Supporting Information

A simple template-free synthesis of nanoporous ZnS-In₂S₃-Ag₂S solid solutions for highly efficient photocatalytic H₂ evolution under visible light

Yingxuan Li, Gang Chen,* Chao Zhou, and Jingxue Sun

Department of Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China

* To whom correspondence should be addressed. Email address: gchen@hit.edu.cn.

Experimental details

The photocatalytic gas evolution was conducted in an outer irradiation quartz cell with a side window, which was connected to a closed gas-circulating system. The photocatalyst powder (0.015 g) was dispersed by ultrasonic for 30 min in an aqueous solution (320 mL) containing 0.6 M Na₂SO₃ – 0.1 M Na₂S as electron donors. The reaction was carried out by irradiating the mixture with light from a Xe lamp (300 W) which is equipped with an optical filter ($\lambda > 400$ nm) to cut off the light in the ultraviolet region. Gas evolution was analyzed by a gas chromatograph (Agilent 6820, TCD, Ar carrier).

Apparent quantum yield (A.Q.Y.) was calculated by the following equation:

A.Q.Y. (%) =
$$\frac{\text{The number of reacted electrons}}{\text{The total number of incident photons}} \times 100$$

 $= \frac{\text{The number of evolved H}_2 \text{ molecules} \times 2}{\text{The total number of incident photons}} \times 100$

The total number of incident photons at 420 nm was measured by a 300 W xenon lamp with a cutoff filter and band-pass filter (λ : 420 nm, half width: 15 nm) and light flux meter (1930-C, Newport) with the light sensor.

Fig. S1. TEM images of $ZnIn_{0.23}Ag_{2x}S_{1.345+x}$ (x = 0-0.045): (a) $ZnIn_{0.23}S_{1.345}$; (b) $ZnIn_{0.23}Ag_{0.04}S_{1.37}$; (c) $ZnIn_{0.23}Ag_{0.07}S_{1.38}$; (d) $ZnIn_{0.23}Ag_{0.09}S_{1.39}$.

Table S1. Dependence of photocatalytic activities for H_2 evolution from an aqueous 0.6 M Na₂SO₃-0.1 M Na₂S solution under visible light irradiation over ZnIn_{0.23}Ag_{2x}S_{1.345+x} solid solutions upon the composition (Value of *x*). The samples were illuminated continuously with light from a 300 W Xe lamp for 4 h. The average crystallite sizes calculated from the line broadening of the XRD peaks using the Scherer formula.

Composition <i>x</i>	Band gap	Rate of H ₂ evolution	A.Q.Y. (%)	Average crystallite
	(eV)	(mmol/h/0.015g cat)		sizes (nm)
0	3.26	0.7	0	12.2
0.02	2.88	3.3	19.8	11.8.
0.035	2.76	2.8	19.6	12.0
0.045	2.58	2.3	14.8	11.6

Fig. S2. Powder XRD patterns of ZnS, Ag_2S and In_2S_3

Table S2. Photocatalytic activities of ZnS, In₂S₃ and Ag₂S

Samples	Rate of H_2 evolution (mmol/h/0.015g cat)
ZnS	0.021
In_2S_3	0.022
Ag ₂ S	0