Supporting Information

Induction of One-handed Helical Oligo (*p*-Benzamide)s by Domino Effect Based on the Planar-Axial-Helical Chirality Relay

Ken Kamikawa[†]*, Kohei Yoshihara[†], Keisuke Fukumoto[†], Masaru Furusyo, Motokazu Uemura, Shin Takemoto[†], Hiroyuki Matsuzaka[†]

Department of Chemistry, Graduate School of Science, Osaka Prefecture University Sakai, Osaka 599-8531, Japan. Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 640-8412, Japan Japan

(S)-Iodoferrocene $(2)^1$ and p-oligobenzamide² were prepared by reported procedure.

Generaral Procedure for Ferrocenyloligoamide

To a solution of (*S*)-iodoferroncecarboxylic acid (50 mg, 0.14 mmol) in CH₂Cl₂ (1.0 mL), (COCl)₂ (24 μ l, 0.28 mmol) was added at 25 °C under argon. The resulting solution was stirred for 0.5 h and concentrated under reduced pressure. The residue was diluted with CH₂Cl₂ (2.0 mL). Oligo (*p*-benzamide) (0.14 mmol) and Et₃N (39 ml, 0.28 mmol) were dissolved in CH₂Cl₂ (1.0 mL) and added to the solution. The resulting mixture was stirred 15 h at 25 °C. The reaction mixture was extracted with CHCl₃ and organic layer was washed with NaHCO₃ aq. and brine. The organic layer was dried over MgSO₄, filtrated and concentrated under reduced pressure. The crude product was recrystalized from diethylether to give yellow crystals of **3** (73-80% yield).

Ferrocenylamide 1

mp 110°C; $[\alpha]_D^{21} = -41.5$ (*c* 1.1, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 3.41 (3H, s), 3.73 (1H, d, J = 2.5Hz), 3.96 (1H, t, J = 2.5 Hz), 4.25 (5H, s), 4.41-4.42 (1H, m), 7.01 (2H, d, J = 7.2 Hz), 7.16 (1H, d, J = 7.2 Hz), 7.20-7.26 (2H, m)); ¹³C-NMR (100 MHz,

CDCl₃) δ 68.6, 68.9, 72.9, 75.6, 76.7, 77.0, 77.3, 126.5, 126.9, 128.9; IR (CHCl₃) 3006, 2958, 1637, 1595, 1558 cm⁻¹; MS (relative intensity) *m*/*z* 445 (M⁺, 100), 318 (48), 262 (35); HRMS calcd for C₁₈H₁₆NOIFe, 444.9626. found 444.9627.

Ferrocenylamide 3a.

 $[\alpha]_{D}^{23} = -6.0 \ (c \ 0.2, \text{CHCl}_3); \ ^1\text{H-NMR}(400 \text{ MHz}, \text{CDCl}_3) \ \delta \ 3.47 \ (3\text{H}, \text{s}), 3.87 \ (1\text{H}, \text{d}, J = 2.5\text{Hz}), 4.06 \ (1\text{H}, \text{d}, J = 2.5\text{Hz}), 4.27 \ (5\text{H}, \text{s}), 4.48 \ (1\text{H}, \text{d}, J = 2.5\text{Hz}), 7.12 \ (2\text{H}, \text{d}, J = 8.8\text{Hz}), 7.18 \ (2\text{H}, \text{d}, J = 7.7\text{Hz}), 7.27 \ (2\text{H}, \text{d}, J = 7.7\text{Hz}), 7.42 \ (2\text{H}, \text{d}, J = 7.7\text{Hz}), 8.05 \ (2\text{H}, \text{d}, J = 8.8\text{Hz}); \ ^{13}\text{C-NMR} \ (100 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 37.7, \ 68.9, \ 69.2, \ 72.8, \ 73.0, \ 75.9, \ 77.2, \ 111.1, \ 121.5, \ 121.9, \ 125.9, \ 126.3, \ 126.9, \ 129.3, \ 129.4, \ 130.8, \ 132.2, \ 149.2, \ 150.7, \ 164.3, \ 168.5; \ \text{IR} \ (\text{CHCl}_3) \ 3352, \ 1728, \ 1604, \ 1443, \ 1268, \ 1075, \ 939\text{cm}^{-1}; \ \text{MS} \ (\text{relative intensity}) \ m/z \ 565 \ (\text{M}^+, \ 100), \ 437 \ (48), \ 339 \ (53); \ \text{HRMS} \ \text{calcd for } \ \text{C}_{25}\text{H}_{21}\text{NO}_3\text{IFe}, \ 564.9838. \ \text{found} \ 564.9838$

Ferrocenylamide 3b

mp 132°C; $[\alpha]_D^{26} = +47.0$ (*c* 0.2, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 3.33 (3H, s), 3.41 (3H, s), 3.55 (3H, s), 3.71 (1H, d, *J* = 2.5Hz), 4.03(1H, t, *J* = 2.5Hz), 4.24 (5H, s), 4.42 (1H, d, *J* = 2.5Hz), 6.81 (2H, d, *J* = 8.3Hz), 6.83 (2H, d, *J* = 8.5Hz), 7.08 (2H, d, *J* = 8.3Hz), 7.10 (2H, d, *J* = 8.5Hz), 7.20 (4H, d, *J* = 8.5Hz), 7.29 (1H, t, *J* = 7.8Hz), 7.44 (2H, t, *J* = 7.8Hz), 8.07 (2H, d, *J* = 8.5Hz); ¹³C-NMR (100 MHz, CDCl₃) δ 37.8, 38.1, 38.2, 68.9, 69.0, 73.0, 73.3, 75.7, 77.2, 121.5, 125.8, 125.9, 126.1, 126.4, 127.3, 129.5, 131.2, 132.9, 133.0, 146.0, 146.2, 149.3, 150.6, 164.1, 168.2, 169.3, 169.4; IR(CHCl₃) 3361, 1793, 1642, 1599, 1294, 1095 cm⁻¹; MS (relative intensity) *m/z* 831 (M⁺, 23), 705 (61), 548 (17), 497 (16), 368 (17), 213 (18), 185 (15), 134 (100); HRMS calcd for C₄₁H₃₄N₃O₅IFe, 831.0893. found. 831.0889

Ferrocenylamide 3c

mp 125°C; $[\alpha]_D^{26} = +36.0$ (*c* 0.1, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 3.35 (3H, s), 3.36 (3H, s), 3.44 (3H, s), 3.55 (3H, s), 3.68 (1H, s), 4.01 (1H, t, *J* = 2.4Hz), 4.23 (5H, s), 4.40-4.41 (1H, m), 6.76 (4H, d, *J* = 8.8Hz), 6.82 (2H, d, *J* = 8.5Hz), 7.01 (2H, d, *J* = 8.5Hz), 7.08 (2H, d, *J* = 8.8Hz), 7.12 (2H, d, *J* = 8.5Hz), 7.17 (1H, d, *J* = 8.0Hz), 7.20 (2H, d, *J* = 8.5Hz), 7.29 (1H, t, *J* = 8.0Hz), 7.44 (2H, t, *J* = 8.0Hz); ¹³C-NMR (100 MHz, CDCl₃) δ ; 37.8, 38.1, 38.2, 38.3, 66.1, 68.9, 69.2, 73.0, 75.8, 77.2, 121.5, 125.7, 125.9, 126.0, 126.1, 126.4, 127.3, 129.5, 129.6, 129.8, 129.9, 131.2, 132.9, 133.0, 133.5, 145.9, 146.1, 146.2, 149.3, 150.6, 164.1, 168.3, 169.2; IR(CHCl₃) 3414, 1733, 1603, 1372, 1193, 1059, 909 cm⁻¹; MS (relative intensity) *m*/*z* 964 (M⁺, 41), 899 (3), 831 (7), 544 (8), 472 (9), 339 (67), 154 (100)

Ferrocenylamide 3d

mp 135°C; $[\alpha]_D^{24} = +26.7$ (*c* 0.06, CHCl₃)¹H-NMR (400 MHz, CDCl₃) δ 3.35 (3H, s), 3.39 (6H, s), 3.41 (3H, s), 3.42 (3H, s), 3.54 (3H, s), 3.67 (1H, s), 4.00-4.01 (1H, m), 4.23 (5H, s), 4.40 (1H, s), 6.75-6.78 (6H, m), 6.80 (2H, d, *J* = 8.3Hz), 6.85 (2H, d, *J* = 8.3Hz), 7.02 (2H, d, *J* = 8.5Hz), 7.05-7.12 (8H, m), 7.18 (2H, d, *J* = 7.8Hz), 7.20 (2H, d, *J* = 8.5Hz), 7.29 (1H, t, *J* = 7.8Hz), 7.43 (2H, t, *J* = 7.8Hz), 8.05 (2H, d, *J* = 8.3Hz),; ¹³C-NMR (100 MHz, CDCl₃) δ 37.8, 38.1, 38.2, 38.3, 38.4, 42.3, 65.8, 68.9, 69.1, 73.0, 75.8, 77.2, 121.5, 125.8, 125.9, 126.0, 126.1, 126.2, 126.4, 127.4, 129.5, 129.6, 129.7, 129.8, 129.9, 130.0, 131.1, 133.0, 133.1, 133.4, 133.6, 145.8, 145.9, 146.0, 146.0, 146.1, 149.3, 150.6, 164.1, 168.2, 169.1, 169.2, 169.3, 169.4; IR(CHCl₃) 3387, 1737, 1640, 1603, 1367, 1268, 1174, 909 cm⁻¹; MS (relative intensity) *m*/*z* 1231 (M⁺, 15), 1165 (3), 1097 (4), 893 (3), 810 (5), 760 (4), 472 (13), 444 (4), 339 (60), 316 (10), 134 (100), 132 (43); HRMS calcd for C₆₅H₅₅N₆O₈IFe, 1231.2556. found. 1231.2551

Synthesis of planar chiral 2-methyl or 2-naphtyl ferrocenecarboxylic acid

2-Naphtyl ferrocenecarboxylic acids were prepared by a conventional Suzuki-Miyaura cross-coupling reaction. 2-Naphtyl ferrocenyloligoamides were prepared by the procedure mentioned in S1.

 $[\alpha]_{D}^{27} = 11.1 (c \ 0.13, CHCl_{3}); {}^{1}$ H-NMR(500 MHz, CDCl₃) $\delta 2.30 (3H, s), 4.18 (5H, s), 4.31 (1H, t,$ *J* $= 2.3Hz), 4.38 (1H, s), 4.79 (1H, s); {}^{13}$ C-NMR (100 MHz, CDCl₃) 14.6, 68.1, 69.5, 70.6, 70.7, 74.3, 87.5, 179.4; IR (CHCl₃) 3099, 1712, 1289, 1214, 894, 767cm⁻¹; MS (relative intensity) *m*/*z* 244 (M⁺, 100), 179 (18), 149 (6), 138 (37), 106(26); HRMS calcd for C₁₂H₁₂FeO₂, 244.0187. found 244.0193

Ferrocenylamide 4a

[α]_D²⁵= 142.0 (*c* 0.28, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 2.07 (3H, s), 3.46 (3H, s), 3.81 (1H, s), 3.97 (1H, s), 4.21 (5H, s), 4.21 (1H, s), 7.14 (2H, d, *J* = 7.8Hz), 7.19 (2H, d, *J* = 7.8Hz), 7.27(1H, t, *J* = 7.8Hz), 7.42 (2H, t, *J* = 7.8Hz), 8.07 (2H, d, *J* = 7.8Hz) ; ¹³C-NMR (100 MHz, CDCl₃) 14.0, 37.7, 66.9, 69.4, 70.7, 70.9, 78.9, 86.8, 121.6, 126.0, 126.1, 126.5, 129.5, 130.8, 150.0, 150.8, 164.4, 171.2 ; IR (CHCl₃) 3055, 1732, 1600, 1270, 1186, 760.7cm⁻¹; MS (relative intensity) *m*/*z* 453 (M⁺, 100), 451 (7), 332(8), 227(90), 199(38), 180(11), 149(13), 132(10) ; HRMS calcd for C₂₆H₂₃FeNO₃, 453.1027. found 457.1031

Ferrocenylamide 4b

[α]_D²⁶= 93.8 (*c* 0.16,CHCl₃); ¹H-NMR(500 MHz,CDCl₃) δ 2.02(3H, s), 3.32(3H, s), 3.42(3H, s), 3.55(3H, s), 3.55(1H, s), 3.86(1H, t, *J* = 2.3Hz), 4.07(1H, s), 4.11(5H, s), 6.81(2H, d, *J* = 8.2Hz), 6.85(2H, d, *J* = 8.2Hz), 7.07-7.09(4H, m), 7.20(2H, d, *J* = 8.2Hz), 7.29(1H, t, *J* = 8.2Hz), 7.44(2H, t, *J* = 8.2Hz), 8.03(2H, d, *J* = 8.2Hz); ¹³C-NMR(100 MHz, CDCl₃) 14.0, 37.8, 38.2, 66.6, 69.4, 70.7, 70.8, 78.7, 86.8, 121.5, 125.7, 125.9, 126.4, 127.3, 129.5, 129.6, 129.9, 131.1, 132.6, 133.1, 146.3, 146.7, 149.3, 150.7, 164.1, 169.4, 169.5, 170.9 IR (CHCl₃) 3136, 1733, 1604, 1356, 1212, 1104, 851, 771 cm⁻¹; MS (relative intensity) *m*/*z* 719 (M⁺, 91), 548 (10), 493(38), 400(11), 277(75), 267(24), 227(24), 201(17), 199(29), 170(25), 167(22); HRMS calcd for C₄₂H₃₇FeN₃O₅, 719.2083. found 719.2073

[α]_D³⁰ = -101.3 (*c* 0.31, CHCl₃); ¹H-NMR(500 MHz, CDCl₃) δ 4.38 (5H, s), 4.57 (1H, s), 4.62 (1H, t, J = 2.8Hz), 5.06 (1H, t, J = 2.8Hz), 7.30 (1H, t, J = 6.9Hz), 7.40 (1H, t, J = 6.9Hz), 7.52 (2H, d, J = 7.4Hz), 7.82 (2H, dd, J = 7.4, 3.2Hz), 8.09 (2H, d, J = 6.9Hz); ¹³C-NMR(100 MHz, CDCl₃) 70.2, 70.9, 71.3, 71.5, 76.9, 91.9, 124.9, 125.4, 125.6, 125.7, 127.7, 128.1, 129.3, 133.0, 133.3, 133.6, 177.1; IR (CHCl₃) 3017, 2603, 1717, 1286, 1118, 905, 833 cm⁻¹; MS (relative intensity) *m*/*z* 356 (M⁺, 16), 218 (16), 192 (28), 189 (17), 149 (34), 137 (18); HRMS calcd for C₂₁H₁₆FeO₂, 356.0500. found 306.0499.

Ferrocenylamide 5a

[α]_D²⁸ = -31.9 (*c* 0.27,CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 3.21 (3H, s), 4.29 (5H, s), 4.48 (1H, t, J = 2.3Hz), 4.55 (1H, dd, J = 2.3, 1.4Hz), 4.92 (1H, dd, J = 2.3, 1.4Hz), 6.16 (2H, d, J = 8.7Hz), 7.12-7.28 (5H, m), 7.35 (1H, t, J = 8.2Hz), 7.42-7.47 (4H, m), 7.54 (1H, d, J = 8.7Hz), 7.76 (1H, t, J = 8.3Hz), 7.87 (1H, d, J = 6.8Hz); ¹³C-NMR (100 MHz, CDCl₃) 37.1, 67.8, 69.9, 71.4, 71.8, 84.8, 86.1, 121.5, 124.5, 124.7, 125.0, 125.2, 125.5, 125.8, 127.3, 128.0, 129.0, 129.4, 129.5, 131.7, 133.5, 134.2, 147.9, 150.8, 163.9, 169.9; IR (CHCl₃) 1731, 1600, 1351, 1270, 1079, 831, 750 cm⁻¹; MS (relative intensity) *m*/*z* 565 (M⁺, 2), 386 (2), 368 (5), 341 (4), 279 (8), 257 (7), 236 (10), 229 (7), 167 (23) ; HRMS calcd for C₃₅H₂₇FeNO₃, 565.1340. found 565.1340

Ferrocenylamide 5b

[α]_D²⁸= -30.7 (*c* 0.5, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 2.99 (3H, s), 3.35 (3H, s), 3.51 (3H, s), 4.28 (5H, s), 4.30 (1H, t, *J* = 2.3Hz), 4.48 (1H, s), 4.52 (1H, s), 5.99 (2H, d, *J* = 7.3Hz), 6.56 (2H, d, *J* = 8.3Hz), 6.77 (2H, d, *J* = 8.3Hz), 7.08 (2H, d, *J* = 8.2Hz), 7.17-7.20 (4H, m), 7.29 (2H, t, *J* = 7.3Hz), 7.39-7.46 (4H, m), 7.67 (1H, d, *J* = 8.2Hz), 7.72 (1H, d, *J* = 8.2Hz), 7.78 (1H, d, *J* = 8.3Hz), 7.87 (1H, d, *J* = 8.3Hz), 8.03 (2H, d, *J* = 7.3Hz); ¹³C-NMR (100 MHz, CDCl₃) 37.2, 38.2, 67.2, 69.6, 71.1, 71.3, 71.4, 86.1, 86.4, 121.5, 124.8, 125.0, 125.2, 125.3, 125.5, 125.7, 126.0, 126.3, 127.2, 127.2, 128.0, 128.9, 129.4, 129.5, 129.8, 131.1, 131.9, 132.1, 132.7, 133.3, 133.9, 145.1, 146.4, 149.3, 150.7, 164.0, 169.1, 169.3, 169.5; IR (CHCl₃) 3148, 2830. 1602, 1353, 1110, 853, 695cm⁻¹; MS (relative intensity) *m*/*z* 781 (M⁺, 100), 648 (48), 548 (16), 493 (29), 368 (37), 353 (11), 313 (11), 289 (47), 267 (20), 260 (55), 218 (28), 213 (18); HRMS calcd for C₄₇H₃₉FeN₃O₅, 831.2396. found 831.2401

Computational work and Cartesian coordinate

Geometry optimization calculations were carried out for estimating **3d** structure by Gaussian 98 program³. RHF level of theory in conjunction with 3-21(d) basis sets has been used. Total energy difference between two structures which were right-hand helical structure (**3d-I**) and not helical structure (**3d-II**) was compared.

Molecular structure of 3d-I -9393.7652087H

Molecular structure of **3d-II** -9393.757785H

Cartesian coordinate for 3d-I

С	0.0000000000000	0.0000000000000	0.0000000000000
С	0.0000000000000	0.0000000000000	1.408077646737
С	1.362814262795	0.0000000000000	-0.436749785148
Η	-0.858706698087	0.070780737657	-0.628627821268
Fe	0.991181438547	-1.909938820804	0.689790925059
С	1.349146449730	-0.033442028144	1.857067676070
С	2.183466352105	0.000176380133	0.705678555952
Η	-0.864753068793	0.039630174089	2.032954667065
Η	1.696610376758	0.052368248156	-1.448127457758
С	0.370090801336	-3.859402693610	-0.300445920743
С	-0.077521531001	-3.894270390773	1.056534156603
С	1.046855112066	-3.851928540271	1.887026145684
С	2.207845423282	-3.756590349130	1.070226651439
С	1.772056240656	-3.786169860386	-0.285676200956
Н	1.675589831927	0.027617351644	2.870003584340
Η	3.250255160099	-0.009729907870	0.708339161740
С	3.600872143057	-3.583223557549	1.512392586003
Ι	2.968556030213	-3.838128067797	-2.018638893870
Η	-0.239453296752	-3.956546663104	-1.168451098149
Н	-1.090725510994	-3.994100417150	1.374024966469
Н	1.046694008394	-3.896422551762	2.951768373567
0	4.347817909650	-2.784872034892	0.960151445101
Ν	4.014153381822	-4.308780948823	2.597850065994
С	5.369225315007	-4.048780035576	3.125421514157
С	3.380811613711	-5.505649825596	3.047366718481
С	3.209038370542	-6.580733184047	2.192091643078
С	2.989205912127	-5.622335829162	4.372133709373
Η	5.673533510195	-3.064554458826	2.813648735995
Н	6.071239956661	-4.776601126552	2.736420971211
Н	5.354209616794	-4.112111536881	4.203441223352
С	2.621219422596	-7.747391970773	2.642584158441

С	2.425013761121	-6.795169506369	4.825997417149
Η	3.530537775074	-6.501743955913	1.174177261126
Н	3.130409331304	-4.796576591329	5.039639217895
С	2.214999751594	-7.860561273073	3.962375500037
Н	2.496168699016	-8.561937923538	1.964433048668
Η	2.144029424787	-6.906287229732	5.852005949559
С	1.650937602949	-9.100681699860	4.584416078768
0	1.743630350063	-9.264383023223	5.791978306326
Ν	1.064262167180	-10.059232972444	3.795094782398
С	0.676323990941	-11.316102808637	4.470499966224
С	0.419451142309	-9.798437454155	2.545915478151
С	0.752076630560	-10.556153738485	1.433191197369
С	-0.564776975417	-8.830363799826	2.442299908993
Η	1.401931906764	-11.543387806735	5.233118405943
Η	-0.297892632308	-11.217137686909	4.935003952847
Η	0.642864168290	-12.108880076368	3.738979600148
С	-1.194787722422	-8.605726228404	1.230581883816
С	0.112599012385	-10.340158609246	0.227120197034
Η	1.517356334687	-11.301350966087	1.517897331930
Η	-0.827587756496	-8.251736557225	3.304244971795
С	-0.860319734070	-9.360117463602	0.121032069633
Η	-1.947660827501	-7.846784249966	1.157305256990
Η	0.378399981917	-10.928015948122	-0.628664772827
Н	-1.350587236295	-9.187465971932	-0.815851164013

Cartesian coordinate for 3d-II

С	0.0000000000000	0.000000000000	0.00000000000000
С	0.0000000000000	0.0000000000000	1.417281220180
С	1.349107361667	0.0000000000000	-0.437787014257
Η	-0.862064651947	0.045000438883	-0.625910771284
Fe	0.988004632720	-1.835449170056	0.709201267671
С	1.350346136900	-0.000911863205	1.853472905613
С	2.182670451931	0.001838530649	0.707664373642
Η	-0.861985199463	0.046977815868	2.043215358470
Η	1.679659598077	0.034261224921	-1.450745385772
С	0.593707850505	-3.697179916798	-0.412406860193
С	-0.164847942632	-3.728415155329	0.782334616501
С	0.730430423038	-3.697773830389	1.872267168254
С	2.047172762228	-3.639251597744	1.360044904083
С	1.960976475271	-3.630759835568	-0.060003596180
Η	1.683021455471	0.035069596669	2.865689909267
Η	3.248069266066	0.003086531846	0.711204708753
С	3.296244174570	-3.510677683003	2.135616457550
Ι	3.545095931108	-3.696003516240	-1.442555916379
Η	0.212145297250	-3.763886051133	-1.404376382395
Η	-1.225652568034	-3.809647499292	0.845261807839
Η	0.471276898394	-3.756319961475	2.903526837876
0	4.125713643003	-2.652442313416	1.867757995177
Ν	3.465065811241	-4.368312824008	3.187237891558
С	4.664734968784	-4.203444521624	4.032472329099
С	2.729102205243	-5.578359801284	3.359990781748
С	2.704771471115	-6.545589478490	2.368768140767
С	2.065828541088	-5.811788047468	4.554288479920
Η	5.078126922449	-3.227619588170	3.845084673044
Η	5.402179499664	-4.957658969533	3.785844063963
Η	4.393301743262	-4.300243574578	5.073710624748
С	2.011772096400	-7.721176421141	2.569781206833
С	1.397321254750	-7.001552927716	4.764941319710

Н	3.210935933638	-6.368764689383	1.442414065147
Η	2.067767365080	-5.056840457581	5.313971754125
С	1.374092928732	-7.971147591548	3.775042040833
Н	1.955215704689	-8.458758408505	1.797134705058
Н	0.890656723330	-7.161203792121	5.691148785716
С	0.608164761244	-9.253223620245	3.862575812395
0	0.231586060969	-9.806647567244	2.841408670403
N	0.305044355936	-9.779960386348	5.096444844981
С	-0.592468200987	-10.955150491531	5.102360716806
С	1.112039854197	-9.607616192739	6.264174712370
С	0.518388520197	-9.215004445092	7.454335808919
С	2.470326915498	-9.876009874167	6.236521555878
Η	-1.321887999901	-10.843431655687	4.317881897461
Η	-0.032695086208	-11.866991995327	4.929740704430
Η	-1.083069605955	-11.014733105512	6.061808236012
С	3.231737811853	-9.732727061826	7.383423506538
С	1.277447198463	-9.084850528168	8.602071086257
Η	-0.532504514917	-9.006233414105	7.470288298630
Η	2.927269387678	-10.189767776152	5.320183012240
С	2.638463469853	-9.339593241448	8.569137192406
Η	4.283278723982	-9.936805202262	7.350132024939
Η	0.809947956609	-8.780139963080	9.517146033656
Η	3.227699561277	-9.235029487868	9.457955248518

References

- Riant, O. Samuel, T. Flessner, S. Taudien, H. B. Kagan, J. Org. Chem. 1997, 62, 6733.
- A. Tanatani, A. Yokoyama, I. Azuma, Y. Takakura, C. Mitsui, M. Shiro, M. Uchiyama, A. Muranaka, N. Kobayashi and T. Yokozawa, *J. Am. Chem. Soc.*, 2005, 127, 8553
- 3 Gaussian 98, Revision A.11.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.

Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R.
E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin,
M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M.
Head-Gordon, E. S. Replogle, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, 2002.

S14

