <mark>pY</mark> EVHHQ	1784	Alzheimer's disease
135	F15	RNPGF <mark>pY</mark> VEANP	1683	PLC-r
136	F16	SADHL <mark>pY</mark> VNVSE	1653	Tumor necrosis factor
137	F17	SSDPT <mark>pY</mark> TSSLG	1534	Tyrosine kinase receptor
138	F18	EEEPV <mark>pY</mark> EAEPE	1728	Hematopoietic lineage cell specific protein
139	F19	STKYF <mark>pY</mark> KQNGR	1811	Erb4
140	F20	TAEPD <mark>pY</mark> GALYE	1648	PLC-r
141	F21	VCAER <mark>pY</mark> SQEVF	1750	Apoptosis Protein cd27
142	F22	VDSSL <mark>pY</mark> NLPRS	1670	Grb2 associated
143	F23	VSSTH <mark>pY</mark> YLLPE	1728	Activated cdc42 kinase
144	F24	VVIALpYDYQTN	1718	T cell specific kinase

^aMost peptides (>98%) were shown to possess the expected molecular weight and have sufficient purity (>85%) as judged by LCMS analysis.

^bObtained from literature and various databases (<u>www.hprd.org</u>; <u>www.phosphosite.org/</u>)

3. Results and Discussion

Figure S1. The spotting format of all the microarrays used in this study, unless otherwise specified.

(a)

PTP1B TCPTP SHP1 SHP2 LMW	MVRWFHRDLSGLDAETLLKGRGVHGSFLARPSRKNQGDFSLSVRVGDQVTHIRIQNSG 58 MTSRRWFHPNITGVEAENLLLTRGVDGSFLARPSKSNPGDFTLSVRRNGAVTHIKIQNTG 60
PTP1B TCPTP SHP1 SHP2 LMW	DFYDLYGGEKFATLTELVEYYTQQQGVLQDRDGTIIHLKYPLNCSDPTSERWYHGHMSGG118 DYYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKYPLNCADPTSERWFHGHLSGK120
PTP1B TCPTP SHP1 SHP2 LMW	QAETLLQAKGEPWTFLVRESLSQPGDFVLSVLSDQPKAGPGS-PLRVTHIKVMCEGGRYT177 EAEKLLTEKGKHGSFLVRESQSHPGDFVLSVRTGDDKGESNDGKSKVTHVMIRCQELKYD180
PTP1B TCPTP SHP1 SHP2 LMW	MEMEKEFEQIDK 12 MPTTIEREFEELDT 14 VGGLETFDSLTDLVEHFKKTGIEEASGAFVYLRQPYYATRVNAADIENRVLELNKKQESE237 VGGGERFDSLTDLVEHYKKNPMVETLGTVLQLKQPLNTTRINAAEIESRVRELSKLAETT240
PTP1B TCPTP SHP1 SHP2 LMW	SGSWAAIYQDIRHEASDFPCR-VAKLPKNKNRNRYRDVSPFDHSRIKLHQED 63 QRRWQPLYLEIRNESHDYPHR-VAKFPENRNRNRYRDVSPYDHSRVKLQNAE 65 DTAKAGFWEEFESLQKQEVKNLHQRLEGQRPENKGKNRYKNILPFDHSRVILQGRDSNIP297 DKVKQGFWEEFETLQQQECKLLYSRKEGQRQENKNKNRYKNILPFDHTRVVLHDGDPNEP300
PTP1B TCPTP SHP1 SHP2 LMW	-NDYINASLIKMEEAQRSYILTQGPLPNTCGHFWEMVWEQKSRGVVMLNRVM114 -NDYINASLVDIEEAQRSYILTQGPLPNTCCHFWLMVWQQKTKAVVMLNRIV116 GSDYINANYIKNQLLGPDENAKTYIASQGCLEATVNDFWQMAWQENSRVIVMTTREV354 VSDYINANIIMPEFETKCNNSKPKKSYIATQGCLQNTVNDFWRMVFQENSRVIVMTTKEV360 MAEQATKSVLFVCLGNICRSPIAEAVFRKLVTDQNI 36 : :: * .: * .: : : : : :
PTP1B TCPTP SHP1 SHP2 LMW	EKGSLKCAQYWPQKEEKEMIFEDTNLKLTLISEDIKSYYTVRQLELENLTTQ-ETREILH173 EKESVKCAQYWP-TDDQEMLFKETGFSVKLLSEDVKSYYTVHLLQLENINSG-ETRTISH174 EKGRNKCVPYWPEVGMQRAYGPYSVTNCGEHDTTEYKLRTLQVSPLDNGDLIREIWH411 ERGKSKCVKYWPDEYALKEYGVMRVRNVKESAAHDYTLRELKLSKVGQGNTERTVWQ417 SENWVIDSGAVSDWNVGRSPDPR-AVSCLRNHGIHTAHKARQITK 80
PTP1B TCPTP SHP1 SHP2 LMW	FHYTTWPDFGVPESPASFLNFLFKVRESGSLSPEHGPVVVHCSAGIGRSGTFCLADTCLL233 FHYTTWPDFGVPESPASFLNFLFKVRESGSLNPDHGPAVIHCSAGIGRSGTFSLVDTCLV234 YQYLSWPDHGVPSEPGGVLSFLDQINQRQESLPHAGPIIVHCSAGIGRTGTIIVIDMLME471 YHFRTWPDHGVPSDPGGVLDFLEEVHHKQESIMDAGPVVVHCSAGIGRTGTFIVIDILID477 EDFATF-DYILCMDESNLRDLNRKSNQVKTCKAKIELLGSY120 .: :: *.: : *.* * *:
PTP1B TCPTP SHP1	LMDKRKDPSSVDIKKVLLEMRKFRMGLIQTADQLRFSYLAVIEGAKFIMGDSSVQDQWKE293 LMEKGDDINIKQVLLNMRKYRMGLIQTPDQLRFSYMAIIEGAKCIKGDSSIQKRWKE291 NISTKGLDCDIDIQKTIQMVRAQRSGMVQTEAQYKFIYVAIAQFIETTKKKLEVLQSQKG531

SHP2 LMW	IIREKGVDCDIDVPKTIQMVRSQRSGMVQTEAQYRFI DPQKQLIIEDPYYGNDSDFETV : : :	YMAVQHYIETLQRRIEEEQKSKR537 YYQQCVRCCRAFLEKAH158 *
PTP1B TCPTP SHP1	LSHEDLEPPPEHIP	DRCTGLSSKMQDTMEENSESALRK351
SHP1 SHP2 LMW	KGHEYTNIKYSLADQTSGDQ	SPLPPCTPTP567
PTP1B	RILEPH	320
TCPTP	RIREDRKATTAQKVQQMKQRLNENERKRKRPRLTDT	387
SHP1	DVYENLHTKNKREEKVKKQRSADKEKSKGSLKRK	595
SHP2	PCAEMREDSARVYENVGLMQQQKSFR	593
LMW		
(b)		

Figure S2. The sequence homology analysis of the 5 different PTPs used in the study. (a) Sequence alighment. (b) Cluster analysis.

Figure S3. The Pro-Q[™] images of the 144-member pTyr peptide library, spotted on three separate microarrays, indicating a high degree of slide-to-slide and (duplicated) spot-to-spot reproducibility of our microarrays. Different peptides show varied degrees of Pro-Q binding which had been observed previously.^{1a}

Figure S4. Fluorescence gel images of the dye-labeled PTP mutants/domains used in this study. Cy3-and Cy-5 labeled proteins were false-colored in Green and Red, respectively.

Figure S5. The 144-member pTyr peptide microarray is shown to bind to PTP trapping mutants specifically. (a) Denatured (top) and native (bottom) PTP mutants (Left: full-length SHP1; Right: PTP1B; 1 μM each) were applied to the peptide microarray and imaged. Results indicate that the ability of PTP mutants binding to the pTyr peptide on the microarray was completely abolished by heat denaturation. (b) 14-3-3 protein (a well-known pSer/Thr peptide binding protein), which is previously shown to binding to a p-Ser/Thr peptide microarray is highly specific for screening of PTP mutants. One μM of each protein was used in the experiment.

3.1. Single-point microarray fingerprinting experiments.

<u>3.1.1 Top-20 analysis based on single-point fingerprinting.</u> The results were obtained from the images shown in Figure 2 in the maintext, and summarized in the tables in the supplementary excel file "SI2_Sun.xls". The top-20 scorers based on the abosulte fluorescence intensity of the spots were analyzed by Venn Diagram.

(a)

Figure S6. (a) The Venn diagrams comparing the top-20 sequences (based on single-point data in SI2_Sun.xls) for PTP1B/TCPTP and full-length SHP1/SHP2. (b) Specific peptide sequences sequences obtained from (a). (c) The scatter plot comparing the "fingerprint" homology of PTP1B/TCPTP and SHP1/SHP2 pairs. The single-point data obtained for all 144 peptides were used (SI2_Sun.xls).

3.1.2. Fingerprints of different SHP2 mutants (full-length, catalytic domain and SH2 domain).

Figure S7. (a) Microarray images of the 144 peptides binding to full-length SHP (left), SH2 domain of SHP2 (middle) and catalytic domain of SHP2 (right). All proteins used were 1 μM. (b) The treeview graph of (a). It indicates the binding of the SH2 domain and catalytic domain combine to contribute to the full-length SHP2 protein binding in our peptide microarray.

(c)

3.2. Microarray-based K_D experiments.

<u>3.2.1. Microarray K_D determination.</u> Complete K_D obtained for three PTPs (PTP1B, SHP1 and SHP2) were shown in the supplementary excel file "SI2_Sun.xls". Microarray K_D experiments for TCPTP failed to give satisfactory results due to high degree of nonspecific binding at high protein concentrations (> 1 μ M). Fitted cuvers were shown in Fig S11. Selected K_D were summarized in Tables S5 & S6.

Figure S8. Microarray images of concentration-dependent experiments with PTP1B (top), SHP1 (middle) and SHP2 (bottom). Data were extracted and fitted, assuming a saturation binding model, to derive the corresponding K_D. Fitted curves were shown in Fig S11 and summarized in the supplementary excel file "SI2_Sun.xls".

Table S3. Comparision between the top-20 peptides obtained from the single-point data (Single-point data in "SI2_Sun.xls") and those obtained from K_D experiments ((XXX K_D in "SI2_Sun.xls") for three PTPs (PTP1B, SHP1 and SHP2). Overlapping sequences from each protein experiment were shaded with the same color.

Ranking	PTP1B		SH	IP1	SHP2		
-	Single-point fluorescence	κ	Single-point fluorescence	κ	Single-point fluorescence	κ _D	
1	AELEF <mark>pY</mark> MDYEA (E19)	IYIHR <mark>pY</mark> ENVSI (F01)	TSSVL <mark>pY</mark> TAVQP (D18)	IESDI <mark>pY</mark> AEIPD (B15)	TSSVLpYTAVQP (D18)	TSSVLpYTAVQP (D18)	
2	TSSVLpYTAVQP (D18)	NNHTEpYASIQT (C06)	SESVVpYADIRK (D07)	SADHLpYVNVSE (F16)	QGPVIpYAQLDH (C22)	TNDITpYADLNL (D16)	
3	VNTTLpYEKFTY (D21)	PSFSEpYASVQV (C19)	IESDI <mark>pY</mark> AEIPD (B15)	TSSVL <mark>pY</mark> TAVQP (D18)	SESVVpYADIRK (D07)	SSTVQpYSTVVH (D12)	
4	IESDIPYAEIPD (B15)	SESVVpYADIRK (D07)	LNKQGpYKCRQC (F09)	SESVVpYADIRK (D07)	PEGLNpYACLTH (C11)	SESVVpYADIRK (D07)	
5	GPQDIpYDVPPV (E21)	EGVAT <mark>pY</mark> AAAVL (A18)	SSTVQpYSTVVH (D12)	AELEF <mark>pY</mark> MDYEA (E19)	SSTVQpYSTVVH (D12)	IYIHR <mark>pY</mark> ENVSI (F01)	
6	NSDVQpYTEVQV (C08)	TSSVL <mark>pY</mark> TAVQP (D18)	DTETVpYSEVRK (A11)	SSTVQpYSTVVH (D12)	ENGLNpYIDLDL (A20)	ENGLNpYIDLDL (A20)	
7	IYIHR <mark>pY</mark> ENVSI (F01)	LMGHEpYMEMKN (F08)	QGPVI pYAQLDH (C22)	SETDDpYAEIID (D08)	EDTLT <mark>pY</mark> ADLDM (A17)	QGPVI pYAQLDH (C22)	
8	SESVVpYADIRK (D07)	LNKQGpYKCRQC (F09)	PEGLNpYACLTH (C11)	ELGYE <mark>pY</mark> MDVGS (E18)	EDGISpYTTLRF (A15)	EDIKSpYYTVRQ (E15)	
9	EPNVSpYICSRY (A21)	AELEFpYMDYEA (E19)	AELEF <mark>PY</mark> MDYEA (E19)	PSFSE <mark>pY</mark> ASVQV (C19)	IESDI <mark>PY</mark> AEIPD (B15)	HRQLNpYIQVDL (B11)	
10	SSTVQpYSTVVH (D12)	GPQDIpYDVPPV (E21)	EDGISpYTTLRF (A15)	EGVAT <mark>pY</mark> AAAVL (A18)	REGLNpYMVLAT (D02)	PEGLNpYACLTH (C11)	
11	QKQPIpYIVMEL (C23)	VNTTL <mark>pY</mark> EKFTY (D21)	YFMTE <mark>pY</mark> VATRW (D24)	VNTTL <mark>pY</mark> EKFTY (D21)	HRQLNpYIQVDL (B11)	LGQRI <mark>pY</mark> QYIQS (F06)	
12	YFMTEpYVATRW (D24)	IESDI <mark>PY</mark> AEIPD (B15)	PSFSEpYASVQV (C19)	DTETV <mark>pY</mark> SEVRK (A11)	DEELHpYASLNF (A04)	YFMTE <mark>pY</mark> VATRW (D24)	
13	DINSLpYDVSRM (E12)	ATVGH <mark>pY</mark> TAVQN (E09)	REGLNpYMVLAT (D02)	IGEGT <mark>pY</mark> GTVFK (E24)	EPNVSpYICSRY (A21)	FLFNM <mark>pY</mark> LTRER (B03)	
14	DVSRMpYVDPSE (E14)	QGPVI pYAQLDH (C22)	NNHTEPYASIQT (C06)	GPQDIpYDVPPV (E21)	TNDIT <mark>PY</mark> ADLNL (D16)	AFGTV <mark>pY</mark> KGIWI (E04)	
15	FMMTPpYVVTRY (B04)	YFMTEpYVATRW (D24)	SADHLpYVNVSE (F16)	YFMTE <mark>pY</mark> VATRW (D24)	DEGIHpYSELIQ (A05)	DEELHpY ASLNF (A04)	
16	PSFSEpYASVQV (C19)	VDTPH <mark>pY</mark> PRWIT (D20)	ELGYE <mark>pY</mark> MDVGS (E18)	DEELHpY ASLNF (A04)	DTETVpYSEVRK (A11)	LMGHE <mark>PY</mark> MEMKN (F08)	
17	GSAAPpYLKTKF (B07)	KVVAL <mark>pY</mark> DYMPM (B22)	GSAAPpYLKTKF (B07)	LMGHE <mark>pY</mark> MEMKN (F08)	DKQVE <mark>pY</mark> LDLDL (A09)	EDGISpYTTLRF (A15)	
18	SADHLpYVNVSE (F16)	DINSLpYDVSRM (E12)	FMMTPpYVVTRY (B04)	QGPVI pYAQLDH (C22)	DRFIQpYANPAF (E13)	KAVDG <mark>pY</mark> VKPQI (B19)	
19	AFGTVpYKGIWI (E04)	GWMEDpYDYVHL ()	DEELHpY ASLNF (A04)	FMMTPpYVVTRY (B04)	NNHTEPYASIQT (C06)	REGLNpYMVLAT (D02)	
20	LGQRIpYQYIQS (F06)	QKQPI <mark>pY</mark> IVMEL ()	TNDITpYADLNL (D16)	HRQLNpYIQVDL (B11)	AELEF <mark>PY</mark> MDYEA (E19)	KVVALpYDYMPM (B22)	

Figure S9. Venn diagram comparing the top-20 sequences between the single-point data and K_D results.

S

3.3. Dual-color screening experiments.

Dual-color screening with PTP1B/TCPTP, full-lengh SHP1/SHP2 and Δ SHP1/ Δ SHP2 were carried out, and the complete results were summarized in the supplementary excel file "SI2_Sun.xls". Selected peptides were further characterized by (1) determining k_{obs} using microplate-based enzymatic PTP assay with the corresponding wildtype PTPs, or/and (2) comparing the K_D ratio obtained from the microarray-based K_D experiments. Results of particular interest are summarized in Tables S4-S6 and Figures S10 & S11.

Table S4. The k_{obs} of PTP1B-selective peptides against PTP1B and TCPTP. The peptides were identified from the dual-color PTP1B/TCPTP ratiometric screening results (e.g. Figure 4 in the maintext).

Pontido	Enzyme	K _{obs}		
Sequence	targeted/protein	(obtained from enzymatic assay)		
	300106	PTP1B	TCPTP	
IESDI <mark>pY</mark> AEIPD	Type 12	0.14	0.048	
SSTVQ <mark>pY</mark> STVVH	SHP2	0.215	0.11	
YFMTE <mark>pY</mark> VATRW	Mitogen kinase	0.040	0.017	
	Peptide Sequence IESDIPYAEIPD SSTVQPYSTVVH YFMTEPYVATRW	Peptide SequenceEnzyme targeted/protein source-IESDIPYAEIPDType 12SSTVQPYSTVVHSHP2YFMTEPYVATRWMitogen kinase	Peptide SequenceEnzyme targeted/protein source(obtained from e 	

Figure S10. Microplate-based enzymatic PTP assay to determine the k_{obs} of the four selected peptides against PTP1B and TCPTP.

Table S5. K_D of selected peptides identified from the dual-color SHP1/SHP2 ratiometric screening results (e.g. Figure 4 in the maintext). K_D results were extracted from the microarray-based K_D experiments. Shaded are entries that overlap with those in Table S6.

ID	Pontido soguenco	Enzyme	Protein	K _D (μΜ)		SHP1/SHP2 ratio	
	replice sequence	targeted	source	SHP1	SHP2	color experiments)	
A18	EGVAT <mark>pY</mark> AAAVL	SHP1	CATENIN (654)	0.96	1.1	9.4	
C19	PSFSE <mark>pY</mark> ASVQV	SHP2	SIRP (496)	0.93	0.62	4.3	
E19	AELEF <mark>pY</mark> MDYEA	PTP1B	Alanine scanning	0.41	NA ^a	17.7	
E21	GPQDI <mark>pY</mark> DVPPV		P130cas	1.1	NA	12.7	
B06	GNNYV <mark>pY</mark> IDPTQ	SHP1	KIT (570)	NA	NA	5.3	
B15	IESDIPYAEIPD	Type12	FAK2	0.2	NA	27	

^aNA indicates that either K_D can not be accuratly determined due to (1) weak binding from fluorescence signals, and/or (2) too much nonspecific binding preventing the saturation binding curve to be fitted properly.

Table S6. K_D of selected peptides identified from the dual-color Δ SHP1/ Δ SHP2 ratiometric screening results (e.g. Figure 4 in the maintext). K_D results were extracted from the microarray-based K_D experiments. Shaded are entries that overlap with those in Table S6.

ID	Peptide	Enzyme	Protein	K _D (μM)		∆SHP1/∆SHP2 ratio (obtained
ם	Sequence	targeted	Source	SHP1	SHP2	from dula-color experiments)
A18	EGVAT <mark>pY</mark> AAAVL	SHP1	CATENIN	0.96	1.1	7.6
C19	PSFSE <mark>pY</mark> ASVQ V	SHP2	SIRP	0.93	0.62	4.3
E19	AELEF <mark>pY</mark> MDYE A	PTP1B	Alanine scanning	0.41	NA ^a	6.6
B06	GNNYV <mark>pY</mark> IDPTQ	SHP1	KIT	NA	NA	4
B15	IESDI <mark>pY</mark> AEIPD	Type12	FAK2	0.2	NA	4.5

^aNA indicates that either K_D can not be accuratly determined due to (1) weak binding from fluorescence signals, and/or (2) too much nonspecific binding preventing the saturation binding curve to be fitted properly.

3.4. Fitted K_D curves obtained from microarray K_D experiments.

(b) Full-length SHP1

(c) Full-length SHP2

Figure S11. Fitted K_D curves obtained from microarray K_D experiments. Results were summarized in the supplementary excel file "SI2_Sun.xls". Selected data were represented in Tables S5 & S6. (a) PTP1B, (b) SHP1, (c) SHP2.

Figure S12. Microplate-based enzymatic PTP assay to determine the k_{obs} of E19 peptide against the four PTPs (PTP1B, TCPTP, SHP1 and SHP2).

4. References

- (a) Lu, C.H.S.; Sun, H.; Bakar, F.B.A.; Uttamchandani, M.; Zhou, W.; Liou, Y.-C.; Yao, S.Q., Angew. Chem. Int. Ed., 2008, 47, 7438-7441. (b) Sun, H.; Lu, C.H.S.; Uttamchandani, M.; Xia, Y.; Liou, Y.-C.; Yao, S.Q., Angew. Chem. Intl. Ed., 2008, 47, 1698-1702. (c) Uttamchandani, M.; Lee, W.L.;Wang, J.; Yao, S.Q., J. Am. Chem. Soc., 2007, 129, 13110-13117.
- [2] M. KRhn, M. Gutierrez-Rodriguez, P. Jonkheijm, S. Wetzel, R. Wacker, H. Schroeder, H. Prinz, C. M. Niemeyer, R. Breinbauer, S. E. Szedlacsek, H. Waldmann, *Angew. Chem. Int. Ed.* 2007, 46, 7700 7703.

Single-point data

			Absolute Fluorescence Intensity						
NO.	ID	Sequence	PTP1B	TCPTP	SHP1	SHP2	LMWPTP		
			(1 µM)	(1 µM)	(1 µM)	(1 µM)	(1 µM)		
1	A01	AEKPF <mark>pY</mark> VNVEF	249	193	222	3462	126		
2	A02	AEMTG <mark>pY</mark> VVTRW	1171	864	1136	5527	5111		
3	A03	AENAE <mark>pY</mark> LRVAP	0	0	445	2352	0		
4	A04	DEELH <mark>PY</mark> ASLNF	435	169	4557	10457	1027		
5	A05	DEGIHpYSELIQ	428	917	1271	9968	219		
6	A06	DEKVD <mark>pY</mark> VQVDK	51	0	58	3009	612		
7	A07	DERVDpYVVVDQ	0	22	472	4016	806		
8	A08	DESVDpYVPMLD	587	66	29	54	352		
9	A09	DKQVE <mark>pY</mark> LDLDL	56	19	1974	8898	437		
10	A10	DSGGFpYITSRT	1181	112	178	1233	1289		
11	A11	DTETVpYSEVRK	588	118	9680	9670	2350		
12	A12	EANSHpYGHNDD	0	0	0	48	834		
13	A13	EDEDYPY KASVT	321	140	305	1095	604		
14	A14	EDGGVpYSSSGL	380	282	0	859	1956		
15	A15	EDGISpYTTLRF	1248	586	6588	12343	1797		
16	A16	EDSTY <mark>PY</mark> KASKG	468	68	66	818	1593		
17	A17	EDTLTpYADLDM	251	355	3399	12782	229		
18	A18	EGVAT <mark>pY</mark> AAAVL	2705	3936	2849	3002	375		
19	A19	EGDNDpYIIPLP	683	378	2252	5374	378		
20	A20	ENGLNpYIDLDL	944	997	1392	12973	403		
21	A21	EPNVSpYICSRY	6722	6488	2853	10213	5336		
22	A22	ESDGSpYQKPSY	781	350	105	972	2942		
23	A23	ESDGGPYMDMSK	585	0	304	1863	2278		
24	A24	ETDKEpYYTVKD	0	0	0	154	62		
25	B01	FEEDDpYESPND	0	0	0	0	0		
26	B02	FGMTRpYVLDDE	43	291	135	814	165		
27	B03	FLFNMpYLTRER	3025	1875	806	3317	5257		
28	B04	FMMTPpYVVTRY	3664	2531	4939	7381	9586		
29	B05	GFLTEpYVATRW	2238	837	4328	3926	3147		
30	B06	GNNYV <mark>pY</mark> IDPTQ	1538	524	1758	1433	325		
31	B07	GSAAP <mark>pY</mark> LKTKF	3557	950	4957	4457	12409		
32	B08	GWMEDpYDYVHL	1362	876	1044	719	663		
33	B09	GWMVHpYTSKDT	90	0	178	1406	1045		
34	B10	HNSALpYSQVQK	1695	707	1528	3328	4753		
35	B11	HRQLNpYIQVDL	1565	574	1501	10960	2762		
36	B12	IEDNEPYTAREG	834	0	0	1339	192		
37	B13	IEDEDpYYKASV	524	111	1077	1600	1946		
38	B14	IEDNE <mark>PY</mark> TARQG	1003	0	119	1186	829		
39	B15	IESDIPYAEIPD	10095	12914	15308	11860	288		
40	B16	IESSNpYMAPYD	1051	793	600	2657	0		
41	B17	IRYHR <mark>pY</mark> HGRSA	1559	791	1723	3198	10879		
42	B18	IYETDPYYRKGG	1364	833	1220	1155	3528		
43	B19	KAVDGpYVKPQI	767	271	1099	5420	4579		
44	B20	KDRMSpYHVRSH	2355	558	1741	2722	6890		
45	B21	KKRCPpYTKHQT	1609	683	1105	3174	8123		
46	B22	KVVAL <mark>pY</mark> DYMPM	1235	852	1738	3630	4748		
47	B23	LISSDpYELLSD	39	158	285	1196	0		
48	B24	LNSDG <mark>PY</mark> TPEPA	0	0	0	268	0		

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Single-point data

C01

C02

C03

C04

C05

C06

C07

LNSKGpYTKSID

LPPEG<mark>pY</mark>VVVVK

MDTSVpYESPYS

MKDEEpYEQMVK

MTGDTpYTAHAG

NNHTEpYASIQT

NQSSGpYRYGTD

56	C08	NSDVQ <mark>pY</mark> TEVQV	9583	6459	1382	7188	2166
57	C09	NSKRDpYTGCST	602	0	225	730	2425
58	C10	NVVPL <mark>pY</mark> DLLLE	688	200	0	576	445
59	C11	PEGLNpYACLTH	2371	2290	9095	17829	2233
60	C12	PEGHE <mark>pYpY</mark> RVRE	2158	1810	0	956	623
61	C13	PEQDEpYDIPRH	153	0	704	1323	336
62	C14	PGSLE <mark>pY</mark> LCLPA	2047	1697	589	5226	418
63	C15	PKGTG <mark>pY</mark> IKTEL	1006	86	709	3183	3217
64	C16	PLDKD <mark>pYpY</mark> VVRE	1013	241	0	932	571
65	C17	PPDHQ <mark>pY</mark> YNDFP	125	50	123	751	48
66	C18	PQDKE <mark>pY</mark> YKVKE	484	0	0	444	1081
67	C19	PSFSE <mark>pY</mark> ASVQV	3564	3853	5876	5283	2771
68	C20	PSTRDpYEIQRE	0	0	0	88	0
69	C21	PQDKE <mark>pYpY</mark> KVKE	1229	1909	396	1963	1702
70	C22	QGPVI <mark>pY</mark> AQLDH	1095	676	9279	19158	2309
71	C23	QKQPI <mark>pY</mark> IVMEL	6003	9871	1808	1234	1769
72	C24	QQQEV <mark>pY</mark> GMMPR	1902	538	837	1665	4117
73	D01	RNEGV <mark>PY</mark> TAIAV	1085	2040	1106	1188	1413
74	D02	REGLNpYMVLAT	2574	2088	5667	11520	3622
75	D03	SAEPQpYQPGDQ	0	48	51	66	164
76	D04	SDDVRpYVNAFK	1660	683	3147	6727	3237
77	D05	SDGHE <mark>pY</mark> IYVDP	42	0	531	2295	1144
78	D06	SEEPIPYIVTEY	0	0	310	750	0
79	D07	SESVVpYADIRK	7119	6577	17579	19127	5101
80	D08	SETDDpYAEIID	1748	2140	2122	4859	0
81	D09	SPPAL <mark>pY</mark> AEPLD	606	122	0	1028	822
82	D10	SSNPE <mark>pY</mark> LSASD	227	0	0	424	0
83	D11	SSSSE <mark>pY</mark> GSVSP	81	0	382	1574	1000
84	D12	SSTVQ <mark>pY</mark> STVVH	6184	7606	9834	15367	5234
85	D13	STEPQpYQPGEN	446	0	0	0	526
86	D14	TDKEY <mark>pY</mark> TVKDD	358	0	0	757	0
87	D15	TGGSV <mark>pY</mark> TEDND	482	0	0	513	482
88	D16	TNDITpYADLNL	484	75	4384	10029	704
89	D17	TSKLI pYDFIED	0	0	346	1613	397
90	D18	TSSVL <mark>pY</mark> TAVQP	12415	10065	19048	20727	1270
91	D19	VDADE <mark>pY</mark> LIPQQ	250	0	531	1875	0
92	D20	VDTPH <mark>pY</mark> PRWIT	2735	883	2926	4104	4564
93	D21	VNTTL <mark>pY</mark> EKFTY	10414	13706	1884	7611	11381
94	D22	VYESP <mark>PY</mark> SDPEE	0	0	658	0	284
95	D23	YETDY <mark>pY</mark> RKGGK	2208	314	1651	2423	6362
96	D24	YFMTE <mark>pY</mark> VATRW	5359	3723	6285	3795	4279
97	E01	AEGSAPYEEVPT	0	0	4	1744	0
98	E02	AENPEPYLSEFS	698	458	520	622	2040
99	E03	FDNLY <mark>pY</mark> WDQDP	125	1319	730	29	504

Page 2 of 11

Single-point data

100	E04	AFGTV <mark>pY</mark> KGIWI	3281	1796	2258	7640	13900
101	E05	AFQFS <mark>pY</mark> TAVFG	1286	438	1888	4469	1323
102	E06	AKIQD <mark>pY</mark> HILTR	1535	453	1314	3274	4850
103	E07	APAEM <mark>pY</mark> DIMKT	783	1162	347	896	1545
104	E08	ASEQG <mark>pY</mark> EEMRA	696	0	0	436	75
105	E09	ATVGH <mark>pY</mark> TAVQN	1431	2891	3089	5459	893
106	E10	AYRQL <mark>pY</mark> LNPKG	2329	945	4011	4092	5038
107	E11	CPEKVpYELMRA	2408	943	1241	2336	555
108	E12	DINSLpYDVSRM	5096	5805	1946	1484	3554
109	E13	DRFIQ <mark>pY</mark> ANPAF	1090	1100	3926	8788	2062
110	E14	DVSRMpYVDPSE	5048	4868	0	1847	1040
111	E15	EDIKS <mark>pY</mark> YTVRQ	1113	1007	2951	4304	4370
112	E16	EEIRF <mark>pY</mark> QLGEE	174	0	0	669	610
113	E17	EKIQD <mark>pY</mark> EKMPE	0	0	0	61	0
114	E18	ELGYE <mark>pY</mark> MDVGS	1285	1034	5289	3714	3386
115	E19	AELEF <mark>pY</mark> MDYEA	19714	17603	7643	7998	2470
116	E20	FGAKP <mark>pY</mark> DGIPA	1186	18	303	1139	2105
117	E21	GPQDI <mark>pY</mark> DVPPV	10036	8562	2960	3041	1288
118	E22	GQESE <mark>pY</mark> GNITY	440	340	773	1126	2114
119	E23	GRETIPYPNASL	1180	623	190	612	1298
120	E24	IGEGT <mark>pY</mark> GTVFK	1820	561	3439	4191	5041
121	F01	IYIHR <mark>pY</mark> ENVSI	8592	12658	2995	6891	2449
122	F02	KAEDE <mark>pY</mark> VNEPL	662	0	0	1842	0
123	F03	KPKQE <mark>pY</mark> LNPVE	0	0	231	1089	0
124	F04	LARDM <mark>pY</mark> DKEYY	903	0	438	1546	339
125	F05	LDSTF <mark>pY</mark> RSLLE	1582	1312	882	3838	117
126	F06	LGQRI <mark>pY</mark> QYIQS	3196	3509	2115	5032	3243
127	F07	LLANA <mark>pY</mark> IYVVQ	510	346	1025	1785	988
128	F08	LMGHE <mark>PY</mark> MEMKN	1484	470	3891	3457	2220
129	F09	LNKQG <mark>pY</mark> KCRQC	2677	1274	12417	6322	1387
130	F10	NKPTV <mark>pY</mark> GVSPN	486	0	608	1945	2149
131	F11	PPDHQ <mark>pY</mark> YNDFP	599	478	958	1695	0
132	F12	PEDTF <mark>p</mark> YFDPEF	538	503	216	1881	267
133	F13	PEPGP <mark>p</mark> YAQPSV	0	0	605	987	362
134	F14	RHDSG <mark>pY</mark> EVHHQ	738	0	215	689	1260
135	F15	RNPGF <mark>pY</mark> VEANP	611	129	407	2449	0
136	F16	SADHL <mark>pY</mark> VNVSE	3330	1878	5325	1486	337
137	F17	SSDPTpYTSSLG	144	0	0	1277	0
138	F18	EEEPV <mark>pY</mark> EAEPE	1424	0	38	241	398
139	F19	STKYF <mark>pY</mark> KQNGR	860	503	3461	1018	33
140	F20	TAEPD <mark>pY</mark> GALYE	1080	361	40	1755	0
141	F21	VCAERpYSQEVF	1719	1867	4141	4766	139
142	F22	VDSSL <mark>pY</mark> NLPRS	360	104	547	1770	762
143	F23	VSSTH <mark>pY</mark> YLLPE	0	0	2234	2733	80
144	F24	VVIAL <mark>pY</mark> DYQTN	0	0	377	351	0

PTP1B Kd

				F	uorescend	e		PTP1B	_ 2
NO.	ID	Sequence	0.625 µM	1.25 µM	2.5 µM	5 µM	10 µM	Kd/µM	R
1	A10	DSGGFpYITSRT	283	195	609	888	1181	5.88	0.97
2	A15	EDGISpYTTLRF	269	275	477	877	1248	8.39	0.98
3	A18	EGVAT <mark>pY</mark> AAAVL	1697	1937	2048	2468	2705	0.43	0.98
4	A21	EPNVS <mark>pY</mark> ICSRY	3096	2055	5804	6168	6722	1.58	0.9
5	B03	FLFNMpYLTRER	1098	1211	2253	2372	3025	1.7	0.97
6	B04	FMMTP <mark>pY</mark> VVTRY	1024	1133	2249	2557	3664	3.1	0.97
7	B05	GFLTE <mark>pY</mark> VATRW	612	896	1472	1792	2238	2.3	0.99
8	B07	GSAAP <mark>pY</mark> LKTKF	1229	1373	2717	3378	3557	1.9	0.97
9	B08	GWMED <mark>pY</mark> DYVHL	538	556	1385	1253	1362	1.3	0.9
10	B10	HNSAL <mark>pY</mark> SQVQK	616	599	1272	1535	1695	1.96	0.97
11	B11	HRQLN <mark>pY</mark> IQVDL	357	119	691	984	1565	11.8	0.95
12	B14	IEDNE <mark>pY</mark> TARQG	284	248	688	575	1003	3.2	0.89
13	B15	IESDI <mark>pY</mark> AEIPD	7398	6925	8638	8713	10095	0.61	0.99
14	B18	IYETD <mark>pY</mark> YRKGG	532	361	868	850	1364	2.6	0.88
15	B20	KDRMS <mark>pY</mark> HVRSH	763	935	1559	1523	2355	2	0.94
16	B21	KKRCP <mark>p</mark> YTKHQT	656	715	998	1254	1609	1.6	0.97
17	B22	KVVAL <mark>pY</mark> DYMPM	495	679	1317	1170	1235	1	0.92
18	C06	NNHTE <mark>pY</mark> ASIQT	1837	1359	1872	1750	2480	0.23	0.85
19	C08	NSDVQ <mark>pY</mark> TEVQV	2645	4453	8099	7872	9583	1.6	0.96
20	C11	PEGLNpYACLTH	654	1134	1667	2067	2371	1.9	0.99
21	C12	PEGHEpYpYRVRE	570	186	1305	1593	2158	5.5	0.92
22	C14	PGSLEpYLCLPA	388	436	911	1156	2047	9.6	0.97
23	C16	PLDKDpYpYVVRE	248	241	653	666	1013	3.8	0.95
24	C19	PSFSE <mark>pY</mark> ASVQV	2319	3650	3576	3659	3564	0.29	0.96
25	C22	QGPVI pYAQLDH	609	662	1069	1227	1095	0.79	0.95
26	C23	QKQPIpYIVMEL	2676	2700	3809	5075	6003	1.48	0.96
27	C24	QQQEVpYGMMPR	628	511	890	1260	1902	4.7	0.94
28	D04	SDDVR <mark>pY</mark> VNAFK	341	692	1207	1620	1660	2.37	0.98
29	D07	SESVVpYADIRK	5294	4930	3902	6636	7119	0.29	0.97
30	D18	TSSVLpYTAVQP	7232	7598	8160	8157	12415	0.43	0.88
31	D20	VDTPHpYPRWIT	999	2026	2378	2933	2735	0.97	0.97
32	D21	VNTTL <mark>pY</mark> EKFTY	5664	9184	7019	7582	10414	0.55	0.93
33	D23	YETDY <mark>pY</mark> RKGGK	260	160	713	1153	2208	62	0.98
34	D24	YFMTE <mark>pY</mark> VATRW	2635	2877	3924	4383	5359	0.92	0.97
35	E06	AKIQDpYHILTR	395	478	1074	1053	1535	2.7	0.95
36	E09	ATVGH <mark>pY</mark> TAVQN	672	1187	1101	1363	1431	0.62	0.96
37	E10	AYRQL <mark>pY</mark> LNPKG	467	329	1210	1725	2329	6.6	0.97
38	E12	DINSLpYDVSRM	2275	2652	2756	3319	5096	1.12	0.88
39	E18	ELGYE <mark>pY</mark> MDVGS	206	253	416	666	1285	25.5	0.98
40	E19	AELEF <mark>pY</mark> MDYEA	10862	14112	18376	17783	19714	0.54	0.99
41	E21	GPQDI <mark>pY</mark> DVPPV	5884	5325	6566	6644	10036	0.54	0.89
42	E24	IGEGT <mark>pY</mark> GTVFK	444	686	1352	1375	1820	2.27	0.97
43	F01	IYIHR <mark>pY</mark> ENVSI	7054	8384	7719	9403	8592	0.16	0.98
44	F05	LDSTFpYRSLLE	361	347	1215	1312	1582	3	0.93
45	F08	LMGHE <mark>pY</mark> MEMKN	635	1368	1512	1246	1484	0.51	0.89
46	F09	LNKQGpYKCRQC	719	798	1234	1659	2677	0.52	0.96
47	F21	VCAERpYSQEVF	135	462	979	1263	1719	5.3	0.98

SHP1 Kd

				F	luorescend	ce	SHP1	_ 2	
NO.	ID	Sequence	0.625 µM	1.25 µM	2.5 µM	5 µM	10 µM	Kd/µM	R
1	A02	AEMTG <mark>pY</mark> VVTRW	721	1136	2930	3222	3709	2.7	0.95
2	A04	DEELHpY ASLNF	4391	4557	6895	8504	9318	1.18	0.98
3	A05	DEGIHpYSELIQ	1229	1271	4311	7416	7501	4.8	0.93
4	A09	DKQVE <mark>pY</mark> LDLDL	1188	1974	2507	4771	5777	4.7	0.98
5	A11	DTETVpYSEVRK	6289	9680	10849	13491	15583	1	0.99
6	A13	EDEDY <mark>pY</mark> KASVT	370	305	453	895	1558	19	0.96
7	A15	EDGIS <mark>pY</mark> TTLRF	5914	6588	9232	13551	14995	1.83	0.98
8	A16	EDSTY <mark>pY</mark> KASKG	200	66	896	1066	1337	5.7	0.9
9	A17	EDTLT <mark>pY</mark> ADLDM	2020	3399	3511	8349	11035	7.9	0.97
10	A18	EGVAT <mark>pY</mark> AAAVL	3756	2849	5343	6910	6183	0.96	0.9
11	A19	EGDNDpYIIPLP	1467	2252		5387	5853	2.63	0.99
12	A21	EPNVSpYICSRY	4390	2853	7943	11590	12385	3	0.94
13	A22	ESDGS <mark>pY</mark> QKPSY	222	105	1117	1032	1486	5	0.87
14	B03	FLFNM <mark>pY</mark> LTRER	1224	806	1442	2850	3518	5.2	0.93
15	B04	FMMTP <mark>pY</mark> VVTRY	2988	4939	6899	8327	8934	1.39	0.99
16	B05	GFLTE <mark>pY</mark> VATRW	2865	4328	3100	8140	9960	4.4	0.89
17	B07	GSAAP <mark>pY</mark> LKTKF	2883	4957	5185	7849	10693	2.8	0.96
18	B10	HNSAL <mark>pY</mark> SQVQK	824	1528	3507	5046	6208	5	0.99
19	B11	HRQLN <mark>pY</mark> IQVDL	1532	1501	2575	3612	3274	1.4	0.94
20	B15	IESDI <mark>pY</mark> AEIPD	12278	15308	14846	15241	17145	0.2	0.98
21	B17	IRYHR <mark>pY</mark> HGRSA	1197	1723	2637	5657	7135	7.7	0.98
22	B18	IYETD <mark>pY</mark> YRKGG	1198	1220	3086	4317	3660	2.1	0.9
23	B19	KAVDG <mark>pY</mark> VKPQI	1041	1099	1799	2343	2695	1.83	0.98
24	B20	KDRMS <mark>pY</mark> HVRSH	1054	1741	2660	4979	4393	2.8	0.93
25	B21	KKRCP <mark>pY</mark> TKHQT	1056	1105	1612	3460	4976	10.5	0.98
26	C02	LPPEG <mark>pY</mark> VVVVK	177	167	744	1142	1094	4.1	0.9
27	C06	NNHTE <mark>pY</mark> ASIQT	4511	5397	10011	11585	12301	1.6	0.98
28	C11	PEGLNpYACLTH	5264	8216	9806	17618	20011	3.14	0.98
29	C14	PGSLEpYLCLPA	496	589	2317	2067	3475	5.4	0.91
30	C19	PSFSE <mark>pY</mark> ASVQV	4398	5876	4638	7367	9409	0.93	0.88
31	C21	PQDKE <mark>pYpY</mark> KVKE	304	396	710	811	1692	14	0.95
32	C22	QGPVI <mark>pY</mark> AQLDH	5963	9279	13766	15334	16961	1.3	0.99
33	C24	QQQEVpYGMMPR	596	837	1879	2653	2604	2.7	0.95
34	D01	RNEGV <mark>pY</mark> TAIAV	1158	1106	2124	2871	2973	1.92	0.97
35	D02	REGLNpYMVLAT	3357	5667	9234	10729	13411	2.2	0.99
36	D04	SDDVR <mark>pY</mark> VNAFK	2332	3147	5604	7826	7820	2.14	0.98
37	D05	SDGHE <mark>pY</mark> IYVDP	539	531	1052	1395	1775	3.1	0.98
38	D07	SESVVpYADIRK	13217	17579	23890	23521	18882	0.38	0.92
39	D08	SETDDpYAEIID	1495	2122	3224	3497	2870	0.72	0.93
40	D12	SSTVQpYSTVVH	7845	9834	15223	13923	15393	0.69	0.97
41	D18	TSSVLpYTAVQP	11849	19048	21835	20480	18796	0.34	0.94
42	D20	VDTPH <mark>pY</mark> PRWIT	2090	2926	4984	6152	6837	1.93	0.99
43	D21	VNTTL <mark>pY</mark> EKFTY	1932	1884	3749	3263	4103	0.99	0.92
44	D23	YETDYpYRKGGK	1310	1651	3636	3609	5467	3.1	0.95
45	D24	YFMTE <mark>pY</mark> VATRW	4074	6285	8710	9159	11042	1.15	0.99
46	E04	AFGTV <mark>pY</mark> KGIWI	1734	2258	4509	5185	6632	2.6	0.98
47	E05	AFQFS <mark>pY</mark> TAVFG	1442	1888	3484	4176	6666	5	0.97
48	E06	AKIQDpYHILTR	1057	1314	2966	4938	4178	2.7	0.91
49	E07	APAEMpYDIMKT	286	347	932	926	1044	2	0.93

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

SHP1 Kd

50	E09	ATVGH <mark>pY</mark> TAVQN	1932	3089	2679	5763	6572	3	0.93
51	E10	AYRQL <mark>pY</mark> LNPKG	1984	4011	6159	7679	8356	1.96	0.99
52	E11	CPEKV <mark>pY</mark> ELMRA	979	1241	2014	2687	4193	5.2	0.98
53	E12	DINSLpYDVSRM	1297	1946	2507	2975	4119	1.9	0.97
54	E13	DRFIQ <mark>pY</mark> ANPAF	2731	3926	6075	6840	8594	1.8	0.99
55	E15	EDIKS <mark>pY</mark> YTVRQ	1986	2951	4059	6116	6634	2.2	0.99
56	E18	ELGYE <mark>pY</mark> MDVGS	2927	5289	4503	5830	7308	0.84	0.93
57	E19	AELEF <mark>pY</mark> MDYEA	5672	7643	10294	8335	9624	0.41	0.95
58	E21	GPQDI <mark>pY</mark> DVPPV	2304	2960	5825	4170	6346	1.1	0.87
59	E24	IGEGT <mark>pY</mark> GTVFK	2451	3439	5631	5876	5814	1	0.97
60	F04	LARDM <mark>pY</mark> DKEYY	236	438	876	798	880	1.4	0.92
61	F07	LLANA <mark>pY</mark> IYVVQ	798	1025	2118	2521	3225	3	0.98
62	F08	LMGHE <mark>pY</mark> MEMKN	3312	3891	8491	9449	7800	1.2	0.89
63	F10	NKPTV <mark>pY</mark> GVSPN	611	608	1282	2617	3722	12	0.99
64	F13	PEPGP <mark>pY</mark> AQPSV	375	605	1530	1507	1529	1.75	0.9
65	F16	SADHL <mark>pY</mark> VNVSE	3300	5325	3874	5430	4586	0.22	0.89
66	F22	VDSSLpYNLPRS	302	547	1039	1021	2394	19	0.93

SHP2 Kd

		•	Fluorescence		SHP2				
NO.	U	Sequence	0.31 µM	0.625 µM	1.25 µM	2.5 µM	5 µM	Kd/µM	R2
1	A01	AEKPF <mark>pY</mark> VNVEF	1556	2228	4102	7112	5983	1.27	0.92
2	A02	AEMTG <mark>pY</mark> VVTRW	2318	5151	4485	8993	7347	0.74	0.87
3	A04	DEELH <mark>pY</mark> ASLNF	5624	6511	9549	11238	9743	0.35	0.96
4	A05	DEGIHpYSELIQ	4308	4420	5928	8620	9464	0.73	0.96
5	A06	DEKVDpYVQVDK	1587	2545	4294	5952	4295	0.65	0.88
6	A07	DERVDpYVVVDQ	3134	4518	6176	7287	7813	0.56	0.99
7	A09	DKQVE <mark>pY</mark> LDLDL	7029	7244	12037	16120	14342	0.59	0.95
8	A11	DTETVpYSEVRK	5482	6515	8574	12778	14106	0.88	0.97
9	A15	EDGIS <mark>pY</mark> TTLRF	6317	11017	9579	13809	13946	0.37	0.95
10	A16	EDSTY <mark>pY</mark> KASKG	1329	2260	2117	4507	3865	0.9	0.89
11	A17	EDTLT <mark>pY</mark> ADLDM	5184	5758	8286	16533	12726	0.96	0.86
12	A18	EGVAT <mark>pY</mark> AAAVL	1595	1761	3919	5489	5227	1.1	0.95
13	A19	EGDNDpYIIPLP	2731	3693	5971	8655	7386	0.77	0.94
14	A20	ENGLNpYIDLDL	7833	9319	13166	12564	10987	0.18	0.94
15	A21	EPNVSpYICSRY	5579	6737	10468	13104	12301	0.56	0.97
16	A22	ESDGSpYQKPSY	991	1399	2075	3903	3059	1	0.89
17	B03	FLFNMpYLTRER	3319	4328	5263	7506	5315	0.31	0.89
18	B04	FMMTPpYVVTRY	5828	7344	10740	15332	16175	0.91	0.99
19	B07	GSAAPpY LKTKF	5008	6916	9897	13490	13858	0.79	0.99
20	B10	HNSAL <mark>pY</mark> SQVQK	2845	3317	6557	10028	10614	1.52	0.98
21	B11	HRQLNpYIQVDL	9137	11844	15587	17671	15023	0.27	0.96
22	B17	IRYHR <mark>p</mark> YHGRSA	4238	5329	8634	14012	11863	0.93	0.93
23	B19	KAVDG <mark>pY</mark> VKPQI	5588	8763	11789	14813	11818	0.41	0.94
24	B20	KDRMSpYHVRSH	2603	3077	5023	9595	9154	1.6	0.94
25	B21	KKRCPpYTKHQT	3243	4930	7467	12491	9319	0.82	0.89
26	B22	KVVAL <mark>pY</mark> DYMPM	2087	3667	5414	5005	5649	0.46	0.96
27	C02		2929	3208	3695	8136	8993	1.86	0.93
28	C06	NNHTEpYASIQT	6977	8274	11913	14255	14359	0.47	0.99
29	C09	NSKRDpYTGCST	794	891	982	3231	4264	6.9	0.95
30	C11	PEGLNpYACLTH	10471	13154	20255	19219	17550	0.27	0.94
31	C14	PGSLEpYLCLPA	2145	4050	6753	6992	7496	0.69	0.97
32	C15	PKGTGpYIKTEL	2293	2578	3123	7591	7499	1.9	0.91
33	C19	PSFSEpYASVQV	4757	5225	8118	10667	10429	0.62	0.97
34	C22	QGPVI pYAQLDH	13661	13753	20153	20918	18023	0.18	0.95
35	C23	QKQPIpYIVMEL	2812	3486	4697	10920	9186	1.47	0.88
36	D01	RNEGVpYTAIAV	3272	3859	6148	10614	8540	0.91	0.9
37	D02	REGLNpYMVLAT	7230	10217	13107	18710	14516	0.45	0.93
38	D04	SDDVRpYVNAFK	5892	7428	11980	16996	12470	0.56	0.89
39	D07	SESVVpYADIRK	11697	17607	19078	19696	16610	0.15	0.95
40	D12	SSTVQpYSTVVH	11828	15822	21067	18167	15428	0.13	0.9
41	D16		9679	10511	13243	14859	10472	0.11	0.91
42	D18	TSSVLpYTAVQP	17406	19396	23935	20409	18569	0.03	0.91
43	D23	YETDYpYRKGGK	2180	3173	4520	8610	6658	1	0.88
44	D24	YFMTEDYVATRW	4243	4262	7505	8230	6160	0.29	0.87
45	E04	AFGTVpYKGIWI	10571	12366	18142	19582	18830	0.33	0.98
46	E05	AFQFSpYTAVFG	1007	2899	7919	7158	6228	1.57	0.86
47	E06	AKIQDpYHILTR	3641	4564	5715	11772	8799	0.86	0.85
48	E09	ATVGHpYTAVON	5839	6293	14251	21383	19527	1.22	0.93
49	E10	AYRQL <mark>pY</mark> LNPKG	4345	4892	8051	10858	15176	1.8	0.98

SHP2 Kd

50	E13	DRFIQ <mark>pY</mark> ANPAF	5894	7120	10413	10647	12829	0.46	0.98
51	E15	EDIKS <mark>pY</mark> YTVRQ	4627	5156	8336	6393	6933	0.18	0.9
52	E18	ELGYE <mark>pY</mark> MDVGS	3999	5733	7016	6829	9942	0.49	0.95
53	E22	GQESE <mark>pY</mark> GNITY	2462	2450	3730	5418	6013	0.94	0.96
54	E24	IGEGT <mark>pY</mark> GTVFK	6737	7053	9844	13000	13023	0.5	0.97
55	F01	IYIHR <mark>pY</mark> ENVSI	4991	6937	8745	7623	7615	0.17	0.95
56	F05	LDSTFpYRSLLE	2345	3057	5043	6812	5129	0.55	0.9
57	F06	LGQRI <mark>pY</mark> QYIQS	5194	6363	10355	9126	8983	0.28	0.93
58	F08	LMGHE <mark>pY</mark> MEMKN	3088	3545	5278	4613	6100	0.35	0.95
59	F13	PEPGPpYAQPSV	1077	864	2074	2856	2900	1.15	0.94
60	F15	RNPGF <mark>pY</mark> VEANP	1212	1550	4374	5540	5138	1.2	0.91
61	F16	SADHL <mark>pY</mark> VNVSE	1152	1670	3093	2654	3751	0.76	0.94
62	F21	VCAERpYSQEVF	2566	4561	6184	12727	10341	1.28	0.9
63	F22	VDSSLpYNLPRS	877	1481	3346	3094	3820	0.97	0.93
64	F23	VSSTH <mark>pY</mark> YLLPE	2078	2792	4928	7642	7209	1.2	0.96

dual color

			Log ₂ (protein 1/protein 2)			
NO	ID	Peptide sequence		SHP1/SHP2	SUD1/SUD2 actabytic domain	
			FIFID/ICFIF	full length		
1	A01	AEKPF <mark>pY</mark> VNVEF	-0.38	1.20	0.95	
2	A02	AEMTG <mark>pY</mark> VVTRW	0.11	1.32	0.80	
3	A03	AENAE <mark>pY</mark> LRVAP	-0.18	0.60	1.04	
4	A04	DEELH <mark>PY</mark> ASLNF	0.00	0.42	0.71	
5	A05	DEGIH <mark>pY</mark> SELIQ	-0.43	1.33	0.70	
6	A06	DEKVD <mark>pY</mark> VQVDK	-0.69	0.19	0.74	
7	A07	DERVD <mark>pY</mark> VVVDQ	-0.10	0.31	-0.49	
8	A08	DESVDpYVPMLD	-0.07	0.73	1.18	
9	A09	DKQVE <mark>pY</mark> LDLDL	0.01	-0.06	0.69	
10	A10	DSGGF <mark>pY</mark> ITSRT	0.41	0.63	0.12	
11	A11	DTETV <mark>pY</mark> SEVRK	0.26	1.64	0.06	
12	A12	EANSH <mark>pY</mark> GHNDD	0.25	-0.45	-0.69	
13	A13	EDEDY <mark>pY</mark> KASVT	-0.34	0.67	0.15	
14	A14	EDGGV <mark>pY</mark> SSSGL	0.12	0.28	0.30	
15	A15	EDGIS <mark>pY</mark> TTLRF	0.12	0.55	-0.17	
16	A16	EDSTY <mark>pY</mark> KASKG	0.18	0.48	0.58	
17	A17	EDTLT <mark>pY</mark> ADLDM	-0.45	0.15	-0.17	
18	A18	EGVAT <mark>pY</mark> AAAVL	0.24	3.23	2.91	
19	A19	EGDNDpYIIPLP	-0.06	0.11	-1.36	
20	A20	ENGLN <mark>pY</mark> IDLDL	0.10	-0.62	0.48	
21	A21	EPNVS <mark>pY</mark> ICSRY	0.75	1.65	0.12	
22	A22	ESDGS <mark>pY</mark> QKPSY	0.32	0.12	0.20	
23	A23	ESDGG <mark>pY</mark> MDMSK	0.01	-0.12	-1.69	
24	A24	ETDKE <mark>pY</mark> YTVKD	0.26	0.11	0.20	
25	B01	FEEDDpYESPND	-0.62	1.12	0.06	
26	B02	FGMTR <mark>pY</mark> VLDDE	-0.22	-0.81	-0.27	
27	B03	FLFNM <mark>pY</mark> LTRER	1.04	0.56	0.04	
28	B04	FMMTP <mark>pY</mark> VVTRY	1.28	1.06	-0.12	
29	B05	GFLTE <mark>pY</mark> VATRW	0.53	1.29	0.44	
30	B06	GNNYV <mark>pY</mark> IDPTQ	1.24	2.40	1.97	
31	B07	GSAAP <mark>pY</mark> LKTKF	1.71	0.60	0.10	
32	B08	GWMED <mark>pY</mark> DYVHL	1.26	1.17	0.44	
33	B09	GWMVH <mark>pY</mark> TSKDT	0.12	-0.23	-0.12	
34	B10	HNSAL <mark>pY</mark> SQVQK	0.20	0.26	-0.20	
35	B11	HRQLN <mark>pY</mark> IQVDL	0.80	-1.03	0.01	
36	B12	IEDNE <mark>pY</mark> TAREG	0.75	-0.89	-0.69	
37	B13	IEDED <mark>pY</mark> YKASV	0.77	0.74	0.20	
38	B14	IEDNE <mark>pY</mark> TARQG	0.57	0.25	-0.07	
39	B15	IESDI <mark>pY</mark> AEIPD	1.64	4.76	2.16	
40	B16	IESSN <mark>pY</mark> MAPYD	0.07	0.11	-0.43	
41	B17	IRYHR <mark>pY</mark> HGRSA	0.74	0.60	-0.18	
42	B18	IYETD <mark>pY</mark> YRKGG	0.06	0.78	-0.18	
43	B19	KAVDG <mark>pY</mark> VKPQI	0.34	-0.54	0.03	
44	B20	KDRMS <mark>pY</mark> HVRSH	1.29	0.19	-0.43	
45	B21	KKRCPpYTKHQT	0.77	0.43	-0.20	
46	B22	KVVAL <mark>pY</mark> DYMPM	0.93	0.32	0.16	
47	B23	LISSD <mark>pY</mark> ELLSD	0.56	0.23	-0.10	
48	B24	LNSDG <mark>pY</mark> TPEPA	-0.22	0.12	0.01	

49	C01	I NSKGpYTKSID	-0 47	-1 15	-0.54
50	C02		1 12	-0.27	0.15
51	C03	MDTSVpYESPYS	-0.29	-0.64	-0.89
52	C04	MKDEEpYEQMVK	-0.14	-0.60	-0.12
53	C05	MTGDTpYTAHAG	-0.40	0.30	-0.67
54	C06	NNHTEDYASIQT	0.96	1.30	1 01
55	C07	NOSSGNYRYGTD	-0.51	-0.81	-1.06
56	C08		0.84	1 91	2 09
57	C09	NSKRDpYTGCST	0.20	-0.17	0.01
58	C10		0.20	0.42	0.07
59	C11		0.20	0.42	0.23
60	C12	PEGHEnYnYRVRE	-0.43	1 01	-0.27
61	C13		-1.06	-0.18	-0.27
62	C14	PGSI EnVI CI PA	0.34	0.10	0.96
63	C15		0.58	-0.01	-0.29
64	C16		-0.10	0.65	0.06
65	C17		-0.10	-0.17	0.00
66	C18		-0.60	0.00	-0.58
67	C10		-0.00	2 10	-0.30
68	C20		-0.58	-0.43	-0.51
60	C21		-0.30	-0.43	-0.31
70	C22		0.93	-0.14	-0.03
70	022		0.33	1 17	0.41
70	023		1.10	0.27	0.43
72	D01		-0.07	0.37	-0.10
73	D01		0.08	0.00	0.48
74	D02		-0.01	0.00	-0.01
75	D03		-0.30	-0.04	-0.15
70	D04		0.70	0.21	-0.07
78	D05		0.52	-0.23	1 20
70	D00		0.00	1.01	0.42
00		SETODOVACIO	0.86	0.01	0.42
00	D00		0.80	0.01	0.62
82	D09		-0.00	-0.00	-0.42
02	D10	SSNF LPT LSASD	0.01	0.20	0.42
03			-0.34	-0.12	-0.27
04	D12		1.09	0.16	0.90
00	D13		0.01	0.10	-0.03
87	D14		-0.25	-0.47	-0.42
07	D15		-0.23	-0.47	-0.42
00			0.57	0.38	0.39
09			0.00	1 22	0.30
01			0.09	0.21	0.00
02	020		1.66	1.27	0.19
32	D20		1.00	0.71	0.04
93	021		1.08	1.02	0.14
94	D22	VETDVDVDVDVCCV	0.02	0.25	-0.22
90	D23		0.00	0.20	-0.23
90	D24		1./3	2.12	0.07
91	EUI		-0.10	-0.71	-0.27
90			-0.09	-0.15	-0.40
99	E03	FUNLTPTWDQDP	0.25	0.01	-0.25

Page 10 of 11

dual color

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2009

dual color

100	E04		0.15	0.72	0.10
100	E04	AFGTVPTKGIWI	0.15	0.72	0.10
101	EUD		0.01	0.57	-0.04
102	EUO		0.20	0.30	-0.20
103	E07		0.11	-0.58	-0.36
104	E08	ASEQGPYEEMRA	0.36	0.15	-0.62
105	E09	ATVGH <mark>pY</mark> TAVQN	0.45	-0.34	0.07
106	E10	AYRQL <mark>pY</mark> LNPKG	0.59	0.16	-0.07
107	E11	CPEKV <mark>pY</mark> ELMRA	-0.18	-0.15	-0.32
108	E12	DINSLpYDVSRM	-0.01	0.77	-0.12
109	E13	DRFIQ <mark>pY</mark> ANPAF	0.18	-0.40	-0.09
110	E14	DVSRM <mark>pY</mark> VDPSE	0.33	1.43	0.40
111	E15	EDIKS <mark>pY</mark> YTVRQ	0.65	0.03	-0.25
112	E16	EEIRF <mark>pY</mark> QLGEE	-0.29	-0.22	-1.03
113	E17	EKIQD <mark>pY</mark> EKMPE	-0.22	-2.94	-0.60
114	E18	ELGYE <mark>pY</mark> MDVGS	-0.56	1.33	-0.40
115	E19	AELEF <mark>pY</mark> MDYEA	1.43	4.14	2.72
116	E20	FGAKP <mark>pY</mark> DGIPA	0.74	-0.32	-0.38
117	E21	GPQDIpYDVPPV	0.77	3.66	0.76
118	E22	GQESEpYGNITY	-0.01	0.21	-0.14
119	E23	GRETIPYPNASL	0.31	-0.32	-0.38
120	E24	IGEGTpYGTVFK	0.31	0.15	0.16
121	F01	IYIHRpYENVSI	0.50	1.01	1.07
122	F02	KAEDEpYVNEPL	-0.67	-0.67	-0.58
123	F03	KPKQE <mark>pY</mark> LNPVE	-0.38	-0.76	0.45
124	F04		0.78	0.19	-0.04
125	F05	LDSTFpYRSLLE	0.03	-0.29	-0.06
126	F06		0.24	0.53	1.04
127	F07	LLANApYIYVVQ	0.77	-0.34	-0.38
128	F08		0.55	1.17	0.33
129	F09		0.31	1.06	0.39
130	F10	NKPTVpYGVSPN	-1.00	-0.17	0.50
131	F11	PPDHQpYYNDFP	0.41	-0.38	0.60
132	F12	PEDTEDYEDPEE	0.39	-0.10	0.37
133	F13	PEPGPpYAQPSV	-1.84	-0.56	0.49
134	F14	RHDSGpYEVHHQ	0.33	0.71	0.28
135	F15	RNPGEnYVEANP	-0.67	-1 29	0.10
136	F16	SADHL pYVNVSF	0.60	2.00	0.91
137	F17	SSDPTpYTSSLG	-0.47	0.01	2 42
138	F18	EFEPV/nYFAFPF	-0.74	-0.29	0.61
139	F19	STKYENYKONGR	-0.56	-0.86	0.64
140	F20		-0.14	0.00	0.04
141	F21	VCAERDYSOEVE	-0.15	0.73	1 21
1/2	F22		0.13	0.75	0.64
1/2	1 22 F23	VSSTHNUTIO	0.10	-0.38	0.04
143	1 23 E24		0.18	-0.30	0.02
144	Г24	v VIAL <mark>P 1</mark> D 1 Q I N	0.21	0.50	0.77