Supporting Information

On the Remarkable Structural Diversity and Kinetic Lability of $Tp^{C*}CaX$ Complexes (X = NSi_2Me_6 , OC_6H_4 -p-Me, Tp^{C*}) where $Tp^{C*} = tris[3-(2-methoxy-1,1-dimethylethyl)pyrazolyl]hydroborate.$

Malcolm H. Chisholm^{*}, Judith C. Gallucci, Gülşah Yaman and Tanya Young. Department of Chemistry The Ohio State University 100 W. 18th Ave. Columbus, Ohio 43210 USA

<u>General Considerations.</u> The manipulation of air sensitive compounds employed standard Schlenk line techniques and involved the use of anhydrous solvents and dry, deoxygenated nitrogen. TITp^C* was prepared as described previously.¹ Ca[N(SiMe₃)₂](THF)₂ was prepared according to the literature procedure.² Dimethylmagnesium, MgMe₂, was prepared according to the literature procedure.³ Dibutylmagnesium, MgBu₂, was obtained from Aldrich. <u>Caution.</u> *Thallium metal and its salts are toxic. Extreme care must be employed in the handling*

of these materials and in disposing of their wastes.

<u>Measurements.</u> ¹H-, ¹¹B-, and ¹³C{¹H}-NMR spectra were recorded in benzene-d6, toluene-d8, THF-d8 or chloroform-d on Bruker NMR spectrometers DPX-500, DPX-400 or DPX-250. Elemental analyses for C, H and N were performed by Atlantic Microlab, Inc.

X-ray Structure Determinations.

X-ray diffraction data for compounds **2**, **3** and **4** were collected on a Nonius diffractometer equipped with a Kappa CCD detector. Because of the small size of the crystal for compound **1**, a synchrotron data set was collected at the Advanced Photon Source at Argonne National Laboratory.⁴ Crystal data, data collection, and refinement parameters are summarized in Table S1. All work was done at low temperature using an Oxford Cryosystems Cryostream Cooler. The structures were solved using direct methods in SHELXS-97⁵ or SIR2004⁶ and standard difference map techniques. Full-matrix least-squares refinements based on F² were performed in SHELXL-97,⁷ as incorporated in the WinGX package.⁸ Hydrogen atoms on carbon were included in calculated positions.

Calcium tris-[3-(2-methoxy-1,1-dimethylethyl)pyrazolyl]hydroborate bistrimethylsilylamide, $Tp^{C}*CaN(SiMe_3)_2$, **1**. A solution of TITp^C* (0.953 g, 1.41 mmol) in 40 ml pentane was added dropwise to the solution of Ca[N(SiMe_3)_2]_2.(THF)₂ (0.712 g, 1.41 mmol) in 30 ml pentane at 0°C. $Tp^{C}*CaN(SiMe_3)_2$ quickly precipitated as a white solid. The ice-water bath was removed and then the reaction mixture was stirred at room temperature overnight to make sure it is complete. Then, the reaction mixture was centrifuged, and then filtered by Schlenk filtration. The solid was washed with cold pentane twice in order to remove TIN(SiMe_3)_2, and dried under vacuum. $Tp^{C}*CaN(SiMe_3)_2$ was obtained as an off-white solid (0.766 g, 81 %). It is redissolved in nhexane and the single crystals were obtained from cooling of the warm hexane solution overnight. ¹H-NMR (400 MHz, benzene-d6) δ : 7.89 (H-5, pz, s, 3H), 5.86 (H-4, pz, s, 3H), 3.50(CH₂O, s, 6H), 3.23 (OMe, s, 9H), 1.18 (CMe₂, s, 18 H), 0.336 SiMe₃, s, 18H). ¹³C {¹H}-NMR (400 MHz, benzene-d6) δ : 159.1(3-C, pz), 136.0 (5-C, pz), 101.2 (4-C, pz), 82.97(CH₂O), 60.97 (OCH₃), 36.81 (CMe₂), 26.45(CMe₂), 6.11 (SiMe₃).

Calcium tris-[3-(2-methoxy-1,1-dimethylethyl)pyrazolyl]hydroborate} para-methylphenoxide $Tp^{C}*CaOC_{6}H_{4}$ -p-Me, **2.** A solution of p-cresol (0.043 µl, 1.41 mmol) in 5 ml benzene was added dropwise to the solution of compound **1** (0.265 g, 0.400 mmol) in 5 ml benzene at room temperature. The reaction mixture was stirred for 2 h, and then all volatile materials were removed under vacuum. The white solid was dried under vacuum. *X*-ray quality single crystals of compound **2** together with one toluene molecule in the asymmetric unit was obtained from toluene solution at -15 $^{\circ}$ C. ¹H-NMR (250 MHz, benzene-d6) δ : 7.52 (H-5, pz, d, *J* = 3.6 Hz, 3H), 7.26 (H-3, H-5, C₆H₄-*p*-Me, d, *J* = 8.2 Hz, 2 H), 6.88 (H-2, H-6, C₆H₄-*p*-Me, d, *J* = 8.2 Hz, 2 H), 5.86 (H-4, pz, d, *J* = 3.6 Hz 3H), 3.37 (OMe, s, 9H), 3.35 (CH₂O, s, 6H), 2.42 (*p*-Me, C₆H₄-*p*-Me, s, 3H), 1.25 (CMe₂, s, 18 H); ¹³C{¹H}-NMR (400 MHz, benzene-d6) δ : 160.8 (C-3, pz), 136.2 (C-5, pz), 130.2 (C-3, C-5, C₆H₄-*p*-Me), 119.9 (C-2, C-6, C₆H₄-*p*-Me), 101.5 (C-4, pz), 83.14 (CH₂O), 61.31 (OCH₃), 36.61 (*C*Me₂), 26.32 (*CMe₂*), 20.94 (*p*-Me, C₆H₄-*p*-Me).

Calcium bis{tris-[3-(2-methoxy-1,1-dimethylethyl)pyrazoly]hydroborate}, [Tp^{C}Ca]Tp^{C*},3.*

Compound **1** (1 mmol, 0.672 g) was heated under vacuum at 65 °C for 3 days. Color of the initial solid went from off-white to white upon formation of compound **3**. The ¹H- and ¹³C{¹H}-NMR spectra of the repeatedly recrystallized solid in benzene-d6 showed signals at 0.413 and 5.45 ppm, respectively, for the SiMe₃ group together with the signals of compound **3**. When one equivalent of Tp^C*CaI reacts with one equivalent of KOSiMe₃ or KO^tBu in toluene, compound **3** was determined as a major product, which is confirmed by the same ¹H-NMR signals of the Tp^C* ligand. ¹H-NMR(400 MHz, benzene-d6) δ : 7.52 (d, *J* = 2 Hz, 3H, H-5, pz), 5.86 (d, *J* = 2 Hz, 3H, H-4, pz), 3.47 (s, 9H, OMe), 3.32 (s, 6H, CH₂O), 1.25 (s, 18H, CMe₂); ¹H-NMR(250 MHz, chloroform-d) δ : 7.46 (d, *J* = 2 Hz, 3H, H-5, pz), 5.91 (d, *J* = 2 Hz, 3H, H-4, pz), 3.63 (s, 9H, OMe), 3.54 (s, 6H, CH₂O), 1.35 (s, 18H, CMe₂); ¹H-NMR(250 MHz, dichloromethane-d2) δ : 7.51 (d, *J* = 2 Hz, 6H, H-5, pz), 5.99 (d, *J* = 2 Hz, 6H, H-4, pz), 3.65 (s, 18H, OMe), 3.59 (s, 12H, CH₂O), 1.38 (s, 18H, CMe₂); ¹H-NMR(250 MHz, THF-d8) δ : 7.46 (d, *J* = 2 Hz, 6H, H-5, pz)

pz), 5.94 (d, J = 2 Hz, 6H, H-4, pz), 3.64 (s, 18H, OMe), 3.58 (s, 12H, CH₂O), 1.37 (s, 36H, CMe₂); ¹³C{¹H}-NMR (400 MHz, benzene-d6) δ : 160.5 (C-3, pz), 136.2 (C-5, pz), 101.4 (C-4, pz), 83.43 (CH₂O), 61.29 (OCH₃), 36.57 (*C*Me₂), 26.44 (*CMe₂*); ¹¹B{¹H}-NMR (250 MHz, benzene-d6) δ : -2.22 (br); ¹¹B{¹H}-NMR (250 MHz, THF-d8) δ : -2.38 (br).

Magnesium bis{tris-[3-(2-methoxy-1,1-dimethylethyl)pyrazoly]hydroborate}, $[Tp^{C*}Mg]Tp^{C*}$, 4. A solution of [(CH₂)₃CH₃]₂Mg (3.6 mmol, 3.6 ml, 1 M solution in heptane) was added dropwise to the solution of $TITp^{C*}$ (3.4 mmol, 2.30 g) in 40 ml THF. Immediate formation of Tl metal as a black deposit was observed. The reaction mixture was stirred for 2 h at room temperature. The Tl metal was removed by Schlenk filtration, and the colorless supernatant solution was stripped to dryness under vacuum. Compound 4 was obtained as white solid (1.09 g, 66.1 % experimental yield based on the initial TITp^C*). Colorless single crystals were obtained from the concentrated solution of compound **4** in n-hexane at room temperature. ¹H-NMR(400 MHz, benzene-d6) δ : 7.34 (br, 3H, H-5, pz), 7.26 (d, J = Hz, 3H, H-5, pz), 6.27 (br, 3H, H-5, pz), 5.58 (d, J = 2 Hz, 3H, H-4, pz), 3.86 (s, 9H, OMe), 3.67 (br, 6H, CH₂O), 3.54 (s, 6H, CH₂O), 3.20(br, 9H, OMe), 1.71 (br, 18H, CMe₂), 0.873 (s, 18H, CMe₂); ¹³C{¹H}-NMR (400 MHz, benzene-d6) δ: 160.9 (C-3, pz, intense), 158.4 (C-3, pz), 137.1 (C-5, pz), 135.7 (C-5, pz), 101.0 (C-4, pz, intense), 99.90 (C-4, pz), 83.30 (CH₂O, intense), 83.10 (CH₂O), 66.07 (OMe), 58.60 (OMe, intense), 37.62 (CMe₂), 36.20 (CMe₂, intense), 26.04 (CMe₂). ¹¹B{¹H}-NMR (250 MHz,benzene-6) δ: -1.85 (br). Anal. Calcd. for C₄₈H₈₀B₂MgN₁₂O₆: C, 59.61; H, 8.34; N, 17.38. Found: C, 59.47; H, 8.32; N, 16.69.

The reaction above was run to obtain $Tp^{C*}MgBu$ so 1.05 eq. of $MgBu_2$ was reacted with 1.00 equivalent of $TlTp^{C*}$. When 2 eq. of $TlTp^{C*}$ reacts with 1 equivalent of $MgBu_2$ in THF,

compound **4** is obtained in quantitative yield according to the following procedure: To a solution of TITp^C* (2.38g, 3.52 mmol) in 25 ml of THF was added dropwise the solution of MgBu₂ (1.76 mmol, 1 ml of 1M solution in n-heptane) at room temperature. The reaction mixture turned gray and then Tl metal was accumulated at the bottom of the Schlenk flask. The reaction mixture was stirred overnight. The solution was filtered, volatiles were removed under vacuum. A gray solid residue was obtained. It was redissolved in n-hexane, filtered and compound **4** was recrystallized from the concentrated n-hexane solution at room temperature (1.46 g, 83.0 %).

Spin Saturation Transfer Experiments

VT ¹³C {¹H}-NMR spin saturation transfer experiments were carried out on compound **4** in toluene-d₈. Two sets of ¹³C signals were observed for the Tp^{C*} ligands corresponding to $[Tp^{C*}Mg]^+$ and $[Tp^{C*}]^-$ though an absolute assignment of coordinated and free Tp^{C*} signals has not been made at this time. The OCH₃ signals with chemical shifts at 66.0 and 58.7 ppm and well separated and were employed in the irradiation experiments. Irradiation of the signal at 66.0 ppm and examination of the signal at 58.7 ppm revealed spin transfer with increasing temperature as shown in Figure 4. Irradiation of the signal at 58.7 ppm also gave rise to the decrease in intensity of the signal at 66.0 ppm with increasing temperature. These experiments confirm the exchange of free and coordinated Tp^{C*} ligands.

References

- 1. M. H. Chisholm, J. C. Gallucci and G. Yaman. Inorg. Chem. 2007, 46(21), 8676-8683.
- 2. P. S. Tanner, D. J. Burkey and T. P. Hanusa. Polyhedron 1995, 14, 331-333.
- 3. R. A. Anderson and G. Wilkinson. Inorg. Synth. 1979, 19, 262.

- 4. Dr. Maren Pink of Indiana University collected the synchrotron data set at the Advanced Photon Source at the beamline ChemMatCARS Sector 15. This beamline is principally supported by the National Science Foundation/Department of Energy under grant number CHE0087817 and by the Illinois Board of Higher Education. The Advanced Photon Source is supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38.
- 5. SHELXS-97: G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- SIR2004: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. DeCaro, C. Giacovazzo, G. Polindori, R. Spagna, J. Appl. Cryst., 2005, 38, 381-388.
- 7. SHELXL-97: G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- 8. WinGX-Version 1.64.05: Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837-838.

 Table S1.
 Summary of crystallographic data for compounds 1-4.

	1	2	3	4
Formula	$C_{30}H_{58}BCaN_7O_3Si_2$	C ₃₁ H ₄₇ BCaN ₆ O ₄	$C_{48}H_{80}B_2CaN_{12}O_6$	$C_{48}H_{80}B_2MgN_{12}O_6$
		and toluene		

Formula Wt.	671.90	710.77	982.94	967.17
Crystal System	monoclinic	monoclinic	monoclinic	triclinic
a/Å	13.1496(5)	13.390(1)	14.2546(2)	14.3126(1)
b/Å	15.5703(8)	15.831(1)	16.7217(3)	14.5131(2)
c/Å	18.9206(8)	19.583(2)	24.6146(5)	14.9368(2)
α/°				97.536(1)
β/°	99.351(2)	109.058(3)	102.840(1)	115.884(1)
γ/°				99.546(1)
U/Å ³	3822.4(3)	3923.6(6)	5720.4(2)	2679.34(5)
T/K	95(2)	150(2)	230(2)	150(2)
wavelength	0.49595 Å	0.71073	0.71073	0.71073
Space Group	$P2_1/c$	P2 ₁ /n	P2 ₁ /c	Pī
Z	4	4	4	2
crystal size, mm	0.07 x 0.06 x <	0.38 x 0.35 x	0.38 x 0.12 x 0.12	0.27 x 0.19 x 0.15
	0.01	0.12		
μmm ⁻¹	0.080	0.205	0.163	0.090
Reflections	42864	63707	51480	47258
Measured				
Unique refl., Rint	10864, 0.0513	6918, 0.039	7420, 0.085	9449, 0.038
R1(I>2σI)	0.0447	0.0397	0.0885	0.0912
wR2(all data)	0.1117	0.1025	0.2589	0.2891

An ORTEP drawing of the [TpC*Mg]+ cation of IV, with thermal ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.