Electronic Supplementary Information

Zn(II) Complex for Selective and Rapid Scission of Protein Back Bone

Morio YASHIRO, Yukiko KAWAKAMI, Jun-ichi TAYA, Suguru ARAI and Yuki FUJII

Chemical Communications

Fig. S4 ¹H NMR spectra (400 MHz, D_2O , r.t.) of a 1:1:1 mixture of GlyGly, **3** and ZnSO₄ (ca. 0.1 M). No hydrolysis of GlyGly to form Gly was observed during the measurements. The spectra show an equilibrium of the Schiff base formation between Zn^{II}-**3** and GlyGly depending on pD.

(a) Bovine Serum Albumin

1	DTH <mark>K</mark> SEIAHR	F <mark>K</mark> DLGEEHF <mark>K</mark>	GLVLIAFSQY	LQQCPFDEHV	KLVNELTEFA	KTCVADESHA	60
61	GCE <mark>K</mark> SLHTLF	GDELC <mark>K</mark> VASL	RETYGDMADC	CE <mark>K</mark> QEPERNE	CFLSH <mark>K</mark> DDSP	DLP <mark>K</mark> LKPDPN	120
121	TLCDEF <mark>K</mark> ADE	KKFWGKYLYE	IARRHPYFYA	PELLYYAN <mark>K</mark> Y	NGVFQECCQA	ED <mark>K</mark> GACLLP <mark>K</mark>	180
181	IETMRE <mark>K</mark> VLT	SSARQRLRCA	SIQ <mark>K</mark> FGERAL	KAWSVARLSQ	KFPKAEFVEV	T <mark>K</mark> LVTDLT <mark>K</mark> V	240
241	H <mark>K</mark> ECCHGDLL	ECADDRADLA	KYICDNQDTI	SS <mark>KLK</mark> ECCD <mark>K</mark>	PLLE <mark>K</mark> SHCIA	EVE <mark>K</mark> DAIPEN	300
301	LPPLTADFAE	D <mark>K</mark> DVC <mark>K</mark> NYQE	A <mark>K</mark> DAFLGSFL	YEYSRRHPEY	AVSVLLRLA <mark>K</mark>	EYEATLEECC	360
361	A <mark>K</mark> DDPHACYS	TVFD <mark>KLK</mark> HLV	DEPQNLI <mark>K</mark> QN	CDQFE <mark>K</mark> LGEY	GFQNALIVRY	TR <mark>K</mark> VPQVSTP	420
421	TLVEVSRSLG	KVGTRCCTKP	ESERMPCTED	YLSLILNRLC	VLHE <mark>K</mark> TPVSE	KVTKCCTESL	480
481	VNRRPCFSAL	TPDETYVP <mark>K</mark> A	FDE <mark>K</mark> LFTFHA	DICTLPDTE <mark>K</mark>	QI <mark>KK</mark> QTALVE	LL <mark>KHKPK</mark> ATE	540
541	EQL <mark>K</mark> TVMENF	VAFVD <mark>K</mark> CCAA	DD <mark>K</mark> EACFAVE	GP <mark>K</mark> LVVSTQT	ALA 583		

(b) Elastases

1 10	20	30)	40	50	60
	VVGGT	EAQRNSWPSQ) ISLQYRSGS	SSWAH TO	CGGTLIRQN V	VMTAAHCVD
	IVGGR	RARPHAWPFM	I VSLQLA	GGH FO	CGATLIAPN H	TVMSAAHCVA
	70	80	90	100	110	120
RE.LTFRVV	VGE HNLNQNN	GTE QYVGVQ <mark>k</mark>	IVV HPYWN	CDDVAAG	YDIALLRLAG	Q SVTLNSYVQL
NVNVRAVRVVI	LGA HNLSRRE	PTR QVFAVQR	IFE DG.YD.	PVNLL	NDIVILQLNO	G SATINANVQV
130	140	150	160		170	180
GVLPRAGTIL	ANNSPCYITG	WGLTRTNGQ	LAQTLQQAYI	DTVDYA	AICSSSS YWO	GSTV <mark>K</mark> NSM
AQLPAQGRRL	GNGVQCLAMG	WGLLGRNRG	IASVLQELN	/ .TVVTS	SLC	RRSN
1	90 20	0 2	10	220	230	240
VCAGGD.GVRS	SG COGDSGGP	LH CLVNGOYA	VH GVTSFVS	SRLGC NV	JT.RKPTVFT	R VSAYISWINN
VCTLVRGRQAG	GV CFGDSGSP	LV CNG.̃.L	IH GIASFVE	R.GGC A.	.SGLYPDAFAI	P VAQFVNWIDS
VIASN	(240mer)					

IIQ (218mer)

Fig. S5 (a) Amino acid sequence of bovine serum albumin.¹¹ (b) Amino acid sequences of porcine pancreatic elastase¹² (PDB ID: 1B0E, above) and human elastase¹³ (PDB ID: 1B0F, below). The amino acid residue numbers of elastase are those employed by PDB. All lysine residues (K) are highlighted.

Fig. S6 SDS-PAGE analysis (12.5% gel) of the reaction mixture of BSA (9.0 μ M) and Zn^{II}-**3** (0.91 mM) at 50 °C and pH 11.0 (CAPS, 50 mM) (two independent experiments conducted under identical conditions are shown). LEFT Lane 1: molecular weight marker; Lanes 2-8: with Zn^{II}-**3**; Lane 9: without Zn^{II}-**3**; Lane 10: with Zn^{II} but without **3**. RIGHT Lane 1: molecular weight marker; Lanes 2-8: with Zn^{II}-**3**.

Fig. S7 SDS-PAGE analysis (20% gel) of the supernatant of the reaction mixture of porcine pancreatic elastase (62.4 μ M) with Zn^{II}-**3** (3.0 mM) at pH 8.0 (HEPES, 50 mM) and 50 °C. Lane 1: molecular weight marker; Lanes 2-8: with Zn^{II}-**3**; Lanes 9, 10: without Zn^{II}-**3**.

Fig. S8 SDS-PAGE analysis (10-20% gradient gel) of the reaction mixture of human elastase (62.4 μ M) with Zn^{II}-**3** (3.0 mM) at pH 8.0 (HEPES, 50 mM) and 50 °C. This analysis shows all species involved in the reaction mixture, because precipitates were not formed during the reaction, in contrast to the case of porcine pancreatic elastase. Lane 1: molecular weight marker; Lanes 2-4: with Zn^{II}-**3**; Lanes 5, 6: without Zn^{II}-**3**.

Fig. S9 (a) The steric structure of porcine pancreatic elastase (protein data bank (PDB) ID: 1B0E). The structure was drawn using RasMol. Whole structure is shown as a backbone representation, with color gradient from the blue *N*-terminus to the yellow *C*-terminus. The *N*-terminus valine, V16, and three lysine residues, K87, K177 and K224, are shown as a spacefill representation. The amino acid residue numbers are those employed by PDB.¹² Possible scission sites are indicated by arrows. (b) The possible scission site analysis of porcine pancreatic elastase by Zn^{II} -3: On the basis of the X-ray structure, all possible target sites of the protein backbone by Zn^{II} -3 are listed (selected ones are shown in the box), assuming that the complex is linked to the protein by a Schiff base formation at NH₂ sites, i.e. N-terminus V16, and/or K87, K177 and/or K224. Among all expected fragments, those whose molecular weights are consistent with the MS observation are selected. They are indicated by red arrows in the structure. For fragments involving lysine residues, molecular weights were calculated both for simple polypeptide fragments and for Schiff bases involving 3.

Fig. S10 A plausible reaction mechanism for the peptide hydrolysis promoted by a Zn^{II} complex. (a) The GlyGly hydrolysis by a simple Zn^{II} complex, Zn^{II}-2. Multiple way of coordination of Zn^{II} to GlyGly is possible, and the stability constant is low (two of possible coordination modes are shown). Hydrolysis is accelerated when the Zn^{II} --- O=C coordination is formed.^{7,10} (b) The GlyGly hydrolysis by a Schiff base-forming Zn^{II} complex, Zn^{II}-3. The Zn^{II} --- O=C coordination is more preferentially formed compared with the case of Zn^{II}-2. As a result, Zn^{II}-3 shows higher activity toward peptide hydrolysis than Zn^{II}-2. (c) A protein hydrolysis by Zn^{II}-3. Zn^{II}-3 binds to an NH₂ group in the *N*-terminus or in a side chain of a lysine residue, and form a Zn^{II} --- O=C coordination with a sterically accessible carbonyl group. Hydrolysis is selectively promoted at the Zn^{II} --- O=C coordination site. (d) A theoretically optimized structure of the Schiff base formed from Zn^{II}-3 and GlyGly. The softwares used were Gaussian 03W and GaussViewW 3.0, and the structure was optimized using the density functional theory, B3LYP, with the 6-31+G(d) basis set. In the reaction schemes, OH⁻ is depicted as a nucleophile. On the basis of previous studies, a possible role of the OH group in 3 as an intracomplex nucleophile is also suggested.^{7,10}

Fig. S11 MALDI-TOF/MS analysis. (a) BSA, (b) a mixture of BSA and Zn^{II} -**3** (1/100 mol/mol) at pH 11 (CAPS, 50 mM), (c) a mixture of BSA and Zn^{II} -**3** (1/100 mol/mol) treated at pH 11 (CAPS, 50 mM) and 50 °C for 72 h.

Details of Experimental Procedures

Preparations

2 was prepared by the reaction of 2-chloromethylpyridine hydrochloride (2 mmol) with 3-amino-1propanol (40 mmol) in methanol. **3** was prepared by the reaction of 3-chloromethyl-5methylsalicylaldehyde (0.40 mmol) with **2** (0.40 mmol) in the presence of triethylamine (1.6 mmol) in absolute methanol, and was isolated as a dihydrochloride salt (83 mg, 66%):

Anal. Found: C, 6.33; H, 53.08; N, 6.88. Calcd for $C_{18}H_{24}N_2O_3Cl_2 \cdot H_2O$: C, 6.47; H, 53.34; N, 6.91%. ¹H NMR $\delta_H(400 \text{ MHz}, D_2O, \text{pD } 0.7, \text{DSS})$ 9.76 (1 H, s, CHO), 8.79 (1 H, d, *J* 5.3, CH), 8.44 (1 H, t, *J* 8.2, CH), 8.04 (1 H, d, *J* 7.2, CH), 7.95 (1 H, t, *J* 6.7, CH), 7.57 (1 H, s, CH), 7.50 (1 H, s, CH), 4.85 (2 H, s, CH₂), 4.59 (2 H, s, CH₂), 3.81 (2 H, t, *J* 5.3, CH₂), 3.65 (2 H, t, *J* 7.2, CH₂), 2.33 (3 H, s, CH₃) and 2.24 (2 H, m, CH₂).

4 was prepared similarly by using 2-propylaminomethylpyridine instead of **2**, and was isolated as a dihydrochloride salt:

Anal. Found: C, 6.41; H, 56.80; N, 7.34. Calc. for $C_{18}H_{24}N_2O_2Cl_2 \cdot 1/2H_2O$: C, 6.63; H, 56.85; N, 7.37%.

Materials

GlyGly was purchased from Tokyo Chemical Industry Co., Ltd.

BSA was purchased from Sigma-Aldrich.

Elastases from porcine pancreas and from human sputum were purchased from Wako Pure Chemical Industries, Ltd., catalog no. 058-05361 and 531-24084, respectively.

SDS-PAGE analyses

To a 30 μ l portion of the reaction mixture were added 29 μ l of 0.12 M EDTA, 10 μ l of 10% SDS, 1 μ l of 2-mercaptoethanol, 20 μ l of glycerin and 10 μ l of 0.5 M Tris buffer (pH 6.8). The resulting mixture was treated at 80°C for 2 min, and its 10 μ l portion was applied to the SDS-PAGE analysis. For the analysis of the precipitates formed during the reaction, the precipitates were separated from the supernatant, and added EDTA, SDS, 2-mercaptoethanol, glycerin and Tris buffer as described above, and then treated at 80°C for 2 min. A 10 μ l portion of the resulting solution was applied to the analysis. Protein band intensities were determined by using a Kodac1D2.0 software.

MALDI-TOF/MS Measurements

MALDI-TOF/MS were observed by using Applied Biosystems VOYAGER Pro. Sinapic acid was used as a matrix. Observed mass accuracy was ca. 0.1 %. For the MALDI-TOF/MS analysis of the precipitates formed during the reaction, the precipitates separated from the supernatant by centrifugation were suspended in a HEPES buffer (pH 8.0), and were treated at 50 °C with excess urea. The resulting homogeneous solution was analyzed.