Supplementary Materials

Syntheses, spectroscopic and analytical data for new complexes

Syntheses

Preparation of $Pt(\eta^1, \eta^2 - C_5 Me_5 O_2)(PR_3)I$, 2

The complex $Pt(\eta^5-C_5Me_5)(PR_3)I$ (100 mg) was dissolved in 20 ml of distilled hexane/chloroform. The green solution was stirred at room temperature in the air until the green solution turned light yellow (approximately 2 to 3 hours) at which time a white precipitate of product had formed. The solution was stripped off to dryness, the residue dissolved in 2 ml of dichloromethane and hexane was added (10 to 15 ml). Pale yellow crystals were isolated upon refrigeration at $-30^{\circ}C$. The crystals were washed with hexane and dried *in vacuo*. These crystals were stored in dark at $-78^{\circ}C$.

Preparation of $Pt(\eta^1, \eta^2 - C_5 Me_5 dienophile)(PPh_3)I, 3$

The mixture of hexane (20 ml) and an excess of dienophile was refluxed for 20 minutes under nitrogen gas to remove traces of oxygen. The resulting solution was brought to room temperature. The complex $Pt(\eta^5-C_5Me_5)(PPh_3)I$ (100 mg, 0.139 mmol) was added under flow of nitrogen gas. The resulting mixture was refluxed for 36 (methyl acrylate) to 48 (acrolein, ethyl vinyl ketone) hours. The resulting solution was kept overnight at -30° C, the supernatent liquid was decanted and the cream colour crystals dissolved in 2 ml of CH₂Cl₂ and hexane (10 to 15 ml) were added. upon refrigeration at -30° C. The crystals were washed with hexane and dried *in vacuo*. Yields 70% (acrolein), 85% (methyl acrylate, ethyl vinyl ketone).

Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2009

Analytical and spectroscopic data for
$$Pt(\eta^1, \eta^2-C_5Me_5O_2)(PR_3)I$$

(PR₃ = PPh₃, **2a**; PR₃ =PPhCy₂, **2b**; PR₃ = PMe^tBuPh, **2c**)

Analyses

2a	calc. for C ₂₈ H ₃₀ IO ₂ PPt	C 44.75	H 4.02
	found:	C 44.68	H 4.09
2b	calc. for $C_{28}H_{42}IO_2PPt$:	C 44.04	H 5.54
	found:	C 44.03	H 5.55
2c	calc. for $C_{27}H_{32}IO_2PPt$:	C 37.68	H 4.81
	found:	C 37.95	H 4.88

NMR

	2a	2b ^a	2c	
	$C_6 D_6 RT$	$C_6 D_6 RT$	$C_6 D_6 RT$	
¹⁹⁵ Pt{ ¹ H} ^a	⁵ Pt { ¹ H } ^a 420 [4585]		C ₆ D ₆ RT 438 [4487] 22.6	
${}^{31}P{}^{1}H{}^{a}$	23.3 [4584]	28.3 ^b [4459]	22.6 [4487]	

[] J_{PtP} ; a) 457 [4442] in CD_2Cl_2 ; b) 27.9 [4443] in CD_2Cl_2

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

$^{13}C{^{1}H}$	2a	2b	2c
	CDCl ₃ 250 K	$CD_2Cl_2 RT$	CDCl ₃ 230 K
C(1)	42.3 [477]	42.0 [503]	41.5 [500]
C(2)	95.1 [66]	95.9 [69] {4}	95.3 [66]
C(3)	113.5 [77] {14}	113.2 [78] {13}	114.0, 111.6 [72], [78] {12}, {13}
Me(1)	7.6 {5}	9.1 {4}	6.8 {3}
Me(2)	9.6 [16]	10.7 [17]	9.7, 9.9 [unobs], [unobs]
Me(3)	13.2 [unobs]	13.3 [11]	12.9, 12.7 [17], [16]
Ph	128.1 {11}	126.2 {47} [69]	127.8 {10}
	129.2 {58}	128.2 {10}	129.8 {50} [44]
	130.8	131.2	130.7
	133.8 {11}	134.0 {8} [34]	132.5 {11} [26]
Су		26.5	
		26.7 {10}, 26.9 {10}	
		28.9 [15], 29.5 [15]	
		4.5 {28} [32]	
Bu ^t			26.0
			32.3 {31} [62]
Ме			8.3 [43] {33}

 $\{\} J_{PC}, [] J_{PtC}$

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

${}^{1}\mathbf{H}$	2a	2b	2c
	CDCl ₃ RT	CD ₂ Cl ₂ RT	CDCl ₃ RT
Me(1)	0.29 [59.3] {1.5}	0.39 [61.5] {0.9}	0.11 [60.5] {1.3}
Me(2)	1.32	1.34	1.20, 1.35
Me(3)	2.05 [29.4] {2.8}	1.97 [27.7] {3.0}	1.89, 1.94 [33.5], [25.0] {2.6}, {3.4}
Ph	7.32-7.81	7.40-7.50	7.37-7.64
Су		1.00-2.80	
Bu ^t			1.29 {15.6}
Ме			1.87 {9.1} [48.3]

 $\{\} J_{PC}, [] J_{PtC}$

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Analytical and spectroscopic data for $[Pt(\eta^1, \eta^2-C_5Me_5CH_2CHR)(PPh_3)I]$ (R = CHO, **3a**; R = CO₂Me, **3b**; R = C(O)Et, **3c**)

Analyses

3a	calc. for C ₂₈ H ₃₄ IOPPt:	C 48.01	H 4.42
	found:	C 47.79	H 4.61
3 b	calc. for C ₃₂ H ₃₆ IO ₂ PPt:	C 47.71	H 4.50
	found:	C 48.31	H 4.56
3c	calc. for C ₃₃ H ₃₈ IOPPt:	C 49.32	H 4.77
	found:	C 49.38	H 4.76

NMR Data	3	a	3b		3c	
	major	minor	major	minor	major	minor
	85%	15%	>95%	<5%	>95%	<8%
$^{195}Pt\{^{1}H\}\left(C_{6}D_{6}\right)$	730 [4619]	725 [4566]	719 [4587]		717 [4594]	742 [4578]
³¹ P{ ¹ H} (C ₆ D ₆)	18.8 [4617]	19.8 [4563]	19.9 [4588]	21.4 [4579]	18.8 [4594]	
¹ H (CDCl ₃)						
Me(1)	-0.17 (d) [63.5] {1.5}	-0.13 (d) [63.5] {1.9}	-0.19 (d) [64.0] {1.3}		-0.17 (d) [63.4] {1.4}	0.05 (d) [unobs] {~2}
Me(2)	1.36, 1.53	1.35, 1.41	1.33, 1.47		1.34, 1.49	
Me(3)	1.83 (d), 1.94 (d) [28.3], [~ 22] {3.3}, {3.3}	1.89 (×2) (d) [~33] {4.2}	1.81 (d), 1.98 (d) [36.6], [30.8] {3.2}, {3.3}		1.77 (d), 2.00 (d) [37.0], [29.6] {3.2}, {3.3}	
H(a)	2.53 (d of d of d)	-	2.46 (d of d)		2.74 (d of d)	

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

,						· · · · · · · · · · · · · · · · · · ·
	$\begin{split} J(H_{a}H_{b}) &= 4.9 \\ J(H_{a}H_{c}) &= 9.4 \\ J(H_{a}H_{CHO}) &= 3.1 \end{split}$		$\begin{split} J(H_aH_b) &= 4.9\\ J(H_aH_c) &= 9.7 \end{split}$		$J(H_aH_b) = 5.2$ $J(H_aH_c) = 9.5$	
H(b)	1.26 (d of d) $J(H_bH_c) = 13.3$	-	1.27 (d of d) $J(H_bH_c) = 12.9$		1.22 (d of d) $J(H_bH_c) = 12.7$	
H(c)	1.49 (d of d)	-	1.55 (d of d)		1.47 (d of d)	
HC(O)	9.53 (d)	9.42 (d) $J(H_aH_{CHO}) = 3.4$				
CH ₃ C(O)			3.61 (s)	3.56 (s)		
Ph	7.1-7.8 (m)		7.1-7.8 (m)		7.2-7.8 (m)	
CH ₂					$\begin{array}{c} 2.32, 2.48\\ J(AB) = 18.0\\ J(H_AH_{Me}) = 7.2\\ J(H_BH_{Me}) = 7.2 \end{array}$	
CH ₃					0.97 ("t")	

¹³ C{ ¹ H} (CDCl ₃)				
C(1)	36.8 [unobs] {4}		36.6 [468] {4}	32.9 [unobs] {unobs}
C(2)	63.8, 68.1 [88], [84]		63.2, 67.4 [88], [84]	63.6, 68.2 [90], [83]
C(3)	109.5, 114.3 [unobs], [unobs] {17}, {14}		110.0, 113,8 [73], [68] {15}, {15}	111.5, 114.2 [69], [65] {15}, {16}
Me(1)	9.2 {5}		8.9 {6}	9.4 {5}
Me(2)	15.0, 15.5 [34], [35]		14.4, 15.2 [32], [34]	15.6, 15.7 [32], [35]
Me(3)	13.7, 16.4 [15], [18]		13.5, 15.5 [17], [17] {3}, {2}	13.9, 16.5 [14], [16] {3}, {3}
CH ₂	37.2 [113]		39.9 [110]	40.8 [108]
СН	62.0 [104]		52.6 [111]	60.2 [100]
C(O)	202.2	202.0	173.4	211.7
Ме			51.2	
CH ₂				38.0

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

CH ₂ CH ₃			10.1	
Ph	128.0 {11}	127.1 {11}	128.0 {11}	
	130.4	130.1	130.3	
	131.7 [unob] {57}	131.5 [43] {57}	131.9 [42] {56}	
	134.5 {11}	134.2 {11}	134.5 {12}	