Table S1.	Percent Contribution and the Overlap ^{<i>a</i>} of Iron, Porphyrin and Cyanopyridine Fragments
to Selected (Orbitals (Based on Mulliken Population Analysis per MO) of $[Fe(P)(CNPy)_2]^+$, Where P
is the Porphi	in with Saddled Deformation (Displacement of β -C from the Porphyrin Mean Plane is
1.176 Å)	

	E(eV)	Fe ³⁺	\mathbf{P}^{2-}	2 CNPy	$<\!\!Fe^{3+}\! P^{2-}\!>$	<fe<sup>3+ CNPy></fe<sup>	$< P^2 - CNPy>$
$20b_2$	-5.484	$63.5 (d_x 2_{-y} 2)$	26.1, 12.4 (9b ₂ -a _{2u} , 8b ₂)		-0.147	0.000	0.000
26e	-6.249	7.6 (dπ)	90.1 (15e-π*)		-0.015	0.000	0.001
20a ₁	-6.279	71.9 (d _z 2)	6.7 (8a ₁)	19.8 (9a ₁)	0.010	-0.126	-0.036
25e	-7.760	71.1 (dπ)	14.4, 6.9 (13e-π, 14e)		-0.028	-0.001	0.001
19b ₂	-8.220		47.8,36.7, 7.9 (9b ₂ -a _{2u} , 8b ₂ , 7b ₂)	3.9 (9b ₂)	0.002	-0.003	-0.019
$8b_1$	-8.240	45.0 (d _{xy})	51.9 (6b ₁ -a _{1u})		-0.021	0.000	-0.001
7b ₁	-8.652	47.0 (d _{xy})	$46.3 (6b_1 - a_{1u})$		0.007	0.000	-0.001
24e	-9.638	11.9 (dπ)	45.2, 15.7 (13e-π, 14e)	16.9 (9e)	0.023	-0.005	-0.007
18a ₁	-10.619	15.4 (d _z 2)		67.0, 7.7 (9a ₁ , 8a ₁)	0.002	0.044	-0.007
15b ₂	-11.740	$16.0 (d_x 2_{-y} 2)$	41.6, 25.6, 10.3 (6b ₂ , 8b ₂ , 9b ₂ -a _{2u})		0.035	-0.002	-0.007
14b ₂	-12.674	10.6 (d _x 2 _{-y} 2)	49.9,10.8, 10.4, 7.8, 6.8 (6b ₂ , 8b ₂ , 5b ₂ , 4b ₂ ,9b ₂ -a _{2u})		0.029	0.000	-0.001

^{*a*} To a first order approximation, positive overlap indicates bonding and negative overlap correlates to antibonding interaction between fragments.¹²

	D_{4h}	D_{2h}	$D_{2d}^{\ \ b}$	C_{4v}	C_{2v}
Metal					
$d_{x^{2-y^{2}}}$	b_{lg}	a_g	$b_2(b_1)$	b_1	$a_1(a_2)$
d_z^2	a_{lg}	a_g	a_1	a_1	a_1
d_{xz} , d_{yz}	e_g	b_{2g} , b_{3g}	е	е	b_1, b_2
d_{xy}	b_{2g}	b_{1g}	$b_1(b_2)$	b_2	$a_2(a_1)$
Porphyrin					
LUMO	e_g	b_{2g} , b_{3g}	е	е	b_1, b_2
HOMO	a_{1u}	a_u	b_1	a_2	a_2
	a_{2u}	b_{1u}	b_2	a_1	a_1
HOMO-1	e_{g}	b_{2g}, b_{3g}	е	е	b_1, b_2

 Table S2.
 Correlation Table for the Molecular Orbitals of Metalloporphyrin^a

^{*a*} Defining *x* and *y* axes as lying in the porphyrin plane along trans pyrrole nitrogens. ^{*b*} Symmetry representations for ruffle-shaped deformation are given in the parentheses.