Colorimetric and luminescent sensing of F^- anion through strong anion $-\pi$ interaction inside π -acidic cavity of a pyridyl-triazine bridged trinuclear Re(I)-tricarbonyl diimine complex

Chen-Yen Hung, Ashutosh S. Singh, Chi-We Chen, Yuh-Sheng Wen, and Shih-Sheng Sun* Institute of Chemistry, Academia Sinica, 115 Nankang, Taipei, Taiwan, Republic of China Email: sssun@chem.sinica.edu.tw Fax: +011-886-2-27831237; Tel: +011-886-2-27898596

Supporting Information

Contents

Experimental procedures	рр. 2-3
Fig S1. Powder XRD of complex 1	p. 4
Figs S2-S9. Crystal structure analysis of complex 1	pp. 5-9
Table S1. Crystal lattices and refinement data for the crystal of complex	p. 10
1	
Table S2. Selected bond distances (Å) and angles (°) in crystal structure	p. 11
of complex 1	
Fig S10. Fitted spectra of complex 1 and its fluoride adduct and the %	p. 12
distribution during the titration	
Fig S11. Plots of ${}^{19}F$ NMR spectra of complex 1 on addition of F^- in	p.12
CD ₃ CN at 298 K.	
Fig. S12 Plots of ¹ H NMR spectra of complex 1 on addition of F^- in	p. 13
CD ₃ CN at 298 K.	
References	p. 13

Experimental Section

Materials. All chemicals are commercially available unless mentioned elsewhere. All reactions and manipulations were carried out under N_2 with the use of standard inert-atmosphere and Schlenk techniques. Solvents used for synthesis were dried by standard procedures and stored under N_2 . Solvents used in luminescent and electrochemical studies were spectroscopic and anhydrous grade, respectively. The compounds 2,4,6-tris(3-pyridyl)triazine (L)¹ and (dmbpy)Re(CO)₃(CH₃CN)(PF₆)² were prepared according to published procedures. Tetrabutylammonium hexafluorophosphate (TBAH) used as supporting electrolyte was rigorously dried (*in vacuo* at 100 °C for 18 h) prior to use.

А 100-mL **Synthesis** of complex 1. flask charged with was (dmbpy)Re(CO)₃(CH₃CN)(PF₆) (0.52 mmol) and bridging ligand L (0.17 mmol). To this mixture was added 30-mL THF and the resulting suspension was refluxed for 16 h under a nitrogen atmosphere. The solvent was removed under reduced pressure. Subsequently, 20-mL CH₃CN was added to redissolve the solid and filtered to remove any undissolved solid. Slow diffusion of diethyl ether into the filtrate CH₃CN solution of 1 afforded the analytical pure product in 76% yield. IR ($v_{C=0}$, CH₃CN): 2035, 1934. ¹H NMR (300 MHz, DMSO- d_6): 9.23 (d, 6 H, J = 5.6 Hz), 9.19 (s, 3 H, H₂), 8.77 (m, 6 H), 8.60 (s, 6 H), 7.96 (d, 3 H, J = 7.3 Hz), 7.76 (d, 6 H, J = 5.4 Hz), 2.45 (s, 18 H). ¹³C NMR (75 MHz, DMSO-*d*₆): 195.6, 192.1, 168.4, 155.9, 154.9, 153.9, 153.3, 151.1, 139.4, 132.9, 129.5, 127.8, 125.5, 21.0. ESI-MS: $(m/z) = 1964.96 ([M-PF_6]^+, 125.5, 21.0, 21$ calculated m/z = 1965.16). Anal. Calcd. for $C_{63}H_{48}F_{18}N_{12}O_9P_3Re_3$; C, 35.85; H, 2.29; N, 7.96. Found: C, 35.61; H, 2.44; N, 7.91.

Equipment and Procedures. ¹H, ¹³C, and ¹⁹F NMR spectra were obtained using a Brücker AC 300 or a Brücker AMX 400 spectrometer. Infrared spectra were measured on a Nicolet 20SXC Fourier transform infrared spectrophotometer. UV-Vis spectra were obtained using a Varian Cary 300 UV-Vis spectrophotometer. Emission spectra were recorded in deoxygenated CH₃CN solution at 293 K with a Fluorolog III fluorescence spectrophotometer. Luminescence quantum yields were calculated relative to Ru(bpy)₃Cl₂ in air-equilibrated water ($\Phi = 0.028$). Luminescence quantum yields were taken as the average of three separate determinations and were reproducible to within 10%. Luminescence lifetimes were determined on an Edinburgh FL920 time-correlated pulsed single-photon-counting instrument. Samples were degassed via freeze-thaw-pump cycle at least 5 times prior to measurements. Samples were excited at 337 nm from a nitrogen pulsed flashlamp with 1 ns FWHM pulse duration transmitted through a Czerny-Turner design monochromator. Emission was detected at 90° via a second Czerny-Turner design monochromator onto a thermoelectrically cooled red-sensitive photomultiplier tube. The resulting photon counts were stored on a microprocessor-based multichannel analyzer. The instrument response function was profiled using a scatter solution and subsequently deconvoluted from the emission data to yield an undisturbed decay. Nonlinear least squares fitting of the decay curves were performed with the Levenburg-Marquardt algorithm and implemented by the Edinburgh Instruments F900 software.

Electrochemical measurements were recorded on a CHI potentiostat/galvanostat. The electrochemical cell consisted of a platinum working electrode, a platinum wire counter electrode, and a Ag/AgNO₃ (0.01 M in CH₃CN solution) reference electrode. Cyclic voltammograms were obtained in deoxygenated CH₃CN with the electroactive material (1.0×10^{-3} M) and 0.1 M TBAH as supporting electrolyte. Ferrocene (Fc) was used as an internal standard for both potential calibration and reversibility criteria. All potentials for the complexes in the study are reported relative to Fc/Fc⁺. The scan rate was 200 mV/s. All experiments were run under a nitrogen atmosphere.

Fig. S1 X-ray powder pattern for complex 1: the calculated powder pattern for the hkl reflections based on the single-crystal model (a) and that of experimentally observed powder pattern (b).

Single crystal X-ray diffraction: X-Ray diffraction data for 1 was collected on a Bruker APEX II CCD diffractometer having graphite monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation. Intensities were corrected for Lorentz polarisation effects¹ and a multiscan absorption correction². The structures were solved by direct methods (SHELXS³ or SIR–97⁴) and refined on F^2 using all data by full-matrix least squares procedures (SHELXL 97⁵). The hydrogen atoms were included in the ideal positions with fixed isotropic U values and were riding with their respective non-hydrogen atoms and refined. All calculations were performed using the WinGX interface.⁶ Detailed analyses of the extended structure were carried out using PLATON⁷ and MERCURY⁸ (Version 1.4.1). One solvent molecule (acetone) and one PF₆⁻ anion are disordered that lead to deviation in bond length (C67-C69, C68-C69 and P2-F9, P2-F11) and bond angle. This may be a probable reason that the second WGHT parameter could not be reduced further.

Description of Crystal Structure [L.Re₃(dmbpy)₃(CO)₉](PF₆)₃•2(acetone) (1): (dmbpy = 4,4'-dimethyl-2,2'-bipyridine)

Fig. S2 Crystal structure of 1 showing encapsulation of PF_6^- anion inside cavity of metallacavitand formed by isohedrally arranged Re- metal ion.

Fig. S3 Crystal structure of **1** showing strong anion- π interaction between fluorine atom of PF₆⁻ anion and centroid of triazine of ligand (a) and (b) the shortest distance between fluorine atom of PF₆⁻ anion and C-atom of triazine center is 3.022 Å.

Fig. S4 Crystal packing showing π - π interaction between two dmbpy moieties of two neighboring Re-complexes. All H-atoms has been removed for clarity.

Fig. S5 Crystal packing showing π - π interaction between one arm (3-pyridyl) each of two neighboring Re-complexes. All H-atoms has been removed for clarity.

Fig. S6 Helical arrangement of complex 1 via two different types of π - π stacking along *a*-axis (one, π - π interaction between two dmbpy moieties and second, π - π interaction between one arm (3-pyridyl) each of two neighboring Re-complexes). All H-atoms has been removed for clarity.

Fig. S7 Crystal packing showing helical arrangement of complex 1 via π - π stacking (a) ball-stick model (left) and (b) space-fill model (right). Each conical cavity occupying one PF₆⁻ anion and rest two PF₆⁻ anions (per molecule) are involved in helical arrangement of complex 1. Solvent molecules have been removed for clarity.

Fig. S8 The coordination environment around each octahedrally arranged Re-metal ion in complex **1**, showing dmbpy moiety binds at equatorial position.

Fig. S9 Crystal packing diagram showing various interactions between two 1D-chain in *ab*-plane. Each discrete structure having three PF_6^- anions to balance the charge of three Re-metal ion, one PF_6^- anion (P1) is encapsulated within cavity (has been shown by light color) and rest two PF_6^- anions (P2 & P3) connecting two 1D-chain together (their interactions have been shown by gray colored dotted lines) to form two-dimensional sheet. All H-atoms (except those, playing role in intermolecular interactions) have been removed for clarity.

	1
Empirical formula	$C_{69}H_{60}F_{18}N_{12}O_{11}P_3Re_3$
Formula weight	2226.83
Temperature (K)	150.0(1)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2(1)/c
a, Å	22.8100(5)
b, Å	25.0562(5)
c, Å	14.1649(3)
α (°)	90
β (°)	99.4580(10)
γ (°)	90
V, Å ³	7985.6(3)
Z	4
$\rho_{calc} Mg/m3$	1.852
μ , mm ⁻¹	4.702
F (000)	4312
T (min.)	0.125
T (max.)	0.205
Data/parameter	13979/1045
Reflection(Unique)	52621
GOOF	1.041
R_{Final} $R_1 =$	0.0424
$I > 2\sigma(I) \text{ wR2} =$	0.1109
R_{all} $R_1 =$	0.0590
(all data) wR2 =	0.1230

Table S1. Crystal Lattices and Refinement Data for the crystal of complex 1

	_		
Table S2. Selected bond	l distances (Å) and	l angles (°) in crystal	structure of complex 1

Re1 C56	1 927(8)
Re1 C57	1.928(9)
Re1 C55	1.931(9)
Re1 N7	2 170(6)
Re1 N8	2 186(6)
Re1 N4	$\frac{1}{2}206(6)$
Re2 C60	1 906(8)
Re2 C59	1.927(9)
Re2 C58	1.943(10)
Re2 N10	2.173(7)
Re2 N9	2.176(6)
Re2 N5	2.222(6)
Re3 C61	1.912(9)
Re3 C62	1.925(8)
Re3 C63	1.928(8)
Re3 N11	2.171(6)
Re3 N12	2.172(7)
Re3 N6	2.236(6)

C55Re1N8	170.5(3)
C_{56} Rel C_{57}	170.5(3)
C_{56} P_{c1} C_{55}	90.4(3)
C50 Rel C55	89.0(4)
C5/RelC55	87.3(4)
C56Re1N7	92.9(3)
C57Re1N7	172.4(3)
C55Re1N7	99.6(3)
C56Re1N8	98.6(3)
C57Re1N8	98.4(3)
N7Re1N8	74.4(2)
C56Re1N4	1775(3)
C57Re1N4	91 9(3)
C55Re1N4	92 2(3)
N7 Pol N4	92.2(3)
$N_{2} = N_{2}$	84.7(2)
$C(0 - D_{2}) = C(0)$	80.0(2)
C60 Re2 C59	87.9(4)
C60 Re2 C58	89.1(4)
C59 Re2 C58	91.0(4)
C60Re2N10	97.5(3)
C59Re2N10	99.0(3)
C58Re2N10	168.2(3)
C60Re2N9	171.9(3)
C59Re2N9	90.9(3)
C58Re2N9	99.0(3)
N10Re2N9	74.8(3)
C60 Re2 N5	93.5(3)
C59Re2N5	178 3(3)
C58Re2N5	90.0(3)
N10 Re2 N5	79 9(3)
N9Re2N5	87 5(2)
$C61_{}Re3_{}C62$	87 3(4)
C61 Re3 C63	87 1(3)
$C62 P_{0}^{2} C63$	87.1(3) 85.2(2)
$C61 P_{02} N11$	03.3(3)
C(2 - Re3 - N11)	97.9(3)
C62 - Re3 - N11	90.5(3)
C63 Re3 N11	1/4.8(3)
C61 Re3 N12	1/1.3(3)
C62 Re3 N12	97.5(3)
C63Re3N12	100.5(3)
N11Re3N12	74.4(3)
C61Re3N6	95.7(3)
C62Re3N6	176.6(3)
C63Re3N6	93.3(3)
N11Re3N6	84.6(2)
N12Re3N6	79.7(2)
	••••(=)

11

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Fig. S10 Left: fitted spectra of complex 1 (blue curve) and $1 \cdot F^-$ adduct (red curve) in CH₃CN solution. Right: % formation vs. F^- concentration; blue curve, complex 1 and red curve, $1 \cdot F^-$ adduct.

Fig. S11 Plots of ¹⁹F NMR spectra of complex **1** on addition of F^- in CD₃CN. The doublet appeared at -72.1 ppm is the signal from PF_6^- , whereas the peak appeared at -117 ppm belongs to free TBAF.

Fig. S12 Plots of ¹H NMR spectra of complex **1** on addition of F^- in CD₃CN.

References:

- H, L. Anderson, S. Anderson and J. K. M. Sanders, *J. Chem. Soc., Perkin Trans. 1*, 1995, 2231-2245.
- (a) J. V. Caspar and T. J. Meyer, J. Phys. Chem., 1983, 87, 952-957. (b) S.-S. Sun, P. Zavilij and A. J. Lees, Acta. Cryst., 2001, E57, m119-m121.
- (a) Z. Otwinowski and W. Minor, In *Processing of X-Ray Diffraction Data Collected in Oscillation Mode*; Carter C. W., Jr., Sweet, R. M., Eds.; Methods in Enzymology, Vol. 276; Academic Press: New York, 1997; pp 307–326. (b) SAINT V4, *Area Detector Control and Integration Software*; Siemens Analytical X-Ray Systems Inc.: Madison, WI, 1996.
- 4. G. M. Sheldrick, *SADABS, Program for Absorption Correction*, University of Göttingen: Göttingen, Germany, 1996.
- 5. G. M. Sheldrick, Acta Crystallogr. A 1990, 46, 467–473.
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Cryst.* 1999, 32, 115–119.
- 7. G. M. Sheldrick, *SHELXL-97, Program for the Solution of Crystal Structures*; University of Göttingen: Göttingen, Germany, 1997.
- 8. L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837-838.
- 9. A. L. Spek, Acta Crystallogr. A 1990, 46, C34.

(a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Cryst.* 2006, **39**, 453-457. (b) I. J. Bruno, J. C. Cole, P. R. Edgington, M. K. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, *Acta Crystallogr. B* 2002, **58**, 389-397.