β-Diiminato complexes of arsenic including the formally As^{I} compound $[As_{3}L_{3}]$ [L = {N(C₆H₃Prⁱ₂-2,6)C(H)}₂CPh]

Peter B. Hitchcock, Michael F. Lappert,* Gang Li and Andrey V. Protchenko

Department of Chemistry and Biochemistry, University of Sussex, Brighton, BN1 9QJ, U.K. Fax: 44 1273 677196; Tel: 44 1273 678316; E-mail: <u>m.f.lappert@sussex.ac.uk</u>

Supplementary Information:

The details of synthetic procedures and characterisation for compounds 1 and 2; details of crystallographic data for 1 and 2

Synthesis of [*AsI*₂*L*] (1). KL (2.19 mmol, 22.5 mL of a 0.098 *M* solution in thf) was added dropwise to a solution of AsI₃ (1.00 g, 2.19 mmol) in thf (20 mL) under stirring at room temperature. The mixture was stirred for 2 d. The volatiles were removed *in vacuo*, and the residue was extracted with Et₂O. The dark-red extract was concentrated and stored at -15 °C yielding compound 1 (1.30 g, 1.50 mmol, 68%) as red crystals of 1·(Et₂O). Anal. Calc. for C₃₇H₅₁AsI₂N₂O: C, 51.2; H, 5.92; N, 3.23. Found: C, 51.0, H, 5.69, N, 3.14%. ¹H-NMR (C₆D₆, 293 K): δ 1.11 (t, 6 H, Et₂O), 1.15 (d, 12 H, CH*M*e₂), 3.26 (q, 4 H, Et₂O), 3.65 (br s, 4 H, C*H*Me₂), 6.99 (d, 4 H, *m*-CH of Ar), 7.05-7.11 (m, 5 H, *p*-CH of Ar + CH of Ph), 7.20 (s, 2 H, NC*H*), 7.31 (m, 2 H, CH of Ph); ¹³C-NMR (C₆D₆): δ 14.9 (Et₂O), 24.1 and 25.3 (CH*M*e₂), 29.7 and 31.3 (*C*HMe₂), 65.9 (Et₂O), 118.2 (*C*Ph), 124.5, 126.5, 128.6, 129.3, 130.5, 131.2, 135.9, 142.6 and 145.9 (Ar and Ph), 158.7 (NCH).

Synthesis of $[As_3L_3]$ (2). Et₂O (30 mL) was added to a mixture of compound 1 (0.81 g, 0.93 mmol) and KC₈ (0.249 g, 2.22 mmol) at room temperature. After stirring for 2 d the dark-brown mixture was filtered, the filtrate was concentrated, layered with hexane and stored at -15 °C for several days yielding black (dark brown in thin layer) crystals, which were washed with hexane (to remove a light-yellow crystalline co-product) and dried *in vacuo* to yield 2.1.5(C₆H₁₄) (0.12 g, 0.22 mmol of As, 24%), mp 124-125 °C (decomp.). Anal. Calc. for C₁₀₈H₁₄₄As₃N₆: C, 74.1; H, 8.29; N, 4.80. Found: C, 74.0, H, 8.20, N, 4.83%. ¹H-NMR spectrum (C₆D₆, 293 K) showed broad signals in the aliphatic protons area (0.5 - 1.6 ppm), methine protons of Prⁱ groups (2.6 - 3.8 ppm) and aromatic protons 6.6 - 8.2 ppm (including NCH of the ligand backbone); sharp Et₂O signals (as in 1) were absent.

Identification code	nov804		
Empirical formula	C37 H51 As I2 N2 O		
Formula weight	868.52		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$ (No.14)		
Unit cell dimensions	$a = 11.2964(3) \text{ Å}$ $\alpha = 90^{\circ}.$		
	$b = 24.7180(4) \text{ Å}$ $\beta = 97.267(1)^{\circ}.$		
	$c = 14.2829(4) \text{ Å} \qquad \gamma = 90^{\circ}.$		
Volume	3956.10(17) Å ³		
Z	4		
Density (calculated)	1.46 Mg/m ³		
Absorption coefficient	2.45 mm ⁻¹		
F(000)	1736		
Crystal size	0.15 x 0.15 x 0.05 mm ³		
Theta range for data collection	3.49 to 26.00°.		
Index ranges	-13<=h<=13, -30<=k<=30, -17<=l<=17		
Reflections collected	55518		
Independent reflections	7713 [R(int) = 0.062]		
Reflections with I>2sigma(I)	6182		
Completeness to theta = 26.00°	99.2 %		
Tmax. and Tmin.	0.785 and 0.605		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7713 / 0 / 388		
Goodness-of-fit on F ²	1.119		
Final R indices [I>2sigma(I)]	R1 = 0.047, wR2 = 0.100		
R indices (all data)	R1 = 0.066, wR2 = 0.107		
Largest diff. peak and hole	1.21 and -0.72 e.Å ⁻³ (near I)		

Table S1.1. Crystal data and structure refinement for $[AsI_2(ArNCHCPhCHNAr)]$. (Et₂O) (1).

Data collection KappaCCD , Program package WinGX , Abs correction MULTISCAN Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows

	х	У	Z	U(eq)
As	12082(1)	1626(1)	5929(1)	33(1)
I(1)	9888(1)	959(1)	5678(1)	43(1)
I(2)	13903(1)	2383(1)	5944(1)	55(1)
O(1)	15693(6)	4080(3)	4399(6)	116(2)
N(1)	12315(3)	1474(2)	7259(3)	32(1)
N(2)	13008(3)	1009(2)	5645(3)	30(1)
C(1)	12360(4)	968(2)	7569(4)	34(1)
C(2)	12549(4)	511(2)	7023(4)	30(1)
C(3)	12981(4)	561(2)	6170(4)	30(1)
C(4)	12429(4)	-44(2)	7412(4)	35(1)
C(5)	11887(4)	-442(2)	6811(4)	38(1)
C(6)	11783(5)	-970(2)	7134(5)	51(2)
C(7)	12195(5)	-1097(2)	8059(5)	56(2)
C(8)	12713(7)	-706(3)	8654(5)	68(2)
C(9)	12834(6)	-183(2)	8337(4)	53(2)
C(10)	12460(4)	1919(2)	7934(4)	36(1)
C(11)	11520(5)	2271(2)	7990(4)	43(1)
C(12)	11694(6)	2695(2)	8633(5)	54(2)
C(13)	12768(6)	2766(2)	9191(5)	57(2)
C(14)	13699(6)	2409(2)	9134(4)	53(2)
C(15)	13561(5)	1974(2)	8500(4)	45(1)
C(16)	10321(5)	2226(2)	7382(4)	49(2)
C(17)	9293(6)	2193(3)	7975(6)	72(2)
C(18)	10142(7)	2694(3)	6671(5)	74(2)
C(19)	14610(5)	1585(3)	8500(5)	62(2)
C(20)	15799(6)	1873(4)	8504(7)	96(3)
C(21)	14685(7)	1200(3)	9331(6)	88(3)
C(22)	13765(4)	1027(2)	4894(4)	32(1)
C(23)	13236(4)	1082(2)	3966(4)	38(1)
C(24)	13973(5)	1069(2)	3256(4)	43(1)
C(25)	15199(5)	1002(2)	3473(4)	45(1)
C(26)	15698(5)	960(2)	4396(4)	41(1)

Table S2.1. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for nov804. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(27)	15012(4)	978(2)	5139(4)	34(1)	
C(28)	11897(5)	1139(2)	3691(4)	47(1)	
C(29)	11410(5)	688(3)	3020(5)	70(2)	
C(30)	11586(6)	1695(3)	3279(6)	77(2)	
C(31)	15620(4)	949(2)	6142(4)	44(1)	
C(32)	16639(5)	1358(3)	6329(5)	56(2)	
C(33)	16112(6)	379(3)	6370(5)	68(2)	
C(34)	15685(13)	3753(6)	5250(9)	143(5)	
C(35)	16805(13)	3499(6)	5471(8)	146(5)	
C(36)	14628(18)	4397(9)	4073(15)	263(14)	
C(37)	14190(20)	4473(9)	3408(11)	263(13)	

Table S3.1. Bond lengths [Å] and angles [°] for nov804.

As-N(1)	1.922(4)
As-N(2)	1.923(4)
As-I(2)	2.7781(6)
As-I(1)	2.9608(6)
O(1)-C(34)	1.460(13)
O(1)-C(36)	1.461(16)
N(1)-C(1)	1.326(6)
N(1)-C(10)	1.458(6)
N(2)-C(3)	1.340(6)
N(2)-C(22)	1.455(6)
C(1)-C(2)	1.403(7)
C(2)-C(3)	1.374(7)
C(2)-C(4)	1.493(6)
C(4)-C(9)	1.386(8)
C(4)-C(5)	1.395(7)
C(5)-C(6)	1.392(7)
C(6)-C(7)	1.380(9)
C(7)-C(8)	1.369(10)
C(8)-C(9)	1.383(8)
C(10)-C(11)	1.383(7)
C(10)-C(15)	1.401(7)
C(11)-C(12)	1.392(8)

C(11)-C(16)	1.517(8)
C(12)-C(13)	1.376(9)
C(13)-C(14)	1.384(9)
C(14)-C(15)	1.402(8)
C(15)-C(19)	1.526(8)
C(16)-C(17)	1.524(9)
C(16)-C(18)	1.537(9)
C(19)-C(21)	1.515(11)
C(19)-C(20)	1.519(10)
C(22)-C(23)	1.390(7)
C(22)-C(27)	1.413(7)
C(23)-C(24)	1.391(7)
C(23)-C(28)	1.521(7)
C(24)-C(25)	1.390(8)
C(25)-C(26)	1.371(8)
C(26)-C(27)	1.392(7)
C(27)-C(31)	1.510(8)
C(28)-C(30)	1.518(9)
C(28)-C(29)	1.528(9)
C(31)-C(32)	1.529(7)
C(31)-C(33)	1.535(8)
C(34)-C(35)	1.412(16)
C(36)-C(37)	1.033(18)
N(1)-As-N(2)	92.44(17)
N(1)-As-I(2)	96.66(12)
N(2)-As-I(2)	96.55(11)
N(1)-As-I(1)	91.05(12)
N(2)-As-I(1)	90.08(11)
I(2)-As-I(1)	169.59(2)
C(34)-O(1)-C(36)	118.1(14)
C(1)-N(1)-C(10)	119.6(4)
C(1)-N(1)-As	120.7(3)
C(10)-N(1)-As	119.7(3)
C(3)-N(2)-C(22)	119.7(4)
C(3)-N(2)-As	119.1(3)
C(22)-N(2)-As	121.2(3)

N(1)-C(1)-C(2)	125.1(5)
C(3)-C(2)-C(1)	121.1(4)
C(3)-C(2)-C(4)	118.1(4)
C(1)-C(2)-C(4)	120.4(5)
N(2)-C(3)-C(2)	127.3(4)
C(9)-C(4)-C(5)	118.5(5)
C(9)-C(4)-C(2)	123.2(5)
C(5)-C(4)-C(2)	118.3(5)
C(6)-C(5)-C(4)	120.4(6)
C(7)-C(6)-C(5)	119.9(6)
C(8)-C(7)-C(6)	119.9(5)
C(7)-C(8)-C(9)	120.6(6)
C(8)-C(9)-C(4)	120.6(6)
C(11)-C(10)-C(15)	122.5(5)
C(11)-C(10)-N(1)	119.3(4)
C(15)-C(10)-N(1)	118.2(4)
C(10)-C(11)-C(12)	117.9(5)
C(10)-C(11)-C(16)	123.9(5)
C(12)-C(11)-C(16)	118.3(5)
C(13)-C(12)-C(11)	121.2(6)
C(12)-C(13)-C(14)	120.4(5)
C(13)-C(14)-C(15)	120.3(6)
C(10)-C(15)-C(14)	117.7(5)
C(10)-C(15)-C(19)	124.9(5)
C(14)-C(15)-C(19)	117.4(5)
C(11)-C(16)-C(17)	112.0(5)
C(11)-C(16)-C(18)	110.8(5)
C(17)-C(16)-C(18)	111.2(5)
C(21)-C(19)-C(20)	109.3(6)
C(21)-C(19)-C(15)	111.2(6)
C(20)-C(19)-C(15)	113.0(6)
C(23)-C(22)-C(27)	122.6(5)
C(23)-C(22)-N(2)	119.0(4)
C(27)-C(22)-N(2)	118.4(5)
C(22)-C(23)-C(24)	117.9(5)
C(22)-C(23)-C(28)	123.3(5)
C(24)-C(23)-C(28)	118.8(5)

C(25)-C(24)-C(23)	120.8(5)	
C(26)-C(25)-C(24)	120.0(5)	
C(25)-C(26)-C(27)	122.0(5)	
C(26)-C(27)-C(22)	116.6(5)	
C(26)-C(27)-C(31)	119.4(4)	
C(22)-C(27)-C(31)	124.0(5)	
C(30)-C(28)-C(23)	111.0(5)	
C(30)-C(28)-C(29)	111.8(6)	
C(23)-C(28)-C(29)	111.2(5)	
C(27)-C(31)-C(32)	112.1(5)	
C(27)-C(31)-C(33)	110.6(5)	
C(32)-C(31)-C(33)	109.0(5)	
C(35)-C(34)-O(1)	109.5(10)	
C(37)-C(36)-O(1)	132(2)	

Least-squares planes (x, y, z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 9.9869 (0.0254) x - 1.7642 (0.1844) y + 4.9464 (0.0527) z = 15.9169 (0.0153) * 0.0000 (0.0000) C1 0.0000 (0.0000) * C2 * 0.0000 (0.0000) C3 Rms deviation of fitted atoms = 0.0000 10.3893 (0.0070) x + 3.3183 (0.0711) y + 3.5658 (0.0275) z = 15.8668 (0.0070) Angle to previous plane (with approximate esd) = 13.12 (0.36) 0.0049 (0.0020) N1 * -0.0048 (0.0020) N2 -0.0056 (0.0022) * C1 * 0.0056 (0.0022) C3 -0.1547 (0.0067) C2 -0.6608 (0.0057) As Rms deviation of fitted atoms = 0.0052 9.2674 (0.0125) x + 13.9048 (0.0401) y - 0.0288 (0.0290) z = 13.4410 (0.0169) Angle to previous plane (with approximate esd) = 29.79 (0.20) * 0.0000 (0.0000) As * 0.0000 (0.0000) Ν1 0.0000 (0.0000) * N2 -2.9603 (0.0006) Ι1 2.7395 (0.0012) Ι2

Rms deviation of fitted atoms = 0.0000

	Table S1.2.	Crystal data a	nd structure re	efinement for	: [As,(L	.),]. 1.5	5(hexane) (2)).
--	-------------	----------------	-----------------	---------------	----------	-----------	---------------	----

Identification code	dec3204		
Empirical formula	C99 H123 As3 N6 . 1.5(C6 H14)		
Formula weight	1751.05		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P1 (No.2)		
Unit cell dimensions	a = 15.5396(4) Å	α=101.334(2)°.	
	b = 18.7915(4) Å	β=96.248(1)°.	
	c = 19.6985(5) Å	$\gamma = 110.643(2)^{\circ}$.	
Volume	5177.5(2) Å ³		
Z	2		
Density (calculated)	1.12 Mg/m ³		
Absorption coefficient	1.01 mm ⁻¹		
F(000)	1866		
Crystal size	0.2 x 0.2 x 0.1 mm ³		
Theta range for data collection	3.45 to 26.70°.		
Index ranges	-18<=h<=19, -23<=k<=20, -24	l<=l<=24	
Reflections collected	67547		
Independent reflections	20830 [R(int) = 0.079]		
Reflections with I>2sigma(I)	13637		
Completeness to theta = 26.70°	95.0 %		
Tmax. and Tmin.	0.875 and 0.807		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	20830 / 15 / 1005		
Goodness-of-fit on F ²	1.122		
Final R indices [I>2sigma(I)]	R1 = 0.088, wR2 = 0.204		
R indices (all data)	R1 = 0.138, wR2 = 0.226		
Largest diff. peak and hole There is a clearly defined molecule	1.05 and -0.57 e.Å ⁻³ e of hexane solvate ly	ing across an	

inversion centre. There is a second very poorly defined solvate molecule in a general position for which only five C atoms were resolved and which was included with SADI constraints. All solvate C atoms were left isotropic and H atoms were omitted. There is another area of small residual density (ca. 1e)which could not be resolved at all and was omitted from the model.

Data collection KappaCCD, Program package WinGX, Abs correction MULTISCAN

Refinement using SHELXL-97, Drawing using ORTEP-3 for Windows

	X	У	Z	U(eq)
As(1)	5199(1)	2399(1)	1695(1)	34(1)
As(2)	5537(1)	3744(1)	2047(1)	33(1)
As(3)	6098(1)	2478(1)	2806(1)	30(1)
N(1)	5249(3)	3857(3)	1098(3)	33(1)
N(2)	4347(4)	3879(3)	2224(3)	39(1)
N(3)	5753(3)	1372(3)	2691(3)	31(1)
N(4)	5741(4)	-964(3)	2512(3)	41(1)
N(5)	7364(3)	2789(3)	2656(3)	31(1)
N(6)	9913(3)	4154(3)	2066(3)	39(1)
C(1)	4379(4)	3612(3)	743(3)	35(1)
C(2)	3552(4)	3404(4)	1012(3)	38(2)
C(3)	3588(4)	3601(4)	1728(4)	39(2)
C(4)	2652(4)	3101(4)	504(4)	46(2)
C(5)	2495(5)	2560(4)	-129(4)	54(2)
C(6)	1653(5)	2285(5)	-618(5)	64(2)
C(7)	953(6)	2554(6)	-457(5)	74(3)
C(8)	1091(6)	3083(5)	174(5)	72(2)
C(9)	1926(5)	3364(5)	643(5)	60(2)
C(10)	6021(4)	4090(3)	726(3)	34(1)
C(11)	6100(4)	3537(4)	172(3)	39(2)
C(12)	6838(5)	3810(4)	-176(4)	52(2)
C(13)	7465(5)	4577(4)	4(4)	57(2)
C(14)	7380(5)	5107(4)	556(4)	56(2)
C(15)	6653(5)	4874(4)	929(4)	43(2)
C(16)	5438(4)	2674(4)	-68(3)	40(2)
C(17)	4836(5)	2489(4)	-794(4)	50(2)
C(18)	5993(5)	2137(4)	-83(4)	51(2)
C(19)	6547(5)	5502(4)	1491(4)	49(2)
C(20)	7446(7)	5998(6)	2023(6)	105(4)
C(21)	6184(9)	6021(6)	1145(6)	102(4)
C(22)	4310(5)	4284(4)	2919(4)	45(2)
C(23)	4177(5)	3896(4)	3462(4)	49(2)

Table S2.2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for dec3204. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(24)	4129(6)	4324(6)	4115(4)	64(2)
C(25)	4194(6)	5095(6)	4213(5)	68(2)
C(26)	4298(6)	5448(5)	3667(5)	69(2)
C(27)	4360(6)	5059(4)	3012(4)	58(2)
C(28)	4016(6)	3032(5)	3353(4)	59(2)
C(29)	2978(7)	2525(5)	3118(5)	85(3)
C(30)	4421(6)	2845(6)	4006(5)	80(3)
C(31)	4411(8)	5480(5)	2415(5)	83(3)
C(32)	5143(10)	6310(6)	2617(7)	127(5)
C(33)	3436(9)	5489(7)	2147(6)	107(4)
C(34)	6011(4)	931(3)	2173(3)	32(1)
C(35)	6018(4)	193(3)	2083(3)	33(1)
C(36)	5803(4)	-267(4)	2601(3)	38(1)
C(37)	6336(4)	-103(3)	1442(3)	38(2)
C(38)	7057(5)	-392(4)	1495(4)	48(2)
C(39)	7380(6)	-626(5)	907(5)	63(2)
C(40)	6993(7)	-620(5)	256(5)	71(2)
C(41)	6285(6)	-346(5)	187(4)	66(2)
C(42)	5957(5)	-101(4)	781(4)	48(2)
C(43)	5065(4)	1043(3)	3105(3)	35(1)
C(44)	5357(4)	1165(4)	3832(3)	37(1)
C(45)	4676(5)	896(4)	4225(4)	46(2)
C(46)	3747(5)	520(4)	3909(4)	54(2)
C(47)	3478(5)	394(4)	3198(4)	51(2)
C(48)	4126(4)	650(4)	2772(3)	38(2)
C(49)	6376(5)	1542(4)	4197(4)	47(2)
C(50)	6622(5)	2363(5)	4669(4)	59(2)
C(51)	6669(6)	1012(6)	4598(4)	72(2)
C(52)	3788(4)	472(4)	1981(4)	44(2)
C(53)	3503(6)	-399(4)	1631(4)	60(2)
C(54)	2980(5)	738(5)	1803(5)	65(2)
C(55)	5588(5)	-1330(4)	3082(4)	46(2)
C(56)	4680(6)	-1698(4)	3197(4)	55(2)
C(57)	4566(6)	-2093(5)	3728(4)	65(2)
C(58)	5325(7)	-2114(5)	4139(4)	68(2)
C(59)	6215(7)	-1741(5)	4031(4)	65(2)
C(60)	6379(6)	-1353(4)	3497(4)	56(2)

C(61)	3831(6)	-1683(6)	2754(5)	71(3)
C(62)	3410(9)	-2393(10)	2144(6)	143(6)
C(63)	3089(6)	-1612(5)	3159(5)	76(3)
C(64)	7327(6)	-996(5)	3339(5)	72(3)
C(65)	8102(8)	-649(7)	3987(7)	123(5)
C(66)	7490(7)	-1584(6)	2766(6)	99(4)
C(67)	7586(4)	2717(3)	1999(3)	32(1)
C(68)	8391(4)	3098(4)	1785(3)	35(1)
C(69)	9139(4)	3794(3)	2237(3)	35(1)
C(70)	8455(4)	2786(4)	1044(3)	37(1)
C(71)	8248(4)	1980(4)	788(4)	42(2)
C(72)	8252(5)	1684(4)	88(4)	51(2)
C(73)	8463(5)	2169(5)	-367(4)	54(2)
C(74)	8673(4)	2958(5)	-113(4)	50(2)
C(75)	8681(4)	3270(4)	584(4)	42(2)
C(76)	8044(4)	3073(3)	3309(3)	34(1)
C(77)	8527(4)	2601(4)	3480(4)	39(2)
C(78)	9114(5)	2868(4)	4139(4)	50(2)
C(79)	9226(5)	3544(4)	4609(4)	50(2)
C(80)	8776(4)	4020(4)	4426(4)	44(2)
C(81)	8184(4)	3798(4)	3769(3)	38(1)
C(82)	8451(4)	1842(4)	2980(4)	44(2)
C(83)	9321(5)	1969(4)	2641(4)	55(2)
C(84)	8302(6)	1159(5)	3319(5)	66(2)
C(85)	7759(5)	4358(4)	3571(4)	43(2)
C(86)	7040(5)	4446(4)	4017(4)	56(2)
C(87)	8509(6)	5173(4)	3642(4)	62(2)
C(88)	10541(4)	4863(4)	2571(3)	40(2)
C(89)	11080(4)	4821(4)	3174(3)	44(2)
C(90)	11678(5)	5526(5)	3642(4)	57(2)
C(91)	11735(6)	6244(5)	3521(4)	68(2)
C(92)	11224(5)	6260(4)	2916(4)	58(2)
C(93)	10629(5)	5577(4)	2424(4)	47(2)
C(94)	11042(4)	4031(4)	3281(4)	47(2)
C(95)	11498(5)	3668(5)	2739(4)	62(2)
C(96)	11470(5)	4060(5)	4020(4)	61(2)
C(97)	10106(5)	5590(4)	1733(4)	54(2)

C(98)	10040(6)	6378(5)	1723(5)	72(2)
C(99)	10571(6)	5347(5)	1126(4)	66(2)
C(1S)	10375(9)	304(8)	275(7)	130(5)
C(2S)	10211(11)	907(9)	759(8)	165(6)
C(3S)	10971(9)	1524(7)	1300(7)	121(4)
C(4S)	7240(20)	6742(18)	4578(16)	285(13)
C(5S)	8010(30)	7090(20)	4200(20)	357(18)
C(6S)	9020(30)	7560(20)	4540(20)	337(17)
C(7S)	9590(30)	7590(20)	3960(20)	354(18)
C(8S)	10620(30)	8080(20)	4102(17)	308(15)

Table S3.2. Bond lengths [Å] and angles [°] for dec3204.

As(1)-As(2)	2.3328(8)
As(1)-As(3)	2.4139(9)
As(2)-N(1)	1.944(5)
As(2)-N(2)	2.010(5)
As(3)-N(3)	1.912(5)
As(3)-N(5)	1.919(4)
N(1)-C(1)	1.326(7)
N(1)-C(10)	1.454(7)
N(2)-C(3)	1.317(8)
N(2)-C(22)	1.448(8)
N(3)-C(34)	1.372(7)
N(3)-C(43)	1.452(7)
N(4)-C(36)	1.255(8)
N(4)-C(55)	1.428(8)
N(5)-C(67)	1.368(7)
N(5)-C(76)	1.445(7)
N(6)-C(69)	1.274(7)
N(6)-C(88)	1.438(8)
C(1)-C(2)	1.399(8)
C(2)-C(3)	1.375(9)
C(2)-C(4)	1.482(9)
C(4)-C(5)	1.382(10)
C(4)-C(9)	1.413(9)
C(5)-C(6)	1.400(10)
C(6)-C(7)	1.392(11)
C(7)-C(8)	1.373(12)
C(8)-C(9)	1.372(11)
C(10)-C(11)	1.399(9)
C(10)-C(15)	1.399(9)
C(11)-C(12)	1.394(9)
C(11)-C(16)	1.525(9)
C(12)-C(13)	1.373(10)
C(13)-C(14)	1.374(10)
C(14)-C(15)	1.404(9)
C(15)-C(19)	1.519(9)

C(16)-C(17)	1.526(9)
C(16)-C(18)	1.540(9)
C(19)-C(21)	1.515(10)
C(19)-C(20)	1.516(11)
C(22)-C(23)	1.402(10)
C(22)-C(27)	1.405(10)
C(23)-C(24)	1.402(10)
C(23)-C(28)	1.520(10)
C(24)-C(25)	1.389(12)
C(25)-C(26)	1.366(12)
C(26)-C(27)	1.383(11)
C(27)-C(31)	1.535(12)
C(28)-C(29)	1.518(12)
C(28)-C(30)	1.526(11)
C(31)-C(32)	1.514(13)
C(31)-C(33)	1.558(15)
C(34)-C(35)	1.367(8)
C(35)-C(36)	1.455(8)
C(35)-C(37)	1.483(9)
C(37)-C(42)	1.371(9)
C(37)-C(38)	1.410(9)
C(38)-C(39)	1.367(10)
C(39)-C(40)	1.359(12)
C(40)-C(41)	1.374(11)
C(41)-C(42)	1.386(10)
C(43)-C(48)	1.396(8)
C(43)-C(44)	1.402(9)
C(44)-C(45)	1.390(9)
C(44)-C(49)	1.513(9)
C(45)-C(46)	1.373(10)
C(46)-C(47)	1.366(10)
C(47)-C(48)	1.396(9)
C(48)-C(52)	1.520(9)
C(49)-C(50)	1.527(10)
C(49)-C(51)	1.541(10)
C(52)-C(53)	1.527(10)
C(52)-C(54)	1.537(9)

C(55)-C(56)	1.402(10)
C(55)-C(60)	1.418(10)
C(56)-C(57)	1.389(10)
C(56)-C(61)	1.512(11)
C(57)-C(58)	1.374(12)
C(58)-C(59)	1.375(12)
C(59)-C(60)	1.390(11)
C(60)-C(64)	1.483(12)
C(61)-C(62)	1.495(15)
C(61)-C(63)	1.500(11)
C(64)-C(65)	1.512(13)
C(64)-C(66)	1.526(13)
C(67)-C(68)	1.363(8)
C(68)-C(69)	1.449(8)
C(68)-C(70)	1.490(9)
C(70)-C(75)	1.392(9)
C(70)-C(71)	1.405(9)
C(71)-C(72)	1.384(9)
C(72)-C(73)	1.384(10)
C(73)-C(74)	1.373(10)
C(74)-C(75)	1.379(9)
C(76)-C(81)	1.409(9)
C(76)-C(77)	1.412(8)
C(77)-C(78)	1.390(9)
C(77)-C(82)	1.524(9)
C(78)-C(79)	1.360(10)
C(79)-C(80)	1.389(10)
C(80)-C(81)	1.399(9)
C(81)-C(85)	1.513(9)
C(82)-C(84)	1.520(10)
C(82)-C(83)	1.538(9)
C(85)-C(86)	1.528(9)
C(85)-C(87)	1.532(9)
C(88)-C(93)	1.390(9)
C(88)-C(89)	1.410(9)
C(89)-C(90)	1.391(9)
C(89)-C(94)	1.522(10)

C(90)-C(91)	1.389(11)
C(91)-C(92)	1.370(11)
C(92)-C(93)	1.386(9)
C(93)-C(97)	1.517(10)
C(94)-C(96)	1.517(10)
C(94)-C(95)	1.524(10)
C(97)-C(98)	1.524(10)
C(97)-C(99)	1.539(11)
As(2)-As(1)-As(3)	89.88(3)
N(1)-As(2)-N(2)	88.2(2)
N(1)-As(2)-As(1)	95.13(14)
N(2)-As(2)-As(1)	107.64(15)
N(3)-As(3)-N(5)	101.2(2)
N(3)-As(3)-As(1)	96.97(14)
N(5)-As(3)-As(1)	104.14(15)
C(1)-N(1)-C(10)	118.9(5)
C(1)-N(1)-As(2)	122.7(4)
C(10)-N(1)-As(2)	117.5(4)
C(3)-N(2)-C(22)	118.3(5)
C(3)-N(2)-As(2)	122.1(4)
C(22)-N(2)-As(2)	119.6(4)
C(34)-N(3)-C(43)	124.1(5)
C(34)-N(3)-As(3)	121.5(4)
C(43)-N(3)-As(3)	113.4(4)
C(36)-N(4)-C(55)	118.9(5)
C(67)-N(5)-C(76)	124.4(5)
C(67)-N(5)-As(3)	123.0(4)
C(76)-N(5)-As(3)	112.5(4)
C(69)-N(6)-C(88)	115.9(5)
N(1)-C(1)-C(2)	127.4(6)
C(3)-C(2)-C(1)	120.2(6)
C(3)-C(2)-C(4)	121.2(6)
C(1)-C(2)-C(4)	117.6(6)
N(2)-C(3)-C(2)	126.2(6)
C(5)-C(4)-C(9)	117.5(7)
C(5)-C(4)-C(2)	121.2(6)

C(9)-C(4)-C(2)	121.2(7)
C(4)-C(5)-C(6)	121.5(7)
C(7)-C(6)-C(5)	119.2(8)
C(8)-C(7)-C(6)	120.1(8)
C(9)-C(8)-C(7)	120.4(8)
C(8)-C(9)-C(4)	121.2(8)
C(11)-C(10)-C(15)	122.2(6)
C(11)-C(10)-N(1)	119.7(5)
C(15)-C(10)-N(1)	118.0(5)
C(12)-C(11)-C(10)	116.4(6)
C(12)-C(11)-C(16)	119.2(6)
C(10)-C(11)-C(16)	124.4(6)
C(13)-C(12)-C(11)	123.1(7)
C(12)-C(13)-C(14)	119.5(7)
C(13)-C(14)-C(15)	120.6(7)
C(10)-C(15)-C(14)	118.2(6)
C(10)-C(15)-C(19)	123.6(6)
C(14)-C(15)-C(19)	118.0(6)
C(11)-C(16)-C(17)	111.4(5)
C(11)-C(16)-C(18)	110.6(5)
C(17)-C(16)-C(18)	109.7(5)
C(21)-C(19)-C(20)	110.3(8)
C(21)-C(19)-C(15)	109.9(7)
C(20)-C(19)-C(15)	113.2(7)
C(23)-C(22)-C(27)	122.0(6)
C(23)-C(22)-N(2)	120.5(6)
C(27)-C(22)-N(2)	117.4(6)
C(24)-C(23)-C(22)	117.1(7)
C(24)-C(23)-C(28)	119.8(7)
C(22)-C(23)-C(28)	123.0(6)
C(25)-C(24)-C(23)	121.2(8)
C(26)-C(25)-C(24)	120.2(8)
C(25)-C(26)-C(27)	121.4(8)
C(26)-C(27)-C(22)	118.2(7)
C(26)-C(27)-C(31)	118.0(7)
C(22)-C(27)-C(31)	123.7(7)
C(29)-C(28)-C(23)	110.3(6)

C(29)-C(28)-C(30)	110.2(7)
C(23)-C(28)-C(30)	113.1(7)
C(32)-C(31)-C(27)	113.8(9)
C(32)-C(31)-C(33)	109.5(9)
C(27)-C(31)-C(33)	110.3(8)
C(35)-C(34)-N(3)	131.2(6)
C(34)-C(35)-C(36)	123.4(6)
C(34)-C(35)-C(37)	116.0(5)
C(36)-C(35)-C(37)	120.4(5)
N(4)-C(36)-C(35)	124.6(6)
C(42)-C(37)-C(38)	117.2(6)
C(42)-C(37)-C(35)	122.2(6)
C(38)-C(37)-C(35)	120.6(6)
C(39)-C(38)-C(37)	120.3(7)
C(40)-C(39)-C(38)	121.5(8)
C(39)-C(40)-C(41)	119.6(8)
C(40)-C(41)-C(42)	119.4(8)
C(37)-C(42)-C(41)	122.0(7)
C(48)-C(43)-C(44)	121.9(6)
C(48)-C(43)-N(3)	118.9(5)
C(44)-C(43)-N(3)	119.1(5)
C(45)-C(44)-C(43)	118.1(6)
C(45)-C(44)-C(49)	118.9(6)
C(43)-C(44)-C(49)	123.0(6)
C(46)-C(45)-C(44)	120.8(7)
C(47)-C(46)-C(45)	120.3(6)
C(46)-C(47)-C(48)	121.7(6)
C(43)-C(48)-C(47)	117.1(6)
C(43)-C(48)-C(52)	123.5(5)
C(47)-C(48)-C(52)	119.4(6)
C(44)-C(49)-C(50)	112.1(6)
C(44)-C(49)-C(51)	112.3(6)
C(50)-C(49)-C(51)	111.9(6)
C(48)-C(52)-C(53)	111.1(5)
C(48)-C(52)-C(54)	112.1(6)
C(53)-C(52)-C(54)	110.5(6)
C(56)-C(55)-C(60)	121.3(6)

C(56)-C(55)-N(4)	120.9(6)
C(60)-C(55)-N(4)	117.7(6)
C(57)-C(56)-C(55)	118.5(7)
C(57)-C(56)-C(61)	119.8(7)
C(55)-C(56)-C(61)	121.8(6)
C(58)-C(57)-C(56)	120.9(8)
C(57)-C(58)-C(59)	120.3(7)
C(58)-C(59)-C(60)	121.9(8)
C(59)-C(60)-C(55)	117.1(8)
C(59)-C(60)-C(64)	122.6(8)
C(55)-C(60)-C(64)	120.3(7)
C(62)-C(61)-C(63)	109.4(8)
C(62)-C(61)-C(56)	110.9(8)
C(63)-C(61)-C(56)	114.1(7)
C(60)-C(64)-C(65)	113.7(9)
C(60)-C(64)-C(66)	109.8(7)
C(65)-C(64)-C(66)	113.2(9)
C(68)-C(67)-N(5)	130.7(6)
C(67)-C(68)-C(69)	122.4(6)
C(67)-C(68)-C(70)	116.8(5)
C(69)-C(68)-C(70)	120.7(5)
N(6)-C(69)-C(68)	124.5(6)
C(75)-C(70)-C(71)	118.5(6)
C(75)-C(70)-C(68)	121.7(6)
C(71)-C(70)-C(68)	119.8(6)
C(72)-C(71)-C(70)	119.7(6)
C(71)-C(72)-C(73)	121.2(7)
C(74)-C(73)-C(72)	119.0(7)
C(73)-C(74)-C(75)	121.1(7)
C(74)-C(75)-C(70)	120.6(6)
C(81)-C(76)-C(77)	121.7(6)
C(81)-C(76)-N(5)	119.4(5)
C(77)-C(76)-N(5)	118.9(5)
C(78)-C(77)-C(76)	116.7(6)
C(78)-C(77)-C(82)	119.6(6)
C(76)-C(77)-C(82)	123.6(6)
C(79)-C(78)-C(77)	122.9(7)

C(78)-C(79)-C(80)	120.0(6)
C(79)-C(80)-C(81)	120.5(6)
C(80)-C(81)-C(76)	118.0(6)
C(80)-C(81)-C(85)	118.8(6)
C(76)-C(81)-C(85)	123.1(6)
C(84)-C(82)-C(77)	114.3(6)
C(84)-C(82)-C(83)	108.7(6)
C(77)-C(82)-C(83)	111.1(5)
C(81)-C(85)-C(86)	112.1(6)
C(81)-C(85)-C(87)	111.8(6)
C(86)-C(85)-C(87)	108.8(6)
C(93)-C(88)-C(89)	121.9(6)
C(93)-C(88)-N(6)	118.0(6)
C(89)-C(88)-N(6)	120.0(6)
C(90)-C(89)-C(88)	117.5(7)
C(90)-C(89)-C(94)	121.8(7)
C(88)-C(89)-C(94)	120.6(6)
C(91)-C(90)-C(89)	121.1(7)
C(92)-C(91)-C(90)	119.6(7)
C(91)-C(92)-C(93)	121.8(7)
C(92)-C(93)-C(88)	117.9(7)
C(92)-C(93)-C(97)	122.0(7)
C(88)-C(93)-C(97)	120.0(6)
C(96)-C(94)-C(89)	114.4(6)
C(96)-C(94)-C(95)	110.3(6)
C(89)-C(94)-C(95)	110.0(6)
C(93)-C(97)-C(98)	114.4(7)
C(93)-C(97)-C(99)	109.4(6)
C(98)-C(97)-C(99)	109.6(6)