# Supporting Information

# A Templated 2D Carbon Nitride Network: Structure Elucidation by Electron Diffraction

Markus Döblinger,<sup>a</sup> Bettina V. Lotsch,<sup>a</sup> Julia Wack,<sup>b</sup> Jürgen Thun,<sup>b</sup> Jürgen Senker,<sup>b</sup> Wolfgang

Schnick<sup>a,\*</sup>

<sup>a,\*</sup>Prof. Dr. W. Schnick, Dr. M. Döblinger, Dr. Bettina V. Lotsch Department Chemie und Biochemie Ludwig-Maximilians-Universität Butenandtstr. 5-13
81377 München, Germany wolfgang.schnick@uni-muenchen.de

<sup>b</sup>Prof. Dr. J. Senker, J. Wack Anorganische Chemie I Universität Bayreuth Universitätsstr. 30 95447 Bayreuth, Germany juergen.senker@uni-bayreuth.de

### **Experimental Details**

Synthesis: Templated polyheptazine imide was prepared by heating <sup>15</sup>N enriched melamine (200 mg) in a sealed quartz tube (length: 120 mm,  $\emptyset_{ext}$ : 15 mm,  $\emptyset_{int}$ : 11 mm) under dry argon at 630 °C (heating rate 1 K min<sup>-1</sup>) for  $\approx$  12 h. <sup>15</sup>N melamine was obtained by fusing sodium tricyanomelaminate Na<sub>3</sub>[C<sub>6</sub>N<sub>9</sub>] (742.5 mg, 2.78 10<sup>-3</sup> mol) with <sup>15</sup>NH<sub>4</sub>Cl (183 mg, 3.36 10<sup>-3</sup> mol,  $\geq$  98 %, Cambridge Isotopes) in a Duran tube (length: 160 mm,  $\emptyset_{ext}$ : 26 mm,  $\emptyset_{int}$ : 24 mm) at 470 °C (heating rate of 1 K min<sup>-1</sup>) for 12 h. The melamine raw material obtained as a side product in the above synthesis was further purified by

### sublimation (1 Pa, 220 °C).<sup>[1]</sup>

*Electron Diffraction* was carried out on a FEI Titan 80-300 equipped with a field emission gun operating at 300 kV. The images were recorded using a Gatan UltraScan 1000 ( $2k \times$ 2k) camera. The carbon-coated copper grids were mounted on a double tilt holder with a maximum tilt angle of 30°. After removal of the diffuse background of the SAED patterns, reflection intensities were extracted using the ELD program package.<sup>[2]</sup> The diffraction patterns show 6mm symmetry with no systematic absences. After symmetry averaging a dataset of 55 independent reflections was obtained with an internal reliability factor<sup>[3]</sup> of  $R_{rim}$  = 12 %, reflecting the good quality of the obtained dataset. The most probable solution as found by SIR–97<sup>[4]</sup> had a figure of merit of 24.0 %.<sup>[5]</sup> A refinement of the electron diffraction data was attempted using ShelXL-97.<sup>[6]</sup> Assuming kinematical diffraction, but including a phenomenological factor accounting for dynamical effects, the refinement of the structure yields residuals of R1 = 9.19 % for 38 reflections stronger than  $4\sigma$  (12.75 % for all 55 reflections) and wR2 = 25.5 %. Fixing hydrogen atoms at their corresponding sites, but without further constraints, the refinement delivers realistic distances and geometries involving all carbon and nitrogen atoms. The structure was verified by simulating a kinematical diffraction pattern using the JEMS software package.<sup>[7]</sup>

*Theoretical calculations*: The input structures were created from the ED structure solution with hydrogen atoms added to the N(H) and N(H<sub>2</sub>) groups. Calculations under periodic boundary conditions were performed with the MS Modelling 4.0 package from Accelrys. The input cell was created in trigonal symmetry. For the CASTEP<sup>[8]</sup> calculations the PBE functional and ultrasoft pseudopotentials were used with sampling over 8 k-points. In the structure optimization of the input cell, an energy cutoff of 280 eV and a constrained slab of 6 Å along the c axis were used. For the CASTEP optimized cell, the Hirschfeld charges were determined with the DMol<sup>3</sup> program, the PBE functional and the DNP basis set.<sup>[9]</sup> These partial charges were used in flexible body structure optimizations of the input cell with the Dreiding force field.<sup>[10]</sup>



**Figure S1.** Original SAED image used for the structure solution prior to subtraction of the diffuse background.



**Figure S2.** Electron density distribution as obtained after structure solution with SIR-97. The structural building blocks are indicated for clarity. Yellow: C and H, green: N.



**Figure S3.** Representation of the hypothetical polyheptazine imide framework without melamine templates, view along [001]. Dark gray: C and H, light gray: N.

**Table S1.** Atomic positions, site occupation factors and isotropic thermal displacement parameters as obtained from the refinement of the ED structure solution of melamine templated polyheptazine imide. The z-parameters were fixed at 0.0 and the isotropic thermal displacement factors for the non-hydrogen atoms were refined using a common value.

| Atom | X        | У        | Z | SOF | U <sub>iso</sub> |
|------|----------|----------|---|-----|------------------|
| N1   | 2/3      | 1/3      | 0 | 1/3 | 0.035(5)         |
| N2   | 0        | 0.377(3) | 0 | 0.5 | 0.035(5)         |
| N3   | 0.879(2) | 0.460(2) | 0 | 1   | 0.035(5)         |
| N4   | 0.788(3) | 0        | 0 | 0.5 | 0.035(5)         |
| N5   | 0.802(2) | 0.252(3) | 0 | 1   | 0.035(5)         |
| N6   | 0        | 0.109(3) | 0 | 0.5 | 0.035(5)         |
| C1   | 0.891(3) | 0.361(3) | 0 | 1   | 0.035(5)         |
| C2   | 0.884(4) | 0        | 0 | 0.5 | 0.035(5)         |
| C3   | 0.679(2) | 0.232(2) | 0 | 1   | 0.035(5)         |
| H11  | 0        | 0.30724  | 0 | 0.5 | 0.29755          |
| H4A  | 0.78831  | 0.06935  | 0 | 0.5 | 0.04258          |
| H4B  | 0.71895  | -0.06935 | 0 | 0.5 | 0.04258          |

**Table S2.** Energies obtained from the force field (Dreiding) calculations for the total structure model, isolated melamine molecules and the network without melamine. The lattice parameters were fixed at 12.74 Å.

| Structure element                                              | Energy (Dreiding) [kJ mol <sup>-1</sup> ] |
|----------------------------------------------------------------|-------------------------------------------|
| A Total structure                                              | -426.84                                   |
| <b>B</b> Network                                               | -166.74                                   |
| C Melamine                                                     | -123.74                                   |
| $\sum \mathbf{B} + \mathbf{C}$                                 | -290.48                                   |
| $\Delta \mathbf{A} - (\mathbf{B} + \mathbf{C})^{[\mathbf{a}]}$ | -136.36                                   |

[a] Corresponds to the stabilization of the total structure when melamine is incorporated.

**Table S3.** Relevant structural parameters for the total structure as obtained by DFT calculations with periodic boundary conditions.

a = 12.67 Å, b = 12.67 Å, c = 6.0 Å (fix),  $\alpha = 90.00^{\circ}$ ,  $\beta = 90.00^{\circ}$ ,  $\gamma = 120.03^{\circ}$ , V = 834.1 Å<sup>3</sup>

| Element | X         | У         | Z        |
|---------|-----------|-----------|----------|
| H1      | -0.209714 | 0.080229  | 0.533333 |
| H2      | -0.080533 | -0.290154 | 0.533333 |
| Н3      | 0.290029  | 0.209713  | 0.533333 |
| H4      | 0.080229  | -0.209714 | 0.533333 |
| Н5      | -0.290154 | -0.080533 | 0.533333 |
| H6      | 0.209713  | 0.290029  | 0.533333 |
| H7      | -0.000186 | 0.289768  | 0.533333 |
| H8      | 0.710212  | 0.710212  | 0.533333 |
| Н9      | 0.289768  | -0.000186 | 0.533333 |
| C1      | 0.887394  | 0.363447  | 0.533333 |
| C2      | 0.682185  | 0.231830  | 0.533333 |
| C3      | 0.636676  | 0.524059  | 0.533333 |
| C4      | 0.768314  | 0.450536  | 0.533333 |
| C5      | 0.475964  | 0.112637  | 0.533333 |
| C6      | 0.549621  | 0.317846  | 0.533333 |
| C7      | 0.363447  | 0.887394  | 0.533333 |

| C8  | 0.231830  | 0.682185  | 0.533333 |
|-----|-----------|-----------|----------|
| C9  | 0.524059  | 0.636676  | 0.533333 |
| C10 | 0.450536  | 0.768314  | 0.533333 |
| C11 | 0.112637  | 0.475964  | 0.533333 |
| C12 | 0.317846  | 0.549621  | 0.533333 |
| C13 | -0.103682 | -0.000049 | 0.533333 |
| C14 | -0.000049 | -0.103682 | 0.533333 |
| C15 | 0.103621  | 0.103621  | 0.533333 |
| N1  | 0.878408  | 0.463487  | 0.533333 |
| N2  | 0.793994  | 0.248156  | 0.533333 |
| N3  | 0.536621  | 0.414943  | 0.533333 |
| N4  | 0.752001  | 0.546047  | 0.533333 |
| N5  | 0.585016  | 0.121712  | 0.533333 |
| N6  | 0.454054  | 0.205974  | 0.533333 |
| N7  | 0.463487  | 0.878408  | 0.533333 |
| N8  | 0.248156  | 0.793994  | 0.533333 |
| N9  | 0.414943  | 0.536621  | 0.533333 |
| N10 | 0.546047  | 0.752001  | 0.533333 |
| N11 | 0.121712  | 0.585016  | 0.533333 |
| N12 | 0.205974  | 0.454054  | 0.533333 |
| N13 | 0.666701  | 0.333406  | 0.533333 |
| N14 | 0.333406  | 0.666701  | 0.533333 |
| N15 | -0.000039 | 0.372408  | 0.533333 |
| N16 | -0.000001 | 0.109008  | 0.533333 |
| N17 | 0.627607  | 0.627607  | 0.533333 |
| N18 | -0.109062 | -0.109062 | 0.533333 |
| N19 | 0.372408  | -0.000039 | 0.533333 |
| N20 | 0.109008  | -0.000001 | 0.533333 |
| N21 | -0.209353 | -0.000136 | 0.533333 |
| N22 | -0.000136 | -0.209353 | 0.533333 |
| N23 | 0.209285  | 0.209285  | 0.533333 |

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

**Table S4.** Relevant structural parameters for the network without melamine as obtained by DFT calculations with periodic boundary conditions.

| Element | X         | У         | Z        |
|---------|-----------|-----------|----------|
| H1      | -0.000145 | 0.298881  | 0.533333 |
| H2      | 0.701134  | 0.701134  | 0.533333 |
| Н3      | 0.298881  | -0.000145 | 0.533333 |
| C1      | 0.886729  | 0.367351  | 0.533333 |
| C2      | 0.684495  | 0.233645  | 0.533333 |
| C3      | 0.632736  | 0.519492  | 0.533333 |
| C4      | 0.766443  | 0.451008  | 0.533333 |
| C5      | 0.480488  | 0.113243  | 0.533333 |
| C6      | 0.549101  | 0.315495  | 0.533333 |
| C7      | 0.367351  | 0.886729  | 0.533333 |
| C8      | 0.233645  | 0.684495  | 0.533333 |
| С9      | 0.519492  | 0.632736  | 0.533333 |
| C10     | 0.451008  | 0.766443  | 0.533333 |
| C11     | 0.113243  | 0.480488  | 0.533333 |
| C12     | 0.315495  | 0.549101  | 0.533333 |
| N1      | 0.876610  | 0.465751  | 0.533333 |
| N2      | 0.796359  | 0.251978  | 0.533333 |
| N3      | 0.534264  | 0.410837  | 0.533333 |
| N4      | 0.748088  | 0.544533  | 0.533333 |
| N5      | 0.589037  | 0.123454  | 0.533333 |
| N6      | 0.455477  | 0.203532  | 0.533333 |
| N7      | 0.465751  | 0.876610  | 0.533333 |
| N8      | 0.251978  | 0.796359  | 0.533333 |
| N9      | 0.410837  | 0.534264  | 0.533333 |
| N10     | 0.544533  | 0.748088  | 0.533333 |

a = 12.77 Å, b = 12.77 Å, c = 6.0 Å (fix),  $\alpha = 90.00^{\circ}$ ,  $\beta = 90.00^{\circ}$ ,  $\gamma = 120.04^{\circ}$ , V = 846.9 Å<sup>3</sup>

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

| N11 | 0.123454  | 0.589037  | 0.533333 |
|-----|-----------|-----------|----------|
| N12 | 0.203532  | 0.455477  | 0.533333 |
| N13 | 0.666674  | 0.333382  | 0.533333 |
| N14 | 0.333382  | 0.666674  | 0.533333 |
| N15 | -0.000070 | 0.379031  | 0.533333 |
| N16 | 0.620965  | 0.620965  | 0.533333 |
| N17 | 0.379031  | -0.000070 | 0.533333 |

#### References

- [1] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller and W. Schnick, *J. Am. Chem. Soc.*, 2003, **125**, 10288.
- [2] (a) X. D. Zou, Y. Sukharev and S. Hovmöller, *Ultramicroscopy*, 1993, 49, 147; (b) X. D.
   Zou, Y. Sukharev and S. Hovmöller, *Ultramicroscopy*, 1993, 52, 436.
- [3] S. Weiss, J. Appl. Crystallogr., 2001, 34, 130.
- [4] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi,
   A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, 32, 115.
- [5] A. Altomare, G. L. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.
- [6] G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112.
- [7] P. A. Stadelmann, Ultramicroscopy, 1987, 21, 129.
- [8] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M.
- C. Payne, J. Phys.: Condens Matter, 2002, 14, 2717.
- [9] a) B. Delley, J. Chem. Phys., 1990, 92, 508; b) B. Delley, J. Chem. Phys., 2000, 113, 7756.
- [10] S. L. Mayo, B. D. Olafson and W. A. Goddard III, J. Phys. Chem., 1990, 94, 8897.