Supplementary Data for:

Activation of H_2 by Frustrated Lewis Pairs Derived from *Mono- and Bis*-Phosphinoferrocenes and $B(C_6F_5)_3$

Alberto Ramos, Alan Lough and Douglas W. Stephan*

Experimental Section

All preparations were done under an atmosphere of dry, O_2 -free N_2 employing both Schlenk line techniques and an Innovative Technologies or Vacuum Atmospheres inert atmosphere glove box. Solvents were purified employing a Grubbs' type column systems manufactured by Innovative Technology. ¹H, ¹³C, ³¹P, ¹¹B and ¹⁹F NMR spectroscopy spectra were recorded on Varian 200, 300 and 400 MHz spectrometers. ¹H and ¹³C NMR spectra are referenced to SiMe₄ using the residual solvent peak impurity of the given solvent. ³¹P, ¹¹B and ¹⁹F NMR spectra were referenced to 85% H₃PO₄, Et₂O·BF₃, and CFCl₃ respectively. Chemical shifts are reported in ppm and coupling constants in Hz. CD₂Cl₂ and BrC₆D₅ were used as the NMR solvents after being dried over CaH₂, vacuum-transferred into Young bombs and freeze-pump-thaw degassed (three cycles). Combustion analyses were performed in house employing a Perkin Elmer 2400 Series II CHNS Analyzer.

Cyclic voltammetry experiments were performed in a BASi RDE-2 cell stand for rotating disk electrochemical experiments, using a glassy carbon working electrode with a disk diameter of 3.0 mm, an aqueous Ag/AgCl reference electrode and a Pt and a Pt wire auxiliary electrode. The working electrode was polished with alumina (0.05 μ m) and rinsed with deionised water prior to use. [NBu₄][PF₆] or [NBu₄][B(C₆F₅)₄]¹ were used as the supporting electrolytes (0.1 M solutions). All the potentials were referenced versus ferrocene. All electrochemical data were acquired with a computer controlled BASi Epsilon EC potentiostat, using the Epsilon EC software.

Synthesis of $[(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4PtBu_2(C_6F_4)BF(C_6F_5)_2)]$ (1). A solution of B(C₆F₅)₃ (120 mg,

0.234 mmol) in 5 mL of CH₂Cl₂ was added to a solution of $[(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4P^tBu_2]^2$ (74 mg, 0.224 mmol) in 5 mL of CH₂Cl₂ at -35 °C. After 3 h, the reaction went to completion and the solvent was evaporated under vacuum. The oily orange residue was washed with toluene (2 mL) and pentane (2 x 5 mL) and dried again under vacuum for a few hours to afford compound **1a** as an orange solid (173 m, 92%). Anal. Calcd. For C₃₆H₂₇BF₁₅FeP: C, 51.34; H, 3.23. Found: C, 51.02; H, 3.21 %. ³¹P{¹H} NMR (CD₂Cl₂): 64.3 (tt, J_{PF} = 5, 14). ¹¹B{¹H} NMR (CD₂Cl₂): -0.5 (d, J_{BF} = 54). ¹H

NMR (CD₂Cl₂): 4.90 (m, C₅H₄, 2H), 4.66 (br, C₅H₄, 2H), 4.45 (m, C₅H₅, 5H), 1.43 (d, J_{PH} = 17, *t*Bu, 18H). ¹⁹F NMR (CD₂Cl₂): -117.8 (br, C₆F₄, 2F), -130.1 (br, C₆F₄, 2F), -135.8 (m, *o*-C₆F₅, 4F), -162.0 (t, J_{FF} = 21, *p*-C₆F₅, 2F), -166.8 (m, *m*-C₆F₅, 4F), -193.3 (d, br, J_{BF} = 55, B-*F*, 1F). ¹³C{¹H} NMR (CD₂Cl₂, partial data): 150.1 (dm, J_{CF} = 230, C₆F₄), 148.7 (dm, J_{CF} = 240, *o*-C₆F₅), 147.0 (dm, J_{CF} = 245, C₆F₄), 139.6 (dm, J_{CF} = 240, *m*-C₆F₅), 137.3 (dm, J_{CF} = 255, *p*-C₆F₅), 76.1 (d, J_{PC} = 11, C^{2/3}-C₅H₄), 73.0 (d, J_{PC} = 10, C^{3/2}-C₅H₄), 72.6 (t, J_{FC} = 2, Cp), 64.3 (dt, J_{PC} = 82, J_{FC} = 4, C¹-C₅H₄), 40.8 (d, J_{PC} = 34, CH₃-*t*Bu), 29.1 (d, J_{PC} = 1, C-*t*Bu).

¹ R. J. LeSuer and William E. Geiger, Angew. Chem. Int. Ed., 2000, 39, 248.

² K.-I. Fujita, M. Yamashita, F. Puschmann, M. Martínez Alvarez-Falcon, C. D.Incarvito, J. F. Hartwig, *J. Am. Chem. Soc.* 2006, **128**, 9044.

Synthesis of $[(\eta^5 - C_5H_4PtBu_2)Fe(\eta^5 - C_5H_4PtBu_2(C_6F_4)BF(C_6F_5)_2)]$ (2). A solution of B(C₆F₅)₃ (256)

mg, 0.500 mmol) in 5 mL of CH₂Cl₂ was added to a solution of 1,1'-Bis(di-tbutylphosphino)ferrocene (236 mg, 0.497 mmol) in 5 mL of CH₂Cl₂ at -35 °C in the glovebox. After 3 h, the reaction went to completion and the solution was concentrated (1 mL) under vacuum. Then, 12 mL of pentane were added to precipitate the product, solvent mixture was decanted and the remaining oily orange solid was washed with more pentane (6 mL). After a few hours under vacuum compound 3 was afforded as an orange solid (470 mg, 96%).

Anal. Calcd. For $C_{44}H_{44}BF_{15}FeP_2$: C, 53.58; H, 4.50. Found: C, 53,43; H, 4,48 %.³¹P{¹H} NMR (CD₂Cl₂): 64.4 (tt, J_{PF} = 5, 14), 26.3 (s). ¹H NMR (CD₂Cl₂): 4.92, 4.69, 4.59, 4.51 (4 x m, 4 x br, C₅H₄, 4 x 2H), 1.46 (d, J_{PH} = 17, *t*Bu, 18H), 1.22 (d, J_{PH} = 11, *t*Bu, 18H). ¹⁹F NMR (CD₂Cl₂): -118.0 (br, C₆F₄, 2F), -129.9 (br, C₆F₄, 2F), -135.9 (m, *o*-C₆F₅, 4F), -162.0 (t, J_{FF} = 21, *p*-C₆F₅, 2F), -166.9 (m, *m*-C₆F₅, 4F), -193.3 (br, B-*F*, 1F). ¹¹B{¹H} NMR (CD₂Cl₂): -0.6 (d, J_{BF} = 54). ¹³C{¹H} NMR (CD₂Cl₂): 150.2 (dm, J_{CF} = 250, C₆F₄), 148.7 (dm, J_{CF} = 240, *o*-C₆F₅), 147.0 (dm, J_{CF} = 250, C₆F₄), 139.6 (dm, J_{CF} = 250, *m*-C₆F₅), 137.2 (dm, J_{CF} = 240, *p*-C₆F₅), 84.0 (d, J_{PC} = 35, C¹-C₅H₄), 77.4 (d, J_{PC} = 10, C^{2/3}-C₅H₄), 75.9 (d, J_{PC} = 10, C^{2/3}-C₅H₄), 75.3 (d, J_{PC} = 10, C^{3/2}-C₅H₄), 74.4 (s, C^{3'/2'}-C₅H₄), 64.3 (d, J_{PC} = 82, C¹-C₅H₄), 40.9 (d, J_{PC} = 34, C-*t*Bu), 33.5 (d, J_{PC} = 22, C-*t*Bu), 31.1 (d, J_{PC} = 13, CH₃-*t*Bu) 29.2 (s, CH₃-*t*Bu).

Synthesis of $[(\eta^5 - C_5H_4PiPr_2)Fe(\eta^5 - C_5H_4PiPr_2(C_6F_4)BF(C_6F_5)_2)]$ (3). A solution of B(C₆F₅)₃ (90 mg,

0.175 mmol) in 3 mL of CH₂Cl₂ was added to а solution of 1,1'-Bis(di-*i*propylphosphino)ferrocene (71 mg, 0.170 mmol) in 3 mL of CH₂Cl₂ at -35 °C in the glovebox. After 2 h the reaction went to completion and the solution was concentrated (1 mL) under vacuum. Then, 10 mL of pentane were added to precipitate the product, solvent mixture was decanted and the remaining oily orange solid was washed with more pentane (6 mL). After a few hours under vacuum compound 3 was afforded as an orange solid (143 mg, 91 %).

Anal. Calcd. For $C_{40}H_{36}BF_{15}FeP_2$: C, 51.64; H, 3.90. Found: C, 51.41; H, 3.87 %. ³¹P{¹H} NMR (CD₂Cl₂): 47.7 (tt, $J_{PF} = 5$, 11), 0.1 (s). ¹¹B{¹H} NMR (CD₂Cl₂): -0.5 (d, $J_{BF} = 53$). ¹H NMR (CD₂Cl₂, 399.74 MHz): δ 4.84, 4.48, 4.43, 4.37 (4 x m, C₅H₄, 4 x 2H), 3.30, 1.91 (2 x m, CH-*i*Pr, 2 x 2H), 1.47, 1.06 (2 x m, CH₃-*i*Pr, 2 x 12H). ¹⁹F NMR (CD₂Cl₂): -129.2, -129.5 (2 x m, C₆F₄, 2 x 2F), -135.8 (m, *o*-C₆F₅, 4F), -162.0 (t, $J_{FF} = 19$, *p*-C₆F₅, 2F), -166.9 (m, *m*-C₆F₅, 4F), -193.0 (br, B-*F*, 1F). ¹³C{¹H} NMR (CD₂Cl₂): 150.0 (dm, $J_{CF} \sim 240$, $C_{6}F_{4}$), 148.5 (dm, $J_{CF} \sim 240$, *o*-C₆F₅), 146.8 (dm, $J_{CF} \sim 260$, $C_{6}F_{4}$), 139.6 (dm, $J_{CF} \sim 240$, p-C₆F₅), 137.2 (dm, $J_{CF} \sim 240$, *m*-C₆F₅), 123.2 (br, *i*-C₆F₄), 93.5 (dm, ¹J_{CP} = 77, *p*-C₆F₄), 82.0 (d, $J_{PC} = 25$, C^{1'}-C₅H₄), 76.4 (d, br, $J_{PC} = 10$, C^{2'3}-C₅H₄), 74.7 (d, br, $J_{PC} = 12$, C^{3/2}-C₅H₄), 72.9 (s, C^{3/2}-C₅H₄), 60.0 (d, $J_{PC} = 83$, C¹-C₅H₄), 27.0 (d, $J_{PC} = 45$, CH-*i*Pr), 23.9 (d, $J_{PC} = 12$, CH-*i*Pr), 20.3 (d, $J_{PC} = 16$, CH₃-*i*Pr), 20.0 (d, $J_{PC} = 16$, CH-*i*Pr), 18.2, 17.6 (2 x s, 2 x CH₃-*i*Pr).

Synthesis of $[Fe(\eta^5 - C_5H_4PiPr_2(C_6F_4)BH(C_6F_5)_2)_2]$ (4). A solution of $B(C_6F_5)_3$ (275 mg, 0.537 mmol)

reach room temperature progressively. Reaction was completed after 48 h stirring at room temperature. Then, hexane was added (10 mL) to precipitate the product. The supernatant was decanted and the orange precipitate thus obtained was washed with more hexane (2 x 5 mL) and dried under vacuum to afford **4** as an orange microcrystalline solid (350 mg, 96%). Anal. Calcd. for $C_{58}H_{36}B_2F_{30}FeP_2$: C, 48.30; H, 2.52. Found: C, 47.95; H, 2.43 %. ³¹P{¹H} NMR (CD₂Cl₂): 47.0 (tt, J_{PF} = 5, 11). ¹¹B{¹H} NMR (CD₂Cl₂) -0.3 (br, 1B). ¹H NMR (CD₂Cl₂): 4.88, 4.58 (2 x m, 2 x C₅H₄, 2 x 4H), 3.25 (m, CH-*i*Pr, 4H), 1.43 (m, CH₃-*i*Pr, 24H). ¹⁹F NMR (CD₂Cl₂): -127.7 (br, C₆F₄, 2F), -128.9 (m, C₆F₄, 2F), -136.0 (m, *o*-C₆F₅, 4F), -161.5 (t, J_{FF} = 19, *p*-C₆F₅, 2F), -166.6 (m, *m*-C₆F₅, 4F), -193.1 (br, B-F, 1F). ¹³C{¹H} NMR (CD₂Cl₂, partial): 150.3 (dm, J_{CF} ~ 250, C₆F₄), 148.5 (dm, J_{CF} ~ 225, *o*-C₆F₅), 146.7 (dm, J_{CF} ~ 235, C₆F₄), 139.4 (dm, J_{CF} ~ 280, *p*-C₆F₅), 137.3 (dm, J_{CF} ~ 245, *m*-C₆F₅), 76.8 (d, J_{PC} = 10, C^{2/3}- C₅H₄), 75.5 (d, J_{PC} = 10, C^{3/2}-C₅H₄), 65.1 (d, J_{PC} = 89, C¹-C₅H₄), 27.0 (d, J_{PC} = 44, CH-*i*Pr), 18.0, 17.6 (2 x s, 2 x CH₃-*i*Pr) ppm.

Synthesis of $[(\eta^5 - C_5H_4PtBu_2)Fe(\eta^5 - C_5H_4PtBu_2(C_6F_4)BH(C_6F_5)_2]$ (5). 31 mg (0.328 mmol) of

ClSiMe₂(H) were added to a solution of 50 mg of compound **3** (0.051 mmol) in 3 mL of CH₂Cl₂. After stirring for 1 h at room temperature, reaction went to completion. Solvent was removed under vacuum and the product extracted with a 1 to 4 CH₂Cl₂ / pentane mixture, filtered through celite and dried under vacuum to afford compound **5** as an orange solid. Yield 37 mg (75 %). Anal. Calcd. For C₄₄H₄₅BF₁₄FeP₂: C, 54.57; H, 4.68. Found: C, 54.36; H, 4.61 %. ³¹P{¹H} NMR (CD₂Cl₂): δ 63.8 (tt, J_{PF} = 5, 14), 26.3 (s). ¹¹B NMR (CD₂Cl₂): -25.0 (d, J_{BH} = 87).

¹H NMR (CD₂Cl₂): 4.89 (m, C₅H₄, 2H), 4.67 (s, C₅H₄, 2H), 4.57 (m, C₅H₄, 2H), 4.49 (s, C₅H₄, 2H), 4.20-3.20 (br, B-H, 1H), 1.44 (d, $J_{PH} = 17$, ^{*i*}Bu, 18H), 1.21 (d, $J_{PH} = 11$, ^{*i*}Bu, 18H). ¹⁹F NMR (CD₂Cl₂): -119.0 (br, C₆F₄, 2F), -129.0 (m, C₆F₄, 2F), -134.0 (d, $J_{FF} = 23$, *o*-C₆F₅, 4F), -164.1 (t, $J_{FF} = 20$, *p*-C₆F₅, 2F), -166.9 (m, *m*-C₆F₅, 4F). ¹³C{¹H} NMR (CD₂Cl₂): 150.5 (dm, $J_{CF} \sim 240$, *C*₆F₄), 148.8 (dm, $J_{CF} \sim 240$, *o*-C₆F₅), 146.9 (dm, $J_{CF} \sim 255$, *C*₆F₄), 138.7 (dm, $J_{CF} \sim 245$, *p*-C₆F₅), 138.7 (dm, $J_{CF} \sim 250$, *m*-C₆F₅), 125.0-123.0 (br, *i*-C₆F₄), 91.4 (dm, ¹J_{CP} ~ 70, *p*-C₆F₄), 83.9 (d, $J_{PC} = 36$, C^{1'}-C₅H₄), 77.4 (d, $J_{PC} = 10$, C^{2/3}-C₅H₄), 75.9 (d, $J_{PC} = 9$, C^{2'/3'}-C₅H₄), 75.2 (d, $J_{PC} = 9$, C^{3/2}-C₅H₄), 74.4 (s, C^{3'/2'}-C₅H₄), 65.1 (d, $J_{PC} = 81$, C¹-C₅H₄), 40.8 (d, $J_{PC} = 34$, C-*t*Bu), 33.5 (d, $J_{PC} = 22$, C-*t*Bu), 31.1 (d, $J_{PC} = 13$, CH₃-*t*Bu) 29.2 (s, CH₃-*t*Bu).

mL storage flask. Solution was frozen with liquid N₂, evacuated and filled with H₂ (4 atm. approx.). After reaching room temperature, the solution was left stirring for 3 h and then the product was precipitated with hexanes (10 mL), the supernatant was decanted and the product was washed with more hexanes (2 x 5 mL) and dried under vacuum to afford compound **6** as an orange solid (60 mg, 71%). Anal. Calcd. For C₆₂H₄₇B₂F₂₉FeP₂: C, 50.23; H, 3.20. Found: C, 49.95; H, 3.19 %. ${}^{31}P{}^{1}H{}^{1}$ NMR (CD₂Cl₂): 62.1 (m), 47.6 (s). ${}^{31}P$ NMR (CD₂Cl₂): δ 62.1 (m), 47.6 (dm, ${}^{1}J_{PH} \sim 460$). ${}^{11}B{}^{1}H{}^{1}$ NMR (CD₂Cl₂): -25.1 (br, 2B). ${}^{11}B$ NMR (CD₂Cl₂): δ 62.1 (m), 47.6 (dm, ${}^{1}J_{PH} \sim 460$). ${}^{11}B{}^{1}H{}^{1}$ NMR (CD₂Cl₂): -25.1 (br, 2B). ${}^{11}B$ NMR (CD₂Cl₂): δ 62.1 (m), 47.6 (dm, ${}^{1}J_{PH} \sim 460$). ${}^{11}B{}^{1}H{}^{1}$ NMR (CD₂Cl₂): -25.1 (br, 2B). ${}^{11}B$ NMR (CD₂Cl₂): δ 62.1 (m), 47.6 (dm, ${}^{1}J_{PH} \sim 460$). ${}^{11}B{}^{1}H{}^{1}$ NMR (CD₂Cl₂): -25.1 (br, 2B). ${}^{11}B$ NMR (CD₂Cl₂): -25.1 (d, J_{BH} ~ J_{B'H} ~ 77, 2B). ${}^{1}H$ NMR (CD₂Cl₂): 5.89 (d, br, ${}^{1}J_{PH} = 464$, P-H, 1H), 5.21, 5.14, 4.76, 4.70 (4 x s, 4 x br, C₅H₄, 4 x 2H), 4.20-3.20 (2 x m, 2 x B-H, 2 x 1H), 1.47 (d, J_{PH} = 17, tBu, 18H), 1.45 (d, J_{PH} = 18, tBu, 18H). ${}^{19}F$ NMR (CD₂Cl₂): -114.3, -119.8 (2 x br, C₆F₄, 2 x 1F), -127.2 (br, C₆F₄, 2F), -133.8 (d, J_{FF} = 21, *o*-C₆F₅, 4F), -134.0 (d, J_{FF} = 21, *o*-C₆F₅, 6F), -163.6 (t, J_{FF} = 20, *p*-C₆F₅, 2F), -164.5 (t, J_{FF} = 20, *p*-C₆F₅, 3F), -167.2 (m, *m*-C₆F₅, 4F), -167.6 (m, *m*-C₆F₅, 6F) ppm. ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂): 150.7 (dm, J_{CF} ~ 230, *C*₆F₄), 148.7 (dm, J_{CF} ~ 250, *o*-C₆F₅), 127.0-123.0 (br, *i*-C₆F₄), 90.4 (dm, ${}^{1}J_{CP} \sim 70, p$ -C₆F₄), 79.4 (d, J_{PC} = 8, C^{2/3}-Cp), 78.5 (s, C^{3/2}-Cp), 76.3 (d, J_{PC} = 9, C^{2,3}-C₅H₄), 74.9 (d, J_{PC} = 9, C^{3/2}-C₅H₄), 69.0 (d,

Synthesis of [(η⁵-C₅Ph₅)**Fe**(η⁵-C₅H₄PtBu₂H)][HB(C₆F₅)₃] (7). Solid B(C₆F₅)₃ (105 mg, 0.205 mmol)

and $[(\eta^5 - C_5 Ph_5)Fe(\eta^5 C_5H_4P^tBu_2$] 141 mg (0.198 mmol) were dissolved in 4 mL of CH₂Cl₂ and charged into a 50 mL storage flask. Solution was frozen with liquid N₂, evacuated and filled with H_2 (4 atm. approx.). The solution was left to reach room temperature progressively and was stirred for 2 h. Then pentane was added (12 mL) to precipitate the product. The solvent mixture was decanted and the product

was washed with a CH_2Cl_2 / pentane (1 to 3) mixture and pentane (2 x 5 mL). After drying under vacuum, compound **7** was obtained as a red solid (200 mg, 83 %). Red crystals suitable for an X-ray analysis were grown by vapour diffusion of pentane into a concentrated solution of **8** in CH_2Cl_2 at

room temperature. Anal. Calcd. for C₆₆H₄₉BF₁₅FeP: C, 64.73; H, 4.03. Found: C, 64.33; H, 4.16 % ³¹P{¹H} NMR (CD₂Cl₂): 49.1. ³¹P NMR (CD₂Cl₂): 49.0 (dm, ¹J_{PH} = 446). ¹¹B{¹H} NMR (CD₂Cl₂): 25.4. ¹¹B NMR (CD₂Cl₂): 25.4 (d, J_{BH} = 90). ¹H NMR (CD₂Cl₂): 7.30-7.05 (m, Ph, 25H), 5.51 (d, ¹J_{PH} = 445, P-H, 1H), 5.06, 4.94 (2 x m, C₅H₄, 2 x 2H), 3.63 (q, J_{BH} = 90, B-H, 1H), 1.17 (d, J_{PH} = 18, *t*Bu, 18H). ¹⁹F NMR (CD₂Cl₂):-134.3 (d, J_{FF} = 23, *o*-C₆F₅, 6F), -165.1 (t, J_{FF} = 21, *p*-C₆F₅, 3F), -168.0 (m, *m*-C₆F₅, 6F). ¹³C{¹H} NMR (CD₂Cl₂): 148.8 (dm, J_{CF} = 235, *o*-C₆F₅), 138.3 (dm, J_{CF} = 245, *p*-C₆F₅), 137.1 (dm, J_{CF} = 240, *m*-C₆F₅), 134.1 (s, *i*-C-Ph), 132.8, 128.2 (2 x s, *o/m*-C-Ph), 126.9 (s, *p*-C-Ph), 90.7 (s, C₅Ph₅), 81.0 (d, J_{PC} = 9, C^{2/3}-C₅H₄), 79.1 (d, J_{PC} = 9, C^{3/2}-C₅H₄), 60.5 (d, J_{PC} = 78, C¹-C₅H₄), 36.0 (d, J_{PC} = 35, *t*Bu), 28.5 (s, *t*Bu). X-ray: Space group Triclinic, P-1, a = 11.9830(2) Å, b = 21.9410(4) Å c = 22.8040(4) Å, α = 71.3220(11)°, β = 84.4670(11)°, γ = 80.923(1)°, V = 5601.96(17) Å³, Z = 4, μ = 0.390 mm⁻¹, measured reflections = 25496, independent reflections = 1663, parameters = 186, Rint = 0.0602, R = 0.0635, Rw = 0.1482, GOF = 0.996.