Supporting Information

Evidence of Strong Hydrogen Bonding by 8-Amino-Guanine

Nicholas V. Hud and Aaron E. Engelhart
School of Chemistry and Biochemistry
Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
Fax: (+1) 404-894-7452
E-mail: hud@chemistry.gatech.edu
Thomas Hellman Morton
Department of Chemistry
University of California
Riverside, California 92521-0403

S1-2: Coordinates for Hoogsteen paired, hemiprotonated 8-aminoguanine homodimer and proton shift transition state.
S3: Experimental details
S4: Thermal denaturation studies of $\mathrm{TX}_{4} \mathrm{~T}$, reversibility, and ion dependence
S5: Thermal denaturation of $\mathrm{TG}_{4} \mathrm{~T}$
S6: CD spectra of $\mathrm{TX}_{4} \mathrm{~T}$ and $\mathrm{TG}_{4} \mathrm{~T}$
S7: NMR of $\mathrm{TX}_{4} \mathrm{~T}$ in $\mathrm{D}_{2} \mathrm{O}$

Hoogsteen Proton-Bound Homodimer of 8-aminoguanine

Stoichiometry	C10H13N1202(1+)	
Framework group	C1[X(C10H13N12O2) $]$	
Deg. of freedom	105	
Full point group	C1	NOp

Standard orientation:

Center	Atomic	Atomic	Coordinates (Ångstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-5.194368	-0.219603	-0.101662
2	7	0	-4.326756	-1.285710	-0.104282
3	6	0	-2.916710	-1.205681	-0.034956
4	6	0	-2.478046	0.141658	0.027503
5	6	0	-3.443728	1.143922	0.019074
6	7	0	-4.782420	1.030940	-0.033376
7	8	0	-2.270777	-2.268357	-0.041514
8	7	0	-1.197771	0.695061	0.093198
9	7	0	-2.739164	2.324242	0.087080
10	6	0	-1.392666	2.005719	0.134204
11	1	0	-3.149691	3.244692	0.146319
12	1	0	-4.677322	-2.232007	-0.197881
13	7	0	-0.437955	2.954305	0.266257
14	1	0	-0.658696	3.897801	-0.012889
15	1	0	0.535024	2.670762	0.135534
16	6	0	2.499706	-0.103587	0.004215
17	6	0	3.415411	-1.138504	0.026919
18	7	0	2.672879	-2.308178	0.095743
19	6	0	1.337616	-1.990705	0.110269
20	7	0	1.213907	-0.655077	0.056025
21	1	0	3.063163	-3.239255	0.122642
22	6	0	2.963316	1.238419	-0.075715
23	8	0	2.338247	2.298134	-0.114486
24	7	0	4.383450	1.262037	-0.117386
25	1	0	4.768894	2.196129	-0.200741
26	7	0	0.343150	-2.865882	0.177481
27	1	0	-0.653217	-2.559885	0.107822
28	1	0	0.542868	-3.853498	0.177579
29	6	0	5.211491	0.166002	-0.085208
30	7	0	4.753135	-1.073623	-0.007788
31	1	0	0.284016	-0.124487	0.069040
32	7	0	6.544305	0.373788	-0.164564
33	1	0	7.138589	-0.434062	-0.057448
34	1	0	6.955312	1.284458	-0.038544
35	7	0	-6.523267	-0.486188	-0.221713
36	1	0	-7.133085	0.308049	-0.093472
37	1	0	-6.892198	-1.382755	0.055459
Standard basis: 6-31G(d,p) (6D, 7F)					
There are 425 symmetry adapted basis functions of A symmetry.					
SCF Done	$E($ RB+HF-LYP $)=-1196.33343039$			$-\mathrm{V} / \mathrm{T}=2.0092$	

Proton shift TS in Hoogsteen Proton-Bound Homodimer of 8-aminoguanine

Stoichiometry	C10H13N12O2(1+)	
Framework group	C2[C2(H), X(C10H12N12O2)]	
Deg. of freedom	53	
Full point group	C2 NOp	

Standard orientation:

Center	Atomic	Atomic	Coordinates (Ångstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.152426	5.146374	-0.172773
2	7	0	-1.241504	4.314492	-0.261215
3	6	0	-1.218490	2.900420	-0.173316
4	6	0	0.108142	2.423230	0.001839
5	6	0	1.135363	3.352851	0.079576
6	7	0	1.073999	4.691699	0.009664
7	8	0	-2.290137	2.287297	-0.257879
8	7	0	0.636963	1.129555	0.121132
9	7	0	2.290137	2.618098	0.252186
10	6	0	1.955763	1.282488	0.268782
11	1	0	3.216609	3.008319	0.347308
12	1	0	-2.167195	4.693400	-0.425970
13	7	0	2.855400	0.306478	0.451741
14	1	0	3.835044	0.536225	0.388679
15	1	0	2.595485	-0.664199	0.215887
16	6	0	-0.108142	-2.423230	0.001839
17	6	0	-1.135363	-3.352851	0.079576
18	7	0	-2.290137	-2.618098	0.252186
19	6	0	-1.955763	-1.282488	0.268782
20	7	0	-0.636963	-1.129555	0.121132
21	1	0	-3.216609	-3.008319	0.347308
22	6	0	1.218490	-2.900420	-0.173316
23	8	0	2.290137	-2.287297	-0.257879
24	7	0	1.241504	-4.314492	-0.261215
25	1	0	2.167195	-4.693400	-0.425970
26	7	0	-2.855400	-0.306478	0.451741
27	1	0	-2.595485	0.664199	0.215887
28	1	0	-3.835044	-0.536225	0.388679
29	6	0	0.152426	-5.146374	-0.172773
30	7	0	-1.073999	-4.691699	0.009664
31	1	0	0.000000	0.000000	0.112242
32	7	0	0.356795	-6.478780	-0.317385
33	1	0	-0.440657	-7.071328	-0.141219
34	1	0	1.270303	-6.886189	-0.195273
35	7	0	-0.356795	6.478780	-0.317385
36	1	0	0.440657	7.071328	-0.141219
37	1	0	-1.270303	6.886189	-0.195273
Rotational constants (GHZ) :			0.5684964	0.1181191	0.0985323
Standard basis: 6-31G(d,p) (6D, 7F)					
There are	213 symmetry adap		is functions of A sym		etry.
There are	212 symmetry adapted basis function$E(R B+H F-L Y P)=-1196.32944490$			of B sy	symmetry.
SCF Done:				$-\mathrm{V} / \mathrm{T}=2$.	

Experimental Details

DNA Preparation

DNA was prepared on an Expedite Synthesizer using standard protocols. Deprotection was performed over 20 hr in concentrated aqueous ammonia with 2-mercaptoethanol as recommended by the manufacturer for the 8 -amino-dG phosphoramidite (Glen Research).

Full length DNA was separated from truncation products by PAGE, excised from the gel and extracted by the crush-and-soak method. Desalting was effected by SPE. The identity of the oligonucleotide was confirmed by ESI-MS: found $\mathrm{m} / \mathrm{z}=1922(\mathrm{M}-\mathrm{H})$, expected $\mathrm{m} / \mathrm{z}=1922$.

Solid phase extraction was performed on an ODS Sep-Pak Plus (Waters). The following solutions were pulled through the bed using a peristaltic pump at $1 \mathrm{ml} / \mathrm{min}$. $10 \mathrm{~mL} 100 \% \mathrm{MeCN}$; $10 \mathrm{ml} 50 \% \mathrm{MeCN}, 50 \% 100 \mathrm{mM}$ triethylammonium acetate, pH 7 (TEAA); 100\% TEAA; and the salt-containing DNA in ca. 50 mL TEAA. The bed was then washed twice with 5 ml portions of nanopure water. The DNA was then eluted with $5 \mathrm{~mL} 40 \%$ aqueous acetonitrile, the volume was reduced by half on a vacuum centrifuge, and the remaining organic-depleted fraction was frozen and lyophilized.

The purified DNA was resuspended in nanopure and equilibrated over >100 equivalents of lithium sulfonate resin (Dowex 50X8). The resin was washed several times with nanopure water and the lithium-exchanged DNA was concentrated two-fold and then lyophilized.

Sample Preparation

The buffers used were 10 mM acetate or cacodylate with 100 mM metal chloride and were prepared at the desired pH at $5-10 \times$. All samples were placed in boiling water for 5 min and annealed at $5 \times$ final concentration ($50 \mu \mathrm{M}$ total oligonucleotide, 50 mM buffer, 500 mM salt) at $4^{\circ} \mathrm{C}$ overnight.

Circular Dichroism

CD was performed on a JASCO J-810, at $10 \mu \mathrm{M}$ total oligonucleotide, 10 mM buffer, 100 mM salt with $350-200 \mathrm{~nm}$ scans and $1^{\circ} \mathrm{C}$ steps, with a temperature ramp rate of $0.16^{\circ} \mathrm{C}-1^{\circ} \mathrm{C} / \mathrm{min}$. The full-wavelength spectrum at each temperature was fit to a two-state model, using the assumption that the $5^{\circ} \mathrm{C}$ spectrum in the first heating corresponded to 100% duplex and the $60^{\circ} \mathrm{C}$ spectrum corresponded to 0% duplex.

NMR

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were collected on a Bruker DRX-500 at $275 \mathrm{~K}\left(\mathrm{H}_{2} \mathrm{O}\right)$ or $280 \mathrm{~K}\left(\mathrm{D}_{2} \mathrm{O}\right)$ and were the sum of 1024 transients. Spectra in $10 \% \mathrm{D}_{2} \mathrm{O}$ were observed using a 3-9-19 WATERGATE pulse sequence. Those in $\mathrm{D}_{2} \mathrm{O}$ were $99.96 \% \mathrm{D}$ and observed using a presaturation pulse.

Circular Dichroism Studies of $\mathrm{TX}_{4} \mathbf{T}$ Thermal Denaturation, Reversibility, and Ion Dependence

The partial loss of spectral intensity observed is not due to irreversible dissociation of a secondary structure, but, likely, partial depurination of $\mathrm{d} \mathbf{X}$ residues. Extended heating resulted in further loss of ellipticity, supporting this hypothesis. The reaction appears to be salt-catalyzed, based on the cation dependence and lack of depurination in the salt-free NMR samples.

Circular Dichroism Studies of Thermal Denaturation of $\mathrm{TG}_{4} \mathrm{~T}$

Irreversible changes in the CD spectrum persisted even after overnight incubation at $5^{\circ} \mathrm{C}$, due to the slow, tetramolecular association of the G-quadruplex.

CD spectra of $\mathrm{TX}_{4} \mathrm{~T}$ and $\mathrm{TG}_{4} \mathrm{~T}$

Spectra were acquired at 278 K . Information on oligonucleotide and buffer concentrations is given above.

${ }^{1} H$ NMR of $\mathrm{TX}_{4} \mathrm{~T}$ in $\mathrm{D}_{2} \mathrm{O}$

Consistent with a single predominant structure, two major aromatic (T1 and T6 H6) resonances (A), six H1' resonances (\mathbf{B}), and two methyl (T 1 and T 6 H 5) resonances (\mathbf{C}) are observed. 1 mM lithium-exchanged $\mathrm{TX}_{4} \mathrm{~T}$ with no added salt in $99.96 \% \mathrm{D}_{2} \mathrm{O}, 280 \mathrm{~K}, \mathrm{pD} 5$

