Supporting Information

for Catalytic Enantioselective Construction of All-carbon Quaternary Stereocenters by an Organocatalytic Diels-Alder Reaction of α-Substituted α,β-Unsaturated Aldehydes

Taichi Kano, Youhei Tanaka, Kenta Osawa, Taiga Yurino and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto 606-8502, Japan

General Information. Infrared (IR) spectra were recorded on a Shimadzu IRPrestige-21 spectrometer. ¹H NMR spectra were measured on a JEOL JNM-FX400 (400 MHz) spectrometer. Chemical shifts were reported in ppm from tetramethylsilane as an internal standard. Data were reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, and app = apparent), coupling constants (Hz), and assignment. 13 C NMR spectra were recorded on a JEOL JNM-FX400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. Analytical gas-liquid phase chromatography (GLC) was performed on Shimadzu GC-14B instruments equipped with a flame ionization detector using an Astec Chiraldex B-DM (30 m × 0.25 mm) column and a GL Science Chirasil-DEX CB (25 m \times 0.25 mm). High performance liquid chromatography (HPLC) was performed on Shimadzu 10A instruments using a Daicel CHIRALPAK AD-H (4.6 mm × 25 cm), AS-H (4.6 mm \times 25 cm) and a CHIRALCEL OJ-H (4.6 mm \times 25 cm) column. The high-resolution mass spectra (HRMS) were performed on a Bruker microTOF. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm) were used. The products were purified by flash column chromatography on silica gel 60 (Merck 1.09386.9025, 230-400 mesh). In experiments requiring dry solvents, tetrahydrofuran (THF) was purchased from Kanto Chemical. Co. Inc. as "Dehydrated".

(*R*)-1,1'-binaphthyl-2,2'-diamine (*R*)-**3a** is commercially available from Wako Pure Chemical Industries. (*R*)-5,5',6,6',7,7',8,8'-Octahydro-1,1'-binaphthyl-2,2'-diamine (*R*)-**2a**,¹ (*R*)-3,3'-dibromo-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-diamine,²

(*R*)-3,3'-diphenyl-1,1'-binaphthyl-2,2'-diamine (R)-**3b**,³ (R)-3,3'-bis(4-*tert*-butyl-(R)-3c,² phenyl)-1,1'-binaphthyl-2,2'-diamine (*R*)-3,3'-bis(3,5-di-*tert*-butylphenyl)-1,1'-binaphthyl-2,2'-diamine (R)- $3d^2$, and biphenyl-2,2'-diamine 4^4 were literature procedure. 2-Methylenepentanal⁵, prepared according to the 2-methylene-4-pentenal⁶, 2-methylene-3-phenylpropanal⁷ and 2-methylene-4benzyloxybutanal⁸ were prepared by following the procedure.⁷ literature α . β -Unsaturated aldehydes were distilled and stored under argon atmosphere at -17 °C. Other simple chemicals were purchased and used as such.

(R)-3,3'-Diphenyl-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-diamine

(**R**)-2b: A mixture of (R)-3,3'-dibromo-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-diamine (216 mg, 0.48 mmol), Pd(OAc)₂ (10.8 mg, 0.048 mmol), PPh₃ (50.3 mg, 0.192 mmol), Ba(OH)₂·8H₂O (606 mg, 1.92 mmol), and phenylboronic acid (176 mg, 1.44 mmol) in degassed DME (5 mL) and H_2O (500 μ L) was refluxed overnight. After cooling to room temperature, the resulting mixture was poured into water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/diethyl ether = 25:1 as eluent) to afford (R)-2b (88 mg, 0.20 mmol, 41% yield): $[\alpha]_{D}^{24}$ -28.2 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (4H, d, J = 7.6 Hz, Ar-H), 7.41 (4H, dd, J = 7.6, 7.6 Hz, Ar-H), 7.30 (2H, t, J = 7.6 Hz, Ar-H), 6.91 (2H, s, Ar-H), 3.53 (4H, br s, NH₂), 2.76 (4H, t, J = 6.0 Hz, ArCH₂), 2.33-2.42 (2H, m, ArCHH), 2.22-2.31 (2H, m, ArCHH), 1.65-1.80 (8H, m, CH₂CH₂CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 138.8, 135.6, 130.3, 129.2, 128.6, 127.3, 126.8, 125.6, 122.3, 29.3, 27.0, 23.5, 23.3; IR (neat) 3468, 3374, 2926, 2855, 2342, 2237, 1605, 1589, 1458, 1435, 908, 775, 731, 702, 648 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₃₂H₃₃N₂: 445.2638 ($[M + H]^+$), Found: 445.2640 ($[M + H]^+$).

(*R*)-3,3'-Bis(4-*tert*-butylphenyl)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'diamine (*R*)-2c: (*R*)-2c was prepared in a similar manner as described above using 4-*tert*-butylphenylboronic acid instead of phenylboronic acid (77% yield): $[\alpha]_D^{27}$ –64.4 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (8H, app s, Ar-H), 6.92 (2H, s, Ar-H), 3.54 (4H, br s, NH₂), 2.75 (4H, t, *J* = 5.6 Hz, ArCH₂), 2.30-2.43 (2H, m, ArCHH), 2.17-2.30 (2H, m, ArCHH), 1.60-1.80 (8H, m, CH₂CH₂CH₂CH₂), 1.35 (18H, s, *t*-Bu); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 138.9, 137.1, 135.3, 130.3, 128.8, 127.2, 125.5, 122.3, 34.5, 31.4, 29.3, 27.0, 23.5, 23.3 (The signal for an aromatic carbon was not identified due to the overlap of peaks); IR (neat) 3451, 3348, 2959, 2936, 2914, 2833, 2363, 2330, 2236, 1605, 1589, 1458, 1393, 1362, 1263, 1244, 907, 837, 731 cm⁻¹; HRMS (ESI-TOF) Calcd. for $C_{40}H_{49}N_2$: 557.3890 ([M + H]⁺), Found: 557.3892 ([M + H]⁺).

(*R*)-3,3'-Bis(3,5-di-*tert*-butylphenyl)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-

2,2'-Diamine (*R*)-2d: (*R*)-2d was prepared in a similar manner as described above using 3,5-di-*tert*-butylphenylboronic acid instead of phenylboronic acid (60% yield): $[\alpha]_D^{27}$ -32.7 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (2H, t, *J* = 2.0 Hz, Ar-H), 7.32 (4H, d, *J* = 2.0 Hz, Ar-H), 6.94 (2H, s, Ar-H), 3.60 (4H, br s, NH₂), 2.77 (4H, br s, ArCH₂), 2.36-2.48 (2H, m, ArCHH), 2.24-2.35 (2H, m, ArCHH), 1.65-1.83 (8H, m, CH₂CH₂CH₂CH₂), 1.35 (36H, s, *t*-Bu); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 139.3, 139.0, 135.3, 130.3, 127.1, 126.6, 123.4, 122.4, 120.7, 35.0, 31.6, 29.4, 27.1, 23.6, 23.4; IR (neat) 3474, 2963, 2953, 2932, 2864, 2359, 1593, 1464, 1362, 1246, 910, 874, 733, 719 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₄₈H₆₅N₂: 669.5142 ([M + H]⁺), Found: 669.5117 ([M + H]⁺).

(*R*)-3,3'-Bis(4-*tert*-butylphenyl)-1,1'-binaphthyl-2,2'-diamine (*R*)-3c: $[\alpha]_{D}^{25}$ 44.8 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.83 (4H, m, Ar-H), 7.56 (4H, d, *J* = 8.4 Hz , Ar-H), 7.50 (4H, d, *J* = 8.4 Hz , Ar-H), 7.18-7.24 (4H, m, Ar-H), 7.12 (2H, m, Ar-H), 3.90 (4H, br s, NH₂), 1.38 (18H, s, *t*-Bu); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 141.0, 136.3, 133.0, 130.7, 129.7, 129.0, 128.3, 128.1, 126.6, 125.7, 123.9, 122.5, 113.0, 34.6, 31.4; IR (neat) 3480, 3364, 3051, 2961, 2866, 1620, 1601, 1495, 1433, 1400, 1362, 1269, 1111, 1022, 908, 839, 746 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₄₀H₄₁N₂: 549.3264 ([M + H]⁺), Found: 549.3261 ([M + H]⁺).

(*R*)-3,3'-Bis(3,5-di-*tert*-butylphenyl)-1,1'-binaphthyl-2,2'-diamine (*R*)-3d: $[\alpha]_{D}^{26}$ 43.7 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.83 (2H, m, Ar-H), 7.81 (2H, s, Ar-H), 7.40-7.47 (6H, m, Ar-H), 7.20-7.27 (4H, m, Ar-H), 7.15-7.20 (2H, m, Ar-H), 3.96 (4H, br s, NH₂), 1.38 (36H, s, *t*-Bu); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 141.0, 138.5, 133.1, 131.8, 129.6, 128.2, 128.1, 126.5, 124.0, 123.5, 122.4, 121.6, 112.9, 35.0, 31.5; IR (neat) 3483, 3385, 3055, 2961, 2903, 2868, 1622, 1595, 1417, 1362, 1246, 1221, 908, 746, 733 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₄₈H₅₇N₂: 661.4516 ([M + H]⁺), Found: 661.4494 ([M + H]⁺).

2-Methylene-3-acetoxypropanal (Entry 7 in Table 3): 2-Acetoxymethylprop-2ene-1-ol was prepared by following the literature procedure.^{9a} To a mixture of 2-methylene-1,3-propanediol (820 μ L, 10 mmol) and acetic anhydride (1.1 mL, 12 mmol) was added La(NO₃)₃·6H₂O (430 mg, 1 mmol). The reaction mixture was stirred at room temperature. After completion of the reaction, the mixture was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with brine and concentrated. The residue was roughly purified by flash column chromatography on silica gel to afford 2-acetoxymethylprop-2-ene-1-ol.^{9b}

2-Acetoxymethylprop-2-ene-1-ol in CH₂Cl₂ (100 mL) was then oxidized by MnO₂ (5.0 g) and the reaction mixture was filtered through celite. The filtrate was concentrated and the residue was purified by flash column chromatography on silica gel to afford 2-methylene-3-acetoxypropanal as colorless oil (430 mg, 30% yield for two steps): ¹H NMR (400 MHz, CDCl₃) δ 9.56 (1H, s, CHO), 6.43 (1H, br s, C=C*H*H), 6.18 (1H, br s, C=C*HH*), 4.77 (2H, br s, OCH₂), 2.07 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 170.3, 144.4, 134.8, 59.9, 20.6; IR (neat) 2830, 2359, 1740, 1688, 1437, 1368, 1277, 1223, 1055, 1031, 961, 918, 849, 748, 667 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₆H₈ NaO₃: 151.0366 ([M + Na]⁺), Found: 151.0362 ([M + Na]⁺).

Typical Procedure for the Diamine Salt Catalyzed Asymmetric Diels-Alder Reaction: To a solution of diamine (*R*)-3d (33.0 mg, 0.05 mmol) and TfOH (2.2 μ L, 0.025 mmol) in mesitylene (1 mL) was added α -allylacrolein (24.0 mg, 0.25 mmol) at –20 °C. After stirring for 1-2 minutes, cyclopentadiene (62 μ L, 0.75 mmol) was added to the reaction mixture. Upon consumption of the starting material, the reaction mixture was quenced with 5N HCl (1 mL) and stirred for 2 h at room temperature. The mixture was then extracted with diethyl ether. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (pentane/diethyl ether = 30:1 as eluent) to afford the desired Diels-Alder adduct (86% yield, *exo/endo* = >20:1, 94% ee).

(1*S*,2*R*,4*S*)-2-Ethylbicyclo[2.2.1]hex-5-ene-2-carboxaldehyde (Entry 2 in Table 3): ¹H NMR, ¹³C NMR, IR, and HRMS data were consistent with previously reported values.^{10a} GLC analysis: Astec Chiraldex B-DM (30 m × 0.25 mm) column (90 °C isotherm, N₂: 74 kPa, He: 98 kPa), retention time; *exo* isomer: 24.1 min (2*S*) and25.5 min (2*R*).

2-Propylbicyclo[2,2,1]hept-5-ene-2-carboxaldehyde (Entry 3 in Table 3): $[\alpha]_{D}^{30}$ -66.8 [*c* 1.0, CHCl₃ (91% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 9.69 (1H, s, CHO), 6.26 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 6.06 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 2.92 (1H, br s, CHCH=CH), 2.84 (1H, br s, CHCH=CH), 2.15 (1H, dd, J = 4.0, 12.0 Hz, CHHCCHO), 1.59-1.10 (6H, m, CH₂ and CH₂CH₂CH₃), 0.83 (3H, t, J = 7.2 Hz, CH₃), 0.81 (1H, dd, J = 2.4, 12.0 Hz, CHHCCHO); ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 139.5, 133.1, 58.8, 47.2, 46.9, 42.5, 37.6, 33.0, 19.0, 14.7 ; IR (neat) 2959, 2936, 2874, 2359, 2342, 1717, 1697, 1456, 1375, 1225, 1130, 1122, 1018, 1001, 849, 743, 719 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₁H₁₆NaO: 187.1093 ([M + Na]⁺), Found: 187.1096 ([M + Na]⁺); GLC analysis: Astec Chiraldex B-DM (30 m × 0.25 mm) column (100 °C isotherm, N₂: 74 kPa, He: 98 kPa), retention time; 29.3 min and 30.1 min (major).

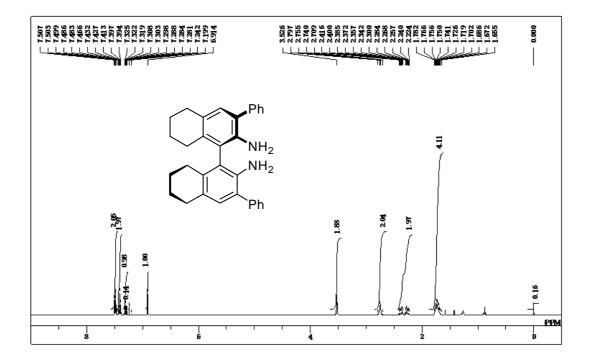
2-Allylbicyclo[2,2,1]hept-5-ene-2-carboxaldehyde (Entry 4 in Table 3): $[\alpha]_{D}^{30}$ -53.6 [*c* 1.0, CHCl₃ (94% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (1H, s, CHO), 6.30 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 6.11 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 5.70-5.60(1H, m, CH₂CH=CH₂), 5.03-5.01 (1H, m, CH₂CH=CH), 4.99-4.98 (1H, m, CH₂CH=CHH), 2.94 (1H, br s, CHCH=CH), 2.88 (1H, br s, CHCH=CH), 2.33 (1H, dd, *J* = 7.2, 18.0 Hz, CHHCH=CH₂) 2.19 (1H, dd, *J* = 4.0, 12.0 Hz, CHHCCHO), 2.15(1H, dd, *J* = 6.8, 14.4 Hz, CHHCH=CH₂), 1.41-1.31 (2H, m, CH₂), 0.88 (1H, dd, *J* = 2.4, 12.4 Hz, CHHCCHO); ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 139.7, 134.2, 133.0, 117.5, 58.2, 47.2, 47.1, 42.6, 39.7, 32.9 ; IR (neat) 3063, 2965, 2870, 2712, 2361, 1720, 1639, 1454, 1335, 1260, 1020, 916, 872, 804, 748, 721cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₁H₁₄NaO: 185.0937 ([M + Na]⁺), Found: 185.0930 ([M + Na]⁺); GLC analysis: Astec Chiraldex B-DM (30 m × 0.25 mm) column (100 °C isotherm, N₂: 74 kPa, He: 98 kPa), retention time; 31.8 min and 33.7 min (major).

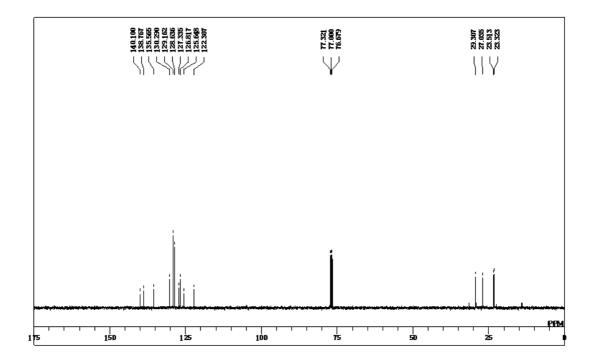
2-Benzylbicyclo[2,2,1]hept-5-ene-2-carboxaldehyde (Entry 5 in Table 3): $[\alpha]_{D}^{22}$ -58.7 [*c* 0.6, CHCl₃ (91% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 9.75 (1H, s, CHO), 7.14-7.32 (3H, m, Ar-H), 7.05 (2H, d, *J* = 7.2 Hz, Ar-H), 6.39 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 6.26 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 2.97 (1H, d, *J* = 14.0 Hz, CHHPh), 2.96 (1H, br s, CHCH=CH), 2.89 (1H, br s, CHCH=CH), 2.71 (1H, d, *J* = 14.0 Hz, CHHPh), 2.20 (1H, dd, *J* = 4.0, 12.4 Hz, CHHCCHO), 1.42 (1H, dd, *J* = 1.6, 9.2 Hz, CHH), 1.29 (1H, d, *J* = 9.2 Hz, CHH), 1.01 (1H, dd, *J* = 2.8, 12.4 Hz, CHHCCHO); ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 140.1, 137.9, 133.3, 129.4, 128.3, 126.4, 59.8, 47.5, 47.3, 42.6, 41.6, 33.1; IR (neat) 2968, 2872, 2712, 2366, 1717, 1495, 1452, 1333, 762, 723, 700 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₅H₁₆NaO: 235.1093 ([M + Na]⁺), Found: 235.1082 ([M + Na]⁺); GLC analysis: Astec Chiraldex B-DM (30 m × 0.25 mm) column (160 °C isotherm, N₂: 74 kPa, He: 98 kPa), retention time; 25.7 min and 26.3 min (major). **2-(2-Benzyloxyethyl)bicyclo[2,2,1]hept-5-ene-2-carboxaldehyde (Entry 6 in Table 3)**: $[\alpha]_{D}^{20}$ –30.5 [*c* 1.3, CHCl₃ (89% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 9.70 (1H, s, CHO), 7.20-7.46 (5H, m, Ar-H), 6.26 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 6.07 (1H, dd, *J* = 2.8, 5.6 Hz, CH=CH), 4.41 (2H, s, CH₂Ph), 3.43 (1H, m CHHO), 3.33 (1H, m, CHHO), 2.92 (1H, br s, CHCH=CH), 2.87 (1H, br s, CHCH=CH), 2.23 (1H, dd, *J* = 4.0, 12.0 Hz, CHHCCHO), 1.97 (1H, m, CHHCH₂OBn), 1.67 (1H, m, CHHCH₂OBn), 1.30-1.42 (2H, m, CH₂), 0.78 (1H, dd, *J* = 2.4, 12.0 Hz, CHHCCHO); ¹³C NMR (100 MHz, CDCl₃) δ 205.0, 139.7, 138.1, 133.1, 128.3, 127.6, 127.5, 73.1, 67.4, 57.2, 47.1, 47.0, 42.5, 36.0, 32.6; IR (neat) 3061, 2965, 2864, 2716, 2361, 1717, 1454, 1362, 1333, 1103, 1026, 993, 908, 816, 725, 696 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₇H₂₀NaO₂: 279.1356 ([M + Na]⁺), Found: 279.1344 ([M + Na]⁺).

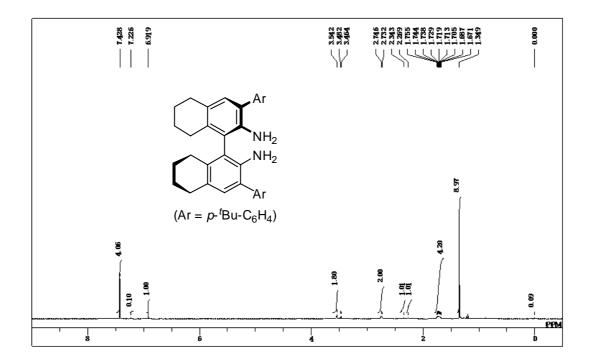
The enantiomeric excess of the title compound was determined by reduction [2.0 eq NaBH₄, MeOH (0.2 M)] to (2-(2-benzyloxyethyl)bicyclo[2,2,1]hept-5-en-2-yl) methanol: $[\alpha]_D^{26}$ -31.9 [*c* 1.3, CHCl₃ (89% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.45 (5H, m, Ar-H), 6.12 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 6.03 (1H, dd, *J* = 3.2, 5.6 Hz, CH=CH), 4.52 (2H, s, CH₂Ph), 3.44-3.70 (4H, m, CH₂OBn and CH₂OH), 2.78 (2H, br s, CHCH=CH), 1.54-1.76 (4H, m, CH₂ and CH₂CH₂OBn), 1.41 (1H, dd, *J* = 4.0, 12.0 Hz, CHHCCH₂OH), 0.82 (1H, dd, *J* = 2.8, 12.0 Hz, CHHCCH₂OH); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 137.0, 135.3, 128.5, 127.85, 127.80, 73.4, 69.6, 68.4, 47.4, 47.1, 46.8, 42.4, 37.0, 36.9; IR (neat) 3429, 3059, 2963, 2866, 2372, 1454, 1362, 1094, 1028, 733, 696, 579 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₇H₂₂NaO₂: 281.1512 ([M + Na]⁺), Found: 281.1502 ([M + Na]⁺); HPLC analysis: Daicel Chiralpak AS-H, hexane/*i*-PrOH = 97:3, flow rate = 0.5 mL/min, retention time; 17.0 min and 18.5 min (major).

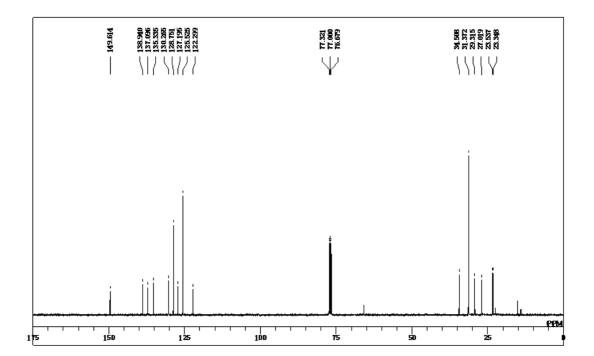
2-(Acetoxymethyl)bicyclo[2,2,1]hept-5-ene-2-carboxaldehyde (Entry 7 in Table 3): $[\alpha]_{D}^{31}$ –16.5 [*c* 1.0, CHCl₃ (86% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (1H, s, CHO), 6.32 (1H, dd, *J* = 3.2, 5.6 Hz, C*H*=CH), 6.08 (1H, dd, *J* = 3.2, 5.6 Hz, CH=C*H*), 4.11 (1H, d, *J* = 11.2 Hz, C*H*HOAc), 4.05 (1H, d, *J* = 11.2 Hz, CHHOAc), 3.06 (1H, br s, C*H*CH=CH), 2.96 (1H, br s, C*H*CH=CH), 2.14 (1H, dd, *J* = 4.0, 12.4 Hz, C*H*HCCHO), 2.02 (3H, s, CH₃), 1.47 (1H, dd, *J* = 2.0, 9.2 Hz, C*H*H), 1.42 (1H, d, *J* = 9.2 Hz, CH*H*), 0.90 (1H, dd, *J* = 2.4, 12.4 Hz, CH*H*CCHO); ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 170.7, 139.9, 132.9, 67.1, 58.1, 47.0, 45.9, 42.3, 31.0, 20.7; IR (neat) 3061, 2974, 2876, 2723, 2363, 1741, 1722, 1460, 1377, 1232, 1031, 725 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₁H₁₄NaO₃: 217.0835 ([M + Na]⁺), Found: 217.0832 ([M + Na]⁺); GLC analysis: GL Science Chirasil-DEX CB (25 m \times 0.25 mm) column (120 °C isotherm, N₂: 74 kPa, He: 98 kPa), retention time; 18.2 min and 18.8 min (major).

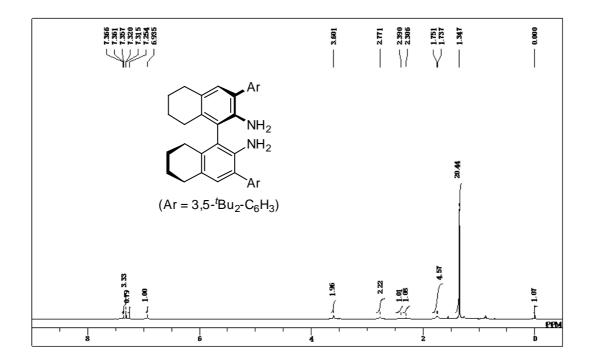
(1*S*,2*R*,3*S*,4*S*)-2,3-Dimethylbicyclo[2.2.1]hept-5-ene-2-carboxaldehyde (Entry 8 in Table 3): ¹H NMR, ¹³C NMR, IR, and HRMS data were consistent with previously reported values.^{10b} GLC analysis: Astec Chiraldex B-DM (30 m × 0.25 mm) column (90 °C isotherm, N₂: 74 kPa, He: 98 kPa), retention time; *exo* isomer: 25.1 min (2*R*) and 29.6 min (2*S*).


General Procedure for Determining the Enantiomeric Excess of 1-Benzyl-4-methylcyclohex-3-enecarbaldehyde and 1-Benzyl-3,4-dimethylcyclohex-3-enecarbaldehyde (Scheme 1): The enantiomeric excess of the title compounds was determined after reduction to the corresponding alcohol using NaBH₄ (19 mg, 0.5 mmol) in MeOH (1.25 mL) at 0 °C.


(1-Benzyl-4-methylcyclohex-3-enyl)methanol (Scheme 1): $[\alpha]_D^{31}$ –10.2 [*c* 1.0, CHCl₃ (76% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.30 (5H, m, Ar-H), 5.31 (1H, m, C*H*=C), 3.37 (1H, d, *J* = 10.8 Hz, C*H*HOH), 3.31 (1H, d, *J* = 10.8 Hz, CHHOH), 2.65 (2H, s, CH₂Ph), 1.80-2.03 (3H, m, CH₂), 1.66 (3H, s, Me), 1.55-1.75 (2H, m, CH*H* and C*H*HCH₂CMe), 1.47 (1H, m, CH*H*CH₂CMe); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 133.1, 130.5, 127.9, 126.0, 119.0, 66.6, 41.7, 37.1, 32.0, 28.8, 27.1, 23.3; IR (neat) 3331, 3026, 2959, 2913, 2880, 2837, 1452, 1020, 714, 702 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₅H₂₀NaO: 239.1406 ([M + Na]⁺), Found: 239.1395 ([M + Na]⁺); HPLC analysis: Daicel Chiralpak OJ-H, hexane/*i*-PrOH = 97:3, flow rate = 0.5 mL/min, retention time; 20.9 min and 24.9 min (major).


(1-Benzyl-3,4-dimethylcyclohex-3-enyl)methanol (Scheme 1): $[\alpha]_D^{30}$ 2.3 [*c* 1.0, CHCl₃ (82% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.31 (5H, m, Ar-H), 3.36 (1H, dd, *J* = 4.8, 10.8 Hz, CHHOH), 3.30 (1H, dd, *J* = 4.8, 10.8 Hz, CHHOH), 2.64 (2H, s, CH₂Ph), 1.76-2.08 (3H, m, CH₂), 1.62 (3H, s, Me), 1.60 (3H, s, Me), 1.55-1.75 (2H, m, CHH and CHHCH₂CMe), 1.44 (1H, m, CHHCH₂CMe); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 130.5, 127.9, 125.9, 124.5, 123.4, 66.9, 41.6, 38.3, 38.1, 29.1, 28.7, 19.3, 18.7; IR (neat) 3389, 2913, 2874, 2361, 2340, 1452, 1032, 910, 727, 702 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₆H₂₂NaO: 253.1563 ([M + Na]⁺), Found: 253.1555 ([M + Na]⁺); HPLC analysis: Daicel Chiralpak AD-H, hexane/EtOH = 95:5, flow rate = 0.5 mL/min, retention time; 13.5 min (major) and 15.5 min.


Reference


- (1) M. Shi and C. J. Wang, *Chirality*, 2002, **14**, 412.
- T. Kano, Y. Tanaka, K. Osawa, T. Yurino and K. Maruoka, J. Org. Chem., 2008, 73, 7387.
- (3) H. Huang, T. Okuno, K. Tsuda, M. Yoshimura and M. Kitamura, J. Am. Chem. Soc., 2006, **128**, 8716.
- (4) E. Ibuki, S. Ozasa and K. Murai, Bull. Chem. Soc. Jpn., 1975, 46, 1868.
- (5) Y. Gao, J. M. Klunder, R. M. Hanson, H. Masamune, S. Y. Ko and K. B. Sharpless, *J. Am. Chem. Soc.*, 1987, **109**, 5765.
- (6) E. Block, S. Ahmad, J. L. Catalfamo, M. K. Jain and R. Apitz-Castro, *J. Am. Chem. Soc.*, 1986, **108**, 7045.
- (7) A. Erkkilä and P. M. Pihko, *Eur. J. Org. Chem.*, 2007, 4205.
- S. Takano, K. Inomata, K. Samizu, S. Tomita, M. Yanase, M. Suzuki, Y. Iwabuchi, T. Sugihara and K. Ogasawara, *Chem. Lett.*, 1989, 1283.
- (9) (a) T. S. Reddy, M. Narasimhulu, N. Suryakiran, K. C. Mahesh, K. Ashalatha and Y. Venkateswarlu, *Tetrahedron. Lett.*, 2006, 47, 6825; (b) M. Friedrich, A. I. Savchenko, A. Wächtler and A. de Meijere, *Eur. J. Org. Chem.*, 2003. 2138.
- (10) (a) K. T. Sprott, and E. J. Corey, Org. Lett., 2003, 5, 2465; (b) K. Ishihara, H. Kurihara, M. Matsumoto and H. Yamamoto, J. Am. Chem. Soc., 1998, 120, 6920.

