Supporting Information

Formation of pentacyclic structures by a domino sequence on cyclic enamides

Gedu Satyanarayana and Martin E. Maier*

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Fax: +49 7071 5137 Tel: +49 7071-2975247 e-mail: martin.e.maier@uni-tuebingen.de

Contents	
Experimental details	S2
Fig. 1 X-ray structure of pentacycle 11aa.	S19
¹ H- and ¹³ C-NMR spectra of new compounds	S20

General: ¹H and ¹³C NMR: Bruker Avance 400, spectra were recorded at 295 K in CDCl₃. Chemical shifts are calibrated to the residual proton and carbon resonance of the solvent: CDCl₃ (δ H 7.25, δ C 77.0 ppm). HRMS (FT-ICR): Bruker Daltonic APEX 2 with electron spray ionization (ESI). Analytical LC-MS: HP 1100 Series connected with an ESI MS detector Agilent G1946C, positive mode with fragmentor voltage of 40 eV, column: Nucleosil 100-5, C-18 HD, 5 µm, 70 × 3 mm Machery Nagel, eluent: NaCl solution (5 mM)/acetonitrile, gradient: 0-10-15-17-20 min with 20-80-80-99-99% acetonitrile, flow: 0.5 mL min⁻¹. Flash chromatography: J. T. Baker silica gel 43-60 µm. Thin-layer chromatography Machery-Nagel Polygram Sil G/UV₂₅₄. Solvents were distilled prior to use; petroleum ether with a boiling range of 40–60 °C was used. Reactions were generally run under a nitrogen atmosphere.

5-(2-Bromophenyl)pentanal (5a): To a stirred solution of Pd(OAc)₂ (47.6 mg, 0.21 mmol), pentenylalcohol (1.53 mL, 14.8 mmol), triethylbenzylammonium chloride (2.4 g, 10.6 mmol) and NaHCO₃ (1.78 g, 21.2 mmol) in DMF (25 mL) was added iodobromobenzene **4a** (3.0 g, 10.6 mmol) and the resulting solution was heated at 40 °C for 24 h. The mixture was treated with aqueous NH₄Cl solution and then extracted with ethyl acetate (3 × 20 mL). The combined organic layers were washed with saturated NaCl solution, dried (Na₂SO₄), and filtered. Evaporation of the solvent and purification of the crude material by flash chromatography (ethyl acetate/hexane, 1:19) furnished the aldehyde **5a** (1.78 g, 70%) as colorless oil. According to NMR analysis, a small amount of the branched aldehyde was present as well. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.76 (s, 1H, CH=O), 7.51 (d, *J* = 8.7 Hz, 1H, 3'-H), 7.27–7.14 (m, 2H, Ar-H), 7.10–6.97 (m, 1H, Ar-H), 2.74 (t, *J* = 7.4 Hz, 2H, 5-H), 2.47 (dt, *J* = 7.4, 1.5 Hz, 2H, 2-H), 1.80–1.55 (m, 4H, 3-H, 4-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 202.4 (CH=O), 141.2 (C-1'), 132.8 (C-3'), 130.3 (CH), 127.6 (CH), 127.4 (CH), 124.3 (C-2'), 43.6 (C-5), 35.8 (C-2), 29.3 (C-4), 21.7 (C-3).

Ethyl 7-(2-bromophenyl)-4-formylheptanoate (8a): To a magnetically stirred solution of aldehyde **5a** (2.38 g, 9.87 mmol) in C₆H₆ (10 mL) was added anhydrous K₂CO₃ (4.1 g, 29.6 mmol) followed by pyrrolidine (1.63 mL, 19.7 mmol). The reaction mixture was stirred for 6 h at room temperature. Then the mixture was treated with saturated aqueous NaHCO₃ solution, extracted with diethyl ether (3×20 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo to provide the crude enamine **7a**.

To the crude enamine**7a** in CH₃CN (10 mL) at 5 °C were added molecular sieves (4 Å, 2 g) followed by ethyl acrylate (1.88 mL, 15.8 mmol). The resultant mixture was stirred for 2 h at room temperature, and then refluxed for 2 h. After cooling of the mixture to room temperature, AcOH (3 mL) in H₂O (12 mL) was added followed by refluxing of the mixture for 2 h. After cooling to ambient temperature, the mixture was treated with 3N HCl, and extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with saturated NaCl solution, dried (Na₂SO₄), and filtered. Concentration of the filtrate and purification of the residue by flash chromatography (ethyl acetate/hexane, 1:8) furnished the aldehyde ester **8a** (2.1 g, 64% for two steps) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.59 (s, 1H, CH=O), 7.50 (dd, *J* = 7.9, 1.0 Hz, 1H, 3'-H), 7.20 (dt, *J* = 7.1, 1.0 Hz, 1H, Ar-H), 7.18 (dd, *J* = 7.7, 2.0 Hz, 1H, Ar-H), 7.04 (ddd, *J* = 9.2, 7.9, 2.0 Hz, 1H, Ar-H), 4.11 (q, *J* = 7.1 Hz, 2H, OCH₂CH₃), 2.73 (t, *J* = 7.4 Hz, 2H, 7-H), 2.42–2.20 (m, 3H), 2.05–1.87 (m, 1H), 1.87–1.42 (m, 5H), 1.23 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 204.1 (CH=O), 172.9 (OC=O), 140.9 (C-1'), 132.8 (C-3'), 130.3

(CH), 127.7 (CH), 127.4 (CH), 124.3 (C-2'), 60.5 (OCH₂CH₃), 50.9 (C-4), 36.0 (C-7), 31.6 (C-2), 28.3 (CH₂), 27.1 (CH₂), 23.6 (C-3), 14.2 (OCH₂CH₃).

1-Benzyl-5-[3-(2-bromophenyl)propyl]-3,4-dihydropyridin-2(1H)-one (9aa): To a stirred solution of the 4-formylheptanoate 8a (400 mg, 1.2 mmol) in CH₂ClCH₂Cl (3 mL) at room temperature, were added sequentially benzylamine (0.38 mL, 3.5 mmol) and AcOH (0.15 mL, 1.8 mmol) followed by refluxing of the mixture for 12 h. After cooling, the reaction mixture was treated with aqueous NaHCO₃ solution and extracted with ethyl acetate $(3 \times 12 \text{ mL})$. The combined organic layers were washed with brine, dried (Na₂SO₄), and filtered. Concentration of the filtrate followed by flash chromatography (ethyl acetate/hexane, 4:6) furnished the cyclic enamide 9aa (360 mg, 83%) as brown viscous oil. IR (neat): $v_{max}/cm^{-1} = 3063, 3030, 2925, 2838, 1667, 1496,$ 1437, 1410, 1211, 1022, 751, 702; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.50 (dd, *J* = 7.9, 1.0 Hz, 1H, 3"-H), 7.37-7.17 (m, 5H, Ar-H), 7.18 (dd, J = 7.4, 1.0 Hz, 1H, Ar-H), 7.12 (dd, J = 7.4, 1.8 Hz, 1H, Ar-H), 7.03 (dt, J = 7.6, 1.8 Hz, 1H, Ar-H), 5.80 (s, 1H, 6-H), 4.67 (s, 2H, NCH₂Ph), 2.65 (2H, CH_2Ar) and 2.57 (2H, 1'-H) [2 t, J = 7.9 Hz], 2.28 (2H, 4-H) and 2.07 (2H, 3-H) [2 t, J = 7.9 Hz], 1.69 (quintet, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃); δ [ppm] = 168.9 (NC=O), 141.3 (C-1"), 137.3 (C), 132.8 (C-3"), 130.3 (CH), 128.6 (2C, CH), 127.6 (CH), 127.5 (2C, CH), 127.4 (CH), 127.3 (CH), 124.3 (C-2"), 124.2 (C-6), 119.6 (C-5), 48.8 (NCH₂Ph), 35.6 (C-3"), 33.3 (C-1'), 31.2 (C-3), 27.6 (CH₂), 24.1(C-4); HRMS (ESI): [M+H]⁺ calcd for C₂₁H₂₃BrNO 384.0957, found 384.0957.

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9aa: To a solution of the bromoenamide **9aa** (146 mg, 0.38 mmol) in anhydrous DMF (2.5 mL), in an oven dried Schlenk tube fitted with a rubber septum, were added biphenyl ligand¹ **12** (29.9 mg, 20 mol%), Cs_2CO_3 (495 mg, 1.52 mmol) and Pd(OAc)₂ (8.5 mg, 10 mol%) at room temperature under nitrogen atmosphere. The magnetically stirred reaction mixture was heated in an oil bath at 120 °C for 3 d. The mixture was cooled to room temperature and washed with aqueous 3N HCl solution. After separation of the layers, the aqueous layer was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with saturated NaCl solution, dried (Na₂SO₄), and filtered. Evaporation of the filtrate and purification of the crude material by flash chromatography (ethyl acetate/hexane, 4:6) furnished as the first fraction the debromoenamide **10aa** (34 mg, 29%) as brown viscous oil. Further elution of the column using ethyl acetate/hexane (7:3) as eluent furnished the spiroamide **11aa** (59 mg, 51%) as a colorless solid, which was recrystallized from a mixture of CH₂Cl₂ and hexane.

1

1-Benzyl-5-(3-phenylpropyl)-3,4-dihydropyridin-2(1*H***)-one (10aa): IR (neat): v_{max}/cm^{-1} = 2933, 2834, 1665, 1515, 1495, 1453, 1416, 1260, 1155, 1029, 703; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.38–7.02 (m, 10H, Ar-H), 5.75 (s, 1H, 6-H), 4.66 (s, 2H, NCH₂Ph), 2.56 (2H, CH₂Ph) and 2.54 (2H, C-1') [2 t,** *J* **= 7.4 Hz], 2.25 (2H, 4-H) and 2.01 (2H, 3-H) [2 t,** *J* **= 7.9 Hz], 1.69 (quintet,** *J* **= 7.37 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.8 (NC=O), 141.9 (C-1''), 137.3 (C),**

H. Tomori, J. M. Fox and S. L. Buchwald, J. Org. Chem., 2000, 65, 5334-5341.

128.6 (2C, CH), 128.3 (4C, CH), 127.5 (2C, CH), 127.3 (CH), 125.7 (C-6), 124.1 (CH), 119.8 (C-5), 48.7 (NCH₂Ph), 35.1 (CH₂Ph), 33.1 (C-1'), 31.2 (C-3), 29.0 (CH₂), 24.1 (C-4); HRMS (ESI): $[M+H]^+$ calcd for C₂₁H₂₄NO 306.1852, found 306.1852.

2',3,3',4,6',10b'-Hexahydro-2*H***,4'***H***-spiro[naphthalene-1,1'-pyrido[2,1-***a***]isoindol]-4'-one (11aa): m.p. 223–225 °C (hexane/CH₂Cl₂); IR (neat): v_{max}/cm^{-1} = 3056, 2927, 2860, 1667, 1604, 1486, 1445, 1423, 1359, 1345, 1276, 1220, 1157, 758, 736, 720, 702; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.20 (d,** *J* **= 7.6 Hz, 1H, 10'-H), 7.08 (t,** *J* **= 7.6 Hz, 1H, 8'-H), 6.93 (d,** *J* **= 7.6 Hz, 1H, Ar-H), 6.91 (t,** *J* **= 7.6 Hz, 1H, 9'-H), 6.84 (t,** *J* **= 7.6 Hz, 1H, Ar-H), 6.78 (d,** *J* **= 7.6 Hz, 1H, 7'-H), 6.69 (t,** *J* **= 7.6 Hz, 1H, Ar-H), 6.59 (d,** *J* **= 7.6 Hz, 1H, Ar-H), 4.91 (d, 1H) and 4.73 (d, 1H) [***J* **= 15.8 Hz, 6'-H], 4.90 (s, 1H, 10b'-H), 2.90–2.72 (m, 2H), 2.60–2.40 (m, 2H), 2.32 (td,** *J* **= 14.2, 4.6 Hz, 1H), 2.20–1.80 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.3 (NC=O), 141.2 (C-8a), 138.7 (C-10a'), 137.0 (C-6a'), 136.0 (C-4a), 128.4 (CH), 127.5 (CH), 127.3 (CH), 127.1 (CH), 125.8 (CH), 125.5 (CH), 122.7 (CH), 122.6 (CH), 70.9 (C-10b'), 49.9 (C-6'), 42.5 (C-(1,1')), 38.9 (C-4), 36.4 (C-2'), 31.1 (C-3'), 30.6 (CH₂), 19.8 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₁H₂₂NO 304.1696, found 304.1695.**

5-[3-(2-Bromophenyl)propyl]-1-(4-methylbenzyl)-3,4-dihydropyridin-2(1*H***)-one (9ab): As described for compound 9aa, the formyl ester 8a (2.0 g, 5.8 mmol) in CH₂ClCH₂Cl (10 mL) was reacted with 4-methylbenzylamine (1.5 mL, 11.7 mmol) and AcOH (0.33 mL, 5.9 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 4:6) furnished the cyclic enamide 9ab** (1.7 g, 72%) as light brown viscous oil. IR (neat): $v_{max}/cm^{-1} = 3052, 3029, 2928, 2861, 1665, 1470, 1439, 1408, 1354, 1268, 1209, 1114, 1022, 958, 752, 658; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ [ppm] = 7.50 (dd, *J* = 7.9, 1.3 Hz, 1H, 3''-H), 7.19 (dt, *J* = 7.9, 1.3 Hz, 1H, Ar-H), 7.17-7.06 (m, 1H, Ar-H), 7.13 (d, 2H) and 7.11 (d, 2H) [*J* = 8.9 Hz, Ar-H], 7.03 (dt, *J* = 7.9, 1.8 Hz, 1H, Ar-H), 5.79 (s, 1H, 6-H), 4.62 (s, 2H, NCH₂toluyl), 2.65 (2H, CH₂Ar) and 2.57 (2H, 1'-H) [2 t, *J* = 7.9 Hz], 2.31 (s, 3H, ArCH₃), 2.26 (2H, 4-H) and 2.06 (2H, 3-H) [2 t, *J* = 7.9 Hz], 1.68 (quintet, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.8 (NC=O), 141.3 (C-1''), 137.0 (C), 134.3 (C), 132.8 (C-3''), 130.3 (CH), 129.3 (2C, CH), 127.6 (3C, CH), 127.4 (CH), 124.3 (C-2''), 124.2 (C-6), 119.5 (C-5), 48.5 (NCH₂toluyl), 35.6 (CH₂Ar), 33.4 (C-1'), 31.3 (C-3), 27.7 (CH₂), 24.1 (C-4), 21.1 (ArCH₃); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₅BrNO 398.1114, found 398.1115.

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9ab: The reaction was performed with the enamide **9ab** (125 mg, 0.31 mmol) in anhydrous DMF (2 mL) with biphenyl ligand **12** (24.7 mg, 20 mol%), Cs_2CO_3 (409 mg, 1.2 mmol) and Pd(OAc)₂ (7.0 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 2:3) first furnished the debromoenamide **10ab** (30 mg, 30%) as brown viscous oil. Further elution of the column using ethyl acetate/hexane (7:3) as eluent furnished the spiroisoindole **11ab** (46 mg, 46%) as a colorless solid, which was recrystallized from a mixture of CH₂Cl₂ and hexane.

1-(4-Methylbenzyl)-5-(3-phenylpropyl)-3,4-dihydropyridin-2(1*H***)-one (10ab):** IR (neat): $v_{max}/cm^{-1} = 3058, 3024, 2929, 2856, 1667, 1603, 1515, 1496, 1440, 1406, 1267, 1209, 1115, 1023, 959, 750, 700; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ [ppm] = 7.30–7.12 (m, 3H, Ar-H), 7.13 (d, 2H) and 7.11 (d, 2H) [*J* = 8.9 Hz, Ar-H], 7.09 (d, *J* = 7.1 Hz, 2H, Ar-H), 5.74 (s, 1H, 6-H), 4.61 (s, 2H, NCH₂toluyl), 2.60–2.48 (m, 4H) [C-1', C-3'], 2.31 (s, 3H, ArCH₃), 2.23 (2H, 4-H) and 2.00 (2H, 3-H) [2 t, *J* = 7.9 Hz], 1.68 (quintet, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.8 (NC=O), 141.9 (C-1''), 137.0 (C), 134.3 (C), 129.3 (2 C, CH), 128.4 (2 C, CH), 128.3 (2 C, CH), 127.6 (2 C, CH), 125.8 (CH), 124.0 (C-6), 119.7 (C-5), 48.5 (N-CH₂toluyl), 35.2 (C-3'), 33.2 (C-1'), 31.2 (C-3), 29.1 (CH₂), 24.1(C-4), 21.1 (ArCH₃); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₆NO 320.2009, found 320.2011.

9'-Methyl-2',3,3',4,6',10b'-hexahydro-2H,4'H-spiro[naphthalene-1,1'-pyrido[2,1-*a***]isoindol]-4'-one (11ab): m.p. 196–198 °C; IR (neat): v_{max}/cm^{-1} = 3053, 2924, 2862, 1760, 1723, 1664, 1604, 1487, 1436, 1344, 1265, 1221, 1099, 1040, 765, 738, 697; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.07 (d,** *J* **= 7.6 Hz, 1H, 8'-H), 6.94 (d,** *J* **= 7.4 Hz, 1H, 8-H), 6.88 (d,** *J* **= 7.4 Hz, 1H, 5-H), 6.84 (dt,** *J* **= 7.4, d 1.3 Hz, 1H, 7-H), 6.69 (t,** *J* **= 7.4 Hz, 1H, 6-H), 6.59 (d,** *J* **= 7.6 Hz, 1H, 7'-H), 6.58 (s, 1H, 10'-H), 4.86 (d, 1H) and 4.68 (d, 1H) [***J* **= 15.8 Hz, 6'-H], 4.85 (s, 1H, 10b'-H), 2.93–2.76 (m, 2H), 2.58–2.38 (m, 2H), 2.37–2.22 (m, 1H), 2.20–1.80 (m, 5H), 2.07 (s, 3H, ArCH₃); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.3 (NC=O), 141.2 (C-8a), 138.9 (C-10'), 137.0 (C), 136.6 (C-4a), 133.1 (C), 128.3 (CH), 128.2 (CH), 127.4 (CH), 125.7 (CH), 125.5 (CH), 123.1 (CH), 122.4 (CH), 70.8 (C-10b'), 49.7 (C-6'), 42.5 (C-(1,1')), 39.0 (C-4), 36.4 (C-2'), 31.1 (C-3'), 30.6 (CH₂), 21.2 (ArCH₃), 19.9 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₄NO 318.1852, found 318.1852.**

5-(2-Bromo-4-methylphenyl)pentanal (5b): The reaction was performed as described for aldehyde **5a**. Thus, to a mixture of Pd(OAc)₂ (60.5 mg, 2 mol%), pentenylalcohol (2.2 mL, 25.2 mmol), triethylbenzylammonium chloride (3.1 g, 13.4 mmol) and NaHCO₃ (2.3 g, 26.9 mmol) in DMF (30 mL) was added iodobromide² **4b** (4.0 g, 13.4 mmol), followed by stirring of the mixture for 24 h at 40 °C. Purification of the crude material by flash chromatography (ethyl acetate/hexane, 1:19) furnished aldehyde **5b** (2.3 g, 67%) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.76 (s, 1H, CH=O), 7.34 (s, 1H, 3'-H), 7.07 (1H, 5'-H) and 7.02 (1H, 6'-H) [2 d, *J* = 7.6 Hz], 2.70 (t, *J* = 7.4 Hz, 2H, 5-H), 2.46 (dt, *J* = 7.4, 1.5 Hz, 2H, 2-H), 2.28 (s, 3H, ArCH₃), 1.80–1.52 (m, 4H, 3-H, 4-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 202.5 (CH=O), 138.0 (C-1'), 137.5 (C-4'), 133.2 (CH), 130.0 (CH), 128.2 (CH), 124.1 (C-2'), 43.7 (C-5), 35.3 (C-2), 29.4 (C-4), 21.7 (C-3), 20.5 (ArCH₃).

² (a) R. R. Bard, J. F. Bunnett and R. P. Traber, *J. Org. Chem.*, 1979, **44**, 4918-4924; (b) G. P. M. van Klink, H. J. R. de Boer, G. Schat, O. S. Akkerman, F. Bickelhaupt and A. L. Spek, *Organometallics*, 2002, **21**, 2119-2135.

Ethyl 7-(2-bromo-4-methylphenyl)-4-formylheptanoate (8b): The reaction was performed with aldehyde **5b** (2.3 g, 9.0 mmol), pyrrolidine (1.5 mL, 18.0 mmol), K₂CO₃ (3.73 g, 27.0 mmol), molecular sieves (4 Å, 2 g) and ethyl acrylate (1.4 mL, 12.6 mmol) as described above (see **8a**). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:8) furnished the aldehyde ester **8b** (2.1 g, 60% for two steps) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.59 (s, 1H, CH=O), 7.34 (s, 1H, 3'-H), 7.05 (1H, 5'-H) and 7.01 (1H, 6'-H) [2 d, *J* = 7.9 Hz], 4.12 (q, *J* = 7.1 Hz, 2H, OCH₂CH₃), 2.69 (t, *J* = 7.6 Hz, 2H, 7-H), 2.45–2.20 (m, 3H), 2.28 (s, 3H, ArCH₃), 2.10–1.40 (m, 6H), 1.24 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 204.1 (CH=O), 172.9 (OC=O), 137.7 (C-1'), 137.6 (C-4'), 133.2 (CH), 130.0 (CH), 128.2 (CH), 124.1 (C-2'), 60.5 (OCH₂CH₃), 50.9 (C-4), 35.5 (CH₂Ar), 31.6 (C-2), 28.3 (CH₂), 27.2 (CH₂), 23.6 (C-3), 20.5 (ArCH₃), 14.2 (OCH₂CH₃).

1-Benzyl-5-[3-(2-bromo-4-methylphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (9ba): As described for compound 9aa, the formyl ester 8b (1.6 g, 4.5 mmol), dissolved in CH₂ClCH₂Cl (7 mL) was reacted with benzylamine (0.98 mL, 9.0 mmol) and AcOH (0.26 mL, 4.5 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 4:6) as eluent furnished the cyclic enamide 9ba** (1.4 g, 78%) as light brown viscous oil. IR (neat): $v_{max}/cm^{-1} = 3030, 2925, 1666, 1606, 1491, 1440, 1410, 1270, 1211, 1038, 668; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ [ppm] = 7.37–7.18 (m, 6H, Ar-H), 7.00 (s, 2H, Ar-H), 5.79 (s, 1H, 6-H), 4.66 (s, 2H, NCH₂Ph), 2.61 (2H, CH₂Ar) and 2.57 (2H, C-1') [2 t, *J* = 7.6 Hz], 2.28 (s, 3H, ArCH₃), 2.28 (2H, 4-H) and 2.05 (2H, 3-H) [2 t, *J* = 7.1 Hz], 1.66 (quintet, *J* = 7.63 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.9 (NC=O), 138.1 (C-1''), 137.5 (C), 137.3 (C), 133.2 (C-3''), 130.0 (CH), 128.6 (2 C, CH), 128.2 (CH), 127.5 (2 C, CH), 127.3 (CH), 124.2 (C-6), 124.0 (C-2''), 119.7 (C-5), 48.8 (NCH₂Ph), 35.1 (CH₂Ar), 33.3 (C-1'), 31.3 (C-3), 27.8 (CH₂), 24.1 (C-4), 20.5 (ArCH₃); HRMS (ESI): [M + H]⁺ calcd for C₂₂H₂₅BrNO 398.1114, found 398.1115.

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9ba:

The reaction was performed with the enamide **9ba** (116 mg, 0.29 mmol) in anhydrous DMF (2 mL) with biphenyl ligand¹ **12** (22.9 mg, 20 mol%), Cs_2CO_3 (380 mg, 1.2 mmol) and Pd(OAc)₂ (6.5 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 4:6) first furnished the debromoenamide **10ba** (25 mg, 27%) as brown viscous oil. Further elution using ethyl acetate-hexane (7:3) as eluent furnished the amide **11ba** (45 mg, 49%) as a colorless semi-solid, which was recrystallized from a mixture of CH_2Cl_2 and hexane.

1-Benzyl-5-[3-(4-methylphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (10ba): IR (neat): v_{max}/cm^{-1} = 3030, 2928, 2838, 1665, 1606, 1515, 1496, 1411, 1268, 1212, 1029, 807, 702; ¹H NMR (400 MHz, CDCl₃): <math>\delta[ppm] = 7.37–7.18 (m, 5H, Ar-H), 7.06 (d, 2H) and 6.98 (d, 2H) [***J* **= 7.9 Hz, Ar-H], 5.75 (s, 1H, 6-H), 4.66 (s, 2H, NCH₂Ph), 2.56 (2H, 3'-H) and 2.50 (2H, 1'-H) [2 t,** *J* **= 7.6 Hz], 2.30 (s, 3H, ArCH₃), 2.25 (2H, 4-H) and 2.01 (2H, 3-H) [2 t,** *J* **= 7.6 Hz], 1.67 (quintet,** *J* **= 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.9 (NC=O), 138.8 (C-1''), 137.4 (C), 135.2 (C), 129.0 (2 C, CH), 128.6 (2 C, CH), 128.2 (2 C, CH), 127.5 (2 C, CH), 127.4 (CH), 124.1 (C-6), 119.9 (C-5), 48.8 (NCH₂Ph), 34.7 (C-3'), 33.2 (C-1'), 31.3 (C-3), 29.2 (CH₂), 24.2 (C-4), 21.0 (ArCH₃); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₆NO 320.2009, found 320.2009.**

7-Methyl-2',3,3',4,6',10b'-hexahydro-2*H***,4'***H***-spiro[naphthalene-1,1'-pyrido[2,1-***a***]isoindol]-4'-one (11ba): m.p. 60–62 °C; IR (neat): v_{max}/cm^{-1} = 3046, 2934, 2863, 1761, 1731, 1645, 1502, 1488, 1452, 1349, 1220, 738, 701; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.20 (d,** *J* **= 7.6 Hz, 1H, 10'-H), 7.07 (t,** *J* **= 7.6 Hz, 1H, 8'-H), 6.90 (t,** *J* **= 7.6 Hz, 1H, 9'-H], 6.81 (d,** *J* **= 7.9 Hz, 1H, 5-H) and 6.76 (d,** *J* **= 7.6 Hz, 1H, 7'-H), 6.64 (d,** *J* **= 7.9 Hz, 1H, 6-H), 6.36 (s, 1H, 8-H), 4.88 (d, 1H) and 4.75 (d, 1H) [***J* **= 15.8 Hz, 6'-H], 4.87 (s, 1H, 10b'-H), 2.82–2.71 (m, 2H), 2.60–2.40 (m, 2H), 2.32 (td,** *J* **= 14.0, 4.1 Hz, 1H), 2.20–1.75 (m, 5H), 1.88 (s, 3H, ArCH₃); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.5 (NC=O), 141.1 (C-8a), 138.8 (C-10a'), 135.9 (C-6a'), 134.9 (C-4a), 133.9 (C), 128.1 (CH), 127.9 (CH), 127.0 (CH), 126.3 (CH), 122.4 (2 C, CH), 70.9 (C-10b'), 49.9 (C-6'), 42.7 (C-(1,1')), 38.9 (CH₂), 36.3 (C-2'), 31.2 (C-3'), 30.2 (CH₂), 20.8 (ArCH₃), 20.0 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₄NO 318.1852, found 318.1852.**

5-[3-(2-Bromo-4-methylphenyl)propyl]-1-(4-methylbenzyl)-3,4-dihydropyridin-2(1*H***)-one (9bb**): As described for compound **9aa**, the formyl ester **8b** (700 mg, 2.0 mmol), dissolved in CH₂ClCH₂Cl (5 mL) was reacted with 4-methylbenzylamine (0.5 mL, 3.9 mmol) and AcOH (0.17 mL, 2.9 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 4:6) as eluent furnished the cyclic enamide **9bb** (650 mg, 80%) as light brown viscous oil. IR (neat): $v_{max}/cm^{-1} = 3022$, 2924, 2861, 1666, 1607, 1515, 1490, 1441, 1407, 1267, 1210, 1039, 819, 751, 703; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.34 (s, 1H, 3''-H), 7.13 (d, 2H) and 7.11 (d, 2H) [*J* = 8.9 Hz, Ar-H], 7.00 (s, 2H, Ar-H), 5.78 (s, 1H, 6-H), 4.62 (s, 2H, NCH₂toluyl), 2.60 (2H, 3'-H) and 2.56 (2H, 1'-H) [2 t, *J* = 7.6 Hz], 2.31 (s, 3H) and 2.28 (s, 3H) [2 ArCH₃], 2.26 (2H, 4-H) and 2.05 (2H, 3-H) [2 t, *J* = 7.6 Hz], 1.65 (quintet, *J* = 7.63 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.8 (NC=O), 138.1 (C-1''), 137.5 (C), 137.0 (C), 134.3 (C), 133.2 (C-3''), 130.0 (CH), 129.3 (2 C, CH), 128.2 (CH), 127.6 (2 C, CH), 124.2 (C-6), 124.1 (C-2''), 119.6 (C-5), 48.5 (NCH₂toluyl), 35.1 (C-3'), 33.3 (C-1'), 31.3 (C-3), 27.8 (CH₂), 24.1 (C-4), 21.1 (CH₃) and 20.5 (CH₃) [2 ArCH₃]; HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₇BrNO 412.1270, found 412.1270.

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9bb:

The reaction was performed with the enamide **9bb** (116 mg, 0.28 mmol) in anhydrous DMF (2 mL) with biphenyl ligand¹ **12** (22 mg, 20 mol%), Cs_2CO_3 (367 mg, 1.1 mmol) and Pd(OAc)₂ (6.3 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as

described for compound **9aa**. Purification of the crude product mixture by flash chromatography (ethyl acetate/hexane, 4:6) first furnished the debromoeanamide **10bb** (28 mg, 30%) as brown viscous oil. Further elution (ethyl acetate/hexane, 7:3) provided amide **11bb** (46 mg, 49%) as a colorless solid, which was recrystallized from a mixture of CH_2Cl_2 and hexane.

1-(4-Methylbenzyl)-5-[3-(4-methylphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (10bb): IR (neat): v_{max}/cm^{-1} = 3019, 2925, 2855, 1666, 1606, 1515, 1441, 1376, 1334, 1267, 1209, 1022, 751, 703; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.14 (d, 2H) and 7.12 (d, 2H) [***J* **= 8.1 Hz, Ar-H], 7.07 (d, 2H) and 6.99 (d, 2H) [***J* **= 7.9 Hz, Ar-H], 5.75 (s, 1H, 6-H), 4.62 (s, 2H, NCH₂toluyl), 2.55 (2H, 3'-H) and 2.50 (2H, 1'-H) [2 t,** *J* **= 7.6 Hz], 2.32 (s, 3H) and 2.31 (s, 3H) [2 ArCH₃], 2.24 (2H, 4-H) and 2.01 (2H, 3-H) [2 t,** *J* **= 7.6 Hz], 1.67 (quintet,** *J* **= 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.8 (NC=O), 138.8 (C-1''), 137.0 (C), 135.2 (C), 134.3 (C), 129.2 (2 C, CH), 128.9 (2 C, CH), 128.2 (2 C, CH), 127.6 (2 C, CH), 124.0 (C-6), 119.8 (C-5), 48.5 (NCH₂toluyl), 34.7 (C-3'), 33.2 (C-1'), 31.2 (C-3), 29.2 (CH₂), 24.1 (C-4), 21.0 (CH₃) and 20.9 (CH₃) [2 ArCH₃]; HRMS (ESI): [M+H]⁺ calcd for C_{23H₂₈NO 334.2165, found 334.2167.**}

7,9'-Dimethyl-2',3,3',4,6',10b'-hexahydro-2*H***,4'***H***-spiro[naphthalene-1,1'-pyrido[2,1***a***]isoindol]-4'-one (11bb): m.p. 141–143 °C; IR (neat): v_{max}/cm^{-1} = 3051, 2926, 2860, 1644, 1514, 1488, 1436, 1344, 1265, 1184, 1099, 761, 733, 702; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.07 (1H, 8'-H) and 6.87 (1H, 7'-H) [2 d,** *J* **= 7.6 Hz], 6.81 (1H, 5-H) and 6.63 (1H, 6-H) [2 d,** *J* **= 7.6 Hz], 6.56 (s, 1H, 10'-H), 6.37 (s, 1H, 8-H), 4.83 (d, 1H) and 4.70 (d, 1H) [***J* **= 15.8 Hz, 6'-H], 4.82 (s, 1H, 10b'-H), 2.78 (d, 1H) and 2.76 (d, 1H) [***J* **= 3.1 Hz, 4-H], 2.60-2.38 (m, 2H), 2.30 (td,** *J* **= 14.0, 4.1 Hz, 1H), 2.20–1.70 (m, 5H), 2.07 (s, 3H) and 1.89 (s, 3H) [2 ArCH₃]; ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.5 (NC=O), 141.1 (C-8a), 138.9 (C-10a'), 136.6 (C-6a'), 134.9 (C-4a), 133.9 (C), 132.9 (C), 128.2 (CH), 128.0 (CH), 127.8 (CH), 126.3 (CH), 123.0 (CH), 122.1 (CH), 70.8 (C-10b'), 49.7 (C-6'), 42.7 (C-(1,1')), 39.0 (C-4), 36.3 (C-2'), 31.2 (C-3'), 30.2 (CH₂), 21.2 (CH₃) and 20.8 (CH₃) [2 ArCH₃], 20.0 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₆NO 332.2009, found 332.2010.**

Methyl 3-bromo-4-(5-oxopentyl)benzoate (5c): The reaction was performed as described for the compound **5a**. Thus, to a mixture of $Pd(OAc)_2$ (43.5 mg, 2 mol%), pentenylalcohol (1.4 mL, 13.7 mmol), triethylbenzylammonium chloride (2.2 g, 9.7 mmol) and NaHCO₃ (1.64 g, 19.5 mmol) in DMF (25 mL) was added iodobromide³ **4c** (3.3 g, 9.7 mmol), followed by stirring of the mixture for 24 h at 40 °C. Purification of the crude material by flash chromatography (ethyl acetate/hexane, 1:4)

³ C. B. Vu, E. G. Corpuz, T. J. Merry, S. G. Pradeepan, C. Bartlett, R. S. Bohacek, M. C. Botfield, C. J. Eyermann, B. A. Lynch, I. A. MacNeil, M. K. Ram, M. R. van Schravendijk, S. Violette and T. K. Sawyer, *J. Med. Chem.*, 1999, **42**, 4088-4098.

furnished aldehyde **5c** (1.0 g, 34%) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.50 (s, 1H, CH=O), 7.92 (d, *J* = 1.8 Hz, 1H, 2-H), 7.61 (dd, *J* = 7.9, 1.8 Hz, 1H, 6-H), 7.00 (d, *J* = 7.9 Hz, 1H, 5-H), 3.63 (s, 3H, CO₂CH₃), 2.52 (t, *J* = 7.6 Hz, 2H, 1'-H), 2.22 (dt, *J* = 7.6, 1.5 Hz, 2H, 4'-H), 1.55–1.25 (m, 4H, 2'-H, 3'H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 202.0 (CH=O), 165.6 (OC=O), 146.4 (C-4), 133.8 (C-2), 130.0 (C-6), 129.6 (C-1), 128.4 (C-5), 124.2 (C-3), 52.2 (CO₂CH₃), 43.5 (C-1'), 35.9 (C-4'), 28.9 (C-2'), 21.6 (C-3').

Methyl 3-bromo-4-(7-ethoxy-4-formyl-7-oxoheptyl)benzoate (8c): The reaction was performed with aldehyde **5c** (1.0 g, 3.3 mmol), pyrrolidine (0.55 mL, 6.7 mmol), K₂CO₃ (1.4 g, 10 mmol), molecular sieves (4 Å, 1 g) and ethyl acrylate (0.5 mL, 4.7 mmol) as described above (see **8a**). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:3) furnished the aldehyde ester **8c** (900 mg, 67% for two steps) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.59 (s, 1H, CH=O), 8.18 (d, *J* = 1.8 Hz, 1H, 2-H), 7.87 (dd, *J* = 7.88 Hz, 1H, 6-H), 7.26 (d, *J* = 7.9 Hz, 1H, 5-H), 4.11 (q, *J* = 7.12 Hz, 2H, OCH₂CH₃), 3.89 (s, 3H, CO₂CH₃), 2.78 (t, *J* = 7.6 Hz, 2H, CH₂Ar), 2.47–2.20 (m, 3H), 2.05–1.87 (m, 1H), 2.87–1.43 (m, 5H), 1.23 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 203.9 (CH=O), 172.8 (C-7'), 165.7 (OC=O), 146.2 (C-4), 133.9 (C-2), 130.1 (C-6), 129.7 (C-1), 128.5 (C-5), 124.2 (C-3), 60.5 (OCH₂CH₃), 52.3 (CO₂CH₃), 50.8 (C-4'), 36.1 (CH₂Ar), 31.5 (C-6'), 28.3 (CH₂), 26.8 (CH₂), 23.6 (C-5'), 14.2 (OCH₂CH₃).

Methyl 4-[3-(1-benzyl-6-oxo-1,4,5,6-tetrahydropyridin-3-yl)propyl]-3-bromobenzoate (9ca): As described for compound **9aa**, the formyl ester **8c** (680 mg, 1.7 mmol), dissolved in CH₂ClCH₂Cl (4 mL) was reacted with benzylamine (0.56 mL, 5.1 mmol) and AcOH (0.1 mL, 1.7 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) furnished the cyclic enamide **9ca** (600 mg, 79%) as light brown viscous oil. IR (neat): $v_{max}/cm^{-1} = 3030$, 2948, 1723, 1667, 1602, 1496, 1435, 1410, 1286, 1256, 1211, 1113, 1040, 763, 702; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 8.17 (d, *J* = 1.8 Hz, 1H, 2-H), 7.84 (dd, *J* = 7.9, 1.8 Hz, 1H, 6-H), 7.40–7.15 (m, 5H, Ar-H), 7.17 (d, *J* = 7.9 Hz, 1H, 5-H), 5.79 (s, 1H, 2''-H), 4.66 (s, 2H, NCH₂Ph), 3.89 (s, 3H, CO₂CH₃), 2.68 (2H, 1'-H) and 2.57 (2H, 3'-H) [2 t, *J* = 7.6 Hz], 2.27 (2H, 4''-H) and 2.06 (2H, 5'-H) [2 t, *J* = 7.9 Hz], 1.69 (quintet, *J* = 7.63 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.8 (NC=O), 165.7 (OC=O), 146.5 (C-4), 137.2 (C), 133.9 (C-2), 130.1 (C-6), 129.6 (C-1), 128.6 (2 C, CH), 128.4 (C-5), 127.5 (2 C, CH), 127.3 (CH), 124.4 (C-2''), 124.2 (C-3), 119.2 (C-3''), 52.2 (CO₂CH₃), 48.7 (NCH₂Ph), 35.6 (C-1'), 33.3 (C-3'), 31.2 (C-5''), 27.3 (CH₂), 24.0 (C-4''); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₅BrNO₃ 442.1012, found 442.1014.

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9ca: The reaction was performed with the enamide **9ca** (106 mg, 0.24 mmol) in anhydrous DMF (2 mL) with Ph₃P (12.5 mg, 20 mol%), Cs₂CO₃ (312 mg, 0.96 mmol) and Pd(OAc)₂ (5.3 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude material by flash chromatography (ethyl acetate/hexane, 1:1) furnished the debromoenamide **10ca** (25 mg, 29%) as brown viscous oil. The pentacyclic compound **11ca** was not observed.

Methyl 4-[3-(1-benzyl-6-oxo-1,4,5,6-tetrahydropyridin-3-yl)propyl]benzoate (10ca): IR (neat): $v_{max}/cm^{-1} = 3030, 2939, 1720, 1666, 1609, 1496, 1435, 1409, 1279, 1179, 1110, 1020, 763, 703; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ [ppm] = 7.91 (d, 2H) and 7.13 (d, 2H) [J = 8.4 Hz, Ar-H], 7.40–7.15 (m, 5H, Ar-H), 5.73 (s, 1H, 2''-H), 4.65 (s, 2H, NCH₂Ph), 3.89 (s, 3H, CO₂CH₃), 2.58 (2H, 1'-H) and 2.56 (2H, 3'-H) [2 t, J = 7.6 Hz], 2.24 (2H, 4''-H) and 2.00 (2H, 5''-H) [2 t, J = 7.9 Hz], 1.70 (quintet, J = 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.8 (NC=O), 167.1 (OC=O), 147.4 (C-4), 137.3 (C), 129.7 (2 C, CH), 128.6 (2 C, CH), 128.4 (2 C, CH), 127.9 (C), 127.6 (2 C, CH), 127.4 (CH), 124.3 (C-2''), 119.5 (C-3''), 52.0 (CO₂CH₃), 48.8 (NCH₂Ph), 35.1 (C-1'), 33.1 (C-3'), 31.2 (C-5''), 28.7 (CH₂), 24.1 (C-4''); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₆NO₃ 386.1727, found 386.1726.

5-(2-Bromo-5-methoxyphenyl)pentanal (5d): The reaction was performed as described for compound **5a**. Thus, to a mixture of Pd(OAc)₂ (57 mg, 2 mol%), pentenylalcohol (1.8 mL, 17.9 mmol), triethylbenzylammonium chloride (2.9 g, 12.8 mmol) and NaHCO₃ (2.1 g, 25.5 mmol) in DMF (30 mL) was added iodobromide⁴ **4d** (4.0 g, 12.8 mmol), followed by stirring of the mixture for 24 h at 40 °C. Purification of the crude material by flash chromatography (ethyl acetate/hexane, 1:9) furnished aldehyde **5d** (2.5 g, 72%) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.76 (s, 1H, CH=O), 7.38 (d, *J* = 8.7 Hz, 1H, 3'-H), 6.74 (d, *J* = 3.05 Hz, 1H, 6'-H), 6.61 (dd, *J* = 8.7, 3.1 Hz, 1H, 4'-H), 3.76 (s, 3H, OCH₃), 2.69 (t, *J* = 7.1 Hz, 2H, 5-H), 2.47 (dt, *J* = 7.1, 1.5 Hz, 2H, 2-H), 1.80–1.55 (m, 4H, 3-H, 4-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 202.4 (CH=O), 158.9 (C-5'), 142.2 (C-1'), 133.2 (C-3'), 116.0 (CH), 114.8 (C-2'), 113.1 (CH), 55.4 (OCH₃), 43.6 (C-5), 36.0 (C-2), 29.3 (C-4), 21.7 (C-3).

Ethyl 7-(2-bromo-5-methoxyphenyl)-4-formylheptanoate (8d): The reaction was performed with aldehyde **5d** (2.5 g, 9.2 mmol), pyrrolidine (1.5 mL, 18.4 mmol), K₂CO₃ (3.8 g, 27.7 mmol), molecular sieves (4 Å, 2 g) and ethyl acrylate (1.4 mL, 12.9 mmol) as described above. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:6) furnished the aldehyde ester **8d** (2.3 g, 67% for two steps) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.60 (s, 1H, CH=O), 7.40 (d, *J* = 8.9 Hz, 1H, 3'-H), 6.73 (d, *J* = 3.1 Hz, 1H, 6'-H), 6.61 (dd, *J* = 8.9, 3.1 Hz, 1H, 4'-H), 4.11 (q, *J* = 7.1 Hz, 2H, OCH₂CH₃), 3.76 (s, 3H, OCH₃), 2.69 (t, *J* = 7.6 Hz, 2H, 7-H), 2.43–2.20 (m, 3H), 2.08-1.88 (m, 1H), 1.88–1.45 (m, 5H), 1.24 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 204.1 (CH=O), 172.9 (OC=O), 158.9 (C-5'), 141.9 (C-1'), 133.3 (C-3'), 116.0 (CH), 114.8 (C-2'), 113.2 (CH), 60.5 (OCH₂CH₃), 55.4 (OCH₃), 50.9 (C-4), 36.2 (CH₂Ar), 31.6 (C-2), 28.3 (CH₂), 27.1 (CH₂), 23.6 (C-3), 14.2 (OCH₂CH₃).

⁴ (a) S.-i. Kuwabe, K. E. Torraca and S. L. Buchwald, *J. Am. Chem. Soc.*, 2001, **123**, 12202-12206; (b) A. Fürstner and J. W. J. Kennedy, *Chem. Eur. J.*, 2006, **12**, 7398-7410.

1-Benzyl-5-[3-(2-bromo-5-methoxyphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (9da): As described for compound 9aa, the formyl ester 8d (1.8 g, 4.8 mmol) in CH₂ClCH₂Cl (8 mL) was reacted with benzylamine (1.0 mL, 9.7 mmol) and AcOH (0.3 mL, 4.8 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) furnished the cyclic enamide 9da (1.4 g, 70%) as light brown viscous oil. IR (neat): v_{max}/cm^{-1} = 3062, 3029, 2934, 2835, 1666, 1594, 1572, 1471, 1411, 1277, 1241, 1212, 1162, 1054, 1012, 735, 701; ¹H NMR (400 MHz, CDCl₃): <math>\delta[ppm] = 7.42 (d,** *J* **= 8.7 Hz, 1H, 3''-H), 7.40–7.20 (m, 5H, Ar-H), 6.74 (d,** *J* **= 3.1 Hz, 1H, 6''-H), 6.65 (dd,** *J* **= 8.7, 3.1 Hz, 1H, 4'-H), 5.84 (s, 1H, 6-H), 4.71 (s, 2H, NCH₂Ph), 3.79 (s, 3H, OCH₃), 2.65 (2H, 3'-H) and 2.62 (2H, 1'-H) [2 t,** *J* **= 7.6 Hz], 2.32 (2H, 4-H) and 2.11 (2H, 3-H) [2 t,** *J* **= 7.9 Hz], 1.72 (quintet,** *J* **= 7.63 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.8 (NC=O), 158.9 (C-5''), 142.3 (C-1''), 137.3 (C), 133.2 (C-3''), 128.6 (2 C, CH), 127.4 (2 C, CH), 127.3 (CH), 124.2 (C-6), 119.6 (C-5), 116.1 (CH), 114.8 (C-2''), 112.9 (CH), 55.3 (OCH₃), 48.7 (NCH₂Ph), 35.8 (C-3'), 33.3 (C-1'), 31.2 (C-3), 27.7 (CH₂), 24.1 (C-4); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₅BrNO₂ 414.1063, found 414.1063.**

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9da: The reaction was performed with the enamide **9da** (100 mg, 0.24 mmol) in anhydrous DMF (2 mL) using biphenyl ligand¹ **12** (19.0 mg, 20 mol%), Cs_2CO_3 (314 mg, 0.97 mmol) and Pd(OAc)₂ (5.4 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude product mixture by flash chromatography (ethyl acetate/hexane, 1:1) first furnished the debromoenamide **10da** (20 mg, 25%) as brown viscous oil. Further elution of the column (ethyl acetate/hexane, 4:1) provided the

polycyclic amide **11da** (40 mg, 50%) as a colorless solid, which was recrystallized from a mixture of CH_2Cl_2 and hexane.

1-Benzyl-5-[3-(3-methoxyphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (10da): IR (neat): v_{max}/cm^{-1} = 3062, 3029, 2934, 2856, 2835, 1667, 1601, 1584, 1488, 1454, 1264, 1211, 1153, 1040, 778; ¹H NMR (400 MHz, CDCl₃): <math>\delta[ppm] = 7.38–7.11 (m, 6H, Ar-H), 6.77–6.62 (m, 3H, Ar-H), 5.76 (s, 1H, 6-H), 4.66 (s, 2H, NCH₂Ph), 3.77 (s, 3H, OCH₃), 2.56 (2H, 3'-H) and 2.52 (2H, 1'-H) [2 t,** *J* **= 7.6 Hz], 2.25 (2H, 4-H) and 2.01 (2H, 3-H) [2 t,** *J* **= 7.9 Hz], 1.68 (quintet,** *J* **= 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.9 (NC=O), 159.6 (C-3''), 143.6 (C-1''), 137.3 (C), 129.3 (C-5''), 128.6 (2 C, CH), 127.5 (2 C, CH), 127.3 (CH), 124.1 (C-6), 120.8 (C-6''), 119.8 (C-5), 114.3 (CH), 110.9 (CH), 55.1 (OCH₃), 48.8 (NCH₂Ph), 35.2 (C-3'), 33.2 (C-1'), 31.2 (C-3), 29.0 (CH₂), 24.2 (C-4); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₆NO₂ 336.1958, found 336.1959.**

6-Methoxy-2',3,3',4,6',10b'-hexahydro-2H,4'H-spiro[naphthalene-1,1'-pyrido[2,1-*a***]isoindol]-4'-one (11da): m.p. 158–160 °C; IR (neat): v_{max}/cm^{-1} = 3050, 2934, 2837, 1760, 1728, 1660, 1610, 1500, 1453, 1345, 1251, 1129, 1040, 761, 738, 701; ¹H NMR (400 MHz, CDCl₃): <math>\delta[ppm] = 7.20 (d, J = 7.6 Hz, 1H, 10'-H), 7.09 (t, J = 7.6 Hz, 1H, 8'-H), 6.93 (t, J = 7.6 Hz, 1H, 9'-H], 6.79 (d, J = 7.6 Hz, 1H, 7'-H), 6.49 (d, J = 8.7 Hz, 1H, 8'-H), 6.45 (d, J = 2.80 Hz, 1H, 7-H), 6.27 (dd, J = 8.7, 2.8 Hz, 1H, 5-H), 4.90 (d, 1H) and 4.71 (1H, d) [J = 15.5 Hz, 6'-H], 4.87 (s, 1H, 10b'-H), 3.61 (s, 3H, OCH₃), 2.86–2.71 (m, 2H), 2.55–2.36 (m, 2H), 2.28 (td, J = 14.0, 4.6 Hz, 1H), 2.18–2.05 (m, 2H), 2.05–1.78 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.3 (NC=O), 156.9 (C-6), 138.8 (C-10a'), 138.3 (C-8a), 136.0 (C-4a), 133.3 (C-6a'), 128.6 (CH), 127.3 (CH), 127.1 (CH), 122.7 (2 C, CH), 112.6 (CH), 112.3 (CH), 70.9 (C-10b'), 54.9 (OCH₃), 49.8 (C-6'), 41.8 (C-(1,1')), 38.8 (C-4), 36.5 (C-2'), 31.0 (C-3'), 30.9 (CH₂), 19.8 (CH₂),; HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₄NO₂ 334.1802, found 334.1802.**

5-[3-(2-Bromo-5-methoxyphenyl)propyl]-1-(4-methylbenzyl)-3,4-dihydropyridin-2(1*H***)-one (9db): As described for compound 9aa, the formyl ester 8d (1.5 g, 4.0 mmol) in CH₂ClCH₂Cl (7 mL) was reacted with 4-methylbenzylamine (1.0 mL, 8.1 mmol) and AcOH (0.23 mL, 4.0 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) furnished the cyclic enamide 9db** (1.3 g, 78%) as light brown viscous oil. IR (neat): $v_{max}/cm^{-1} = 3033$, 2933, 1665, 1601, 1515, 1487, 1438, 1262, 1209, 1153, 1114, 1038, 702; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.38 (d, *J* = 8.7 Hz, 1H, 3''-H), 7.11 (d, 2H) and 7.10 (d, 2H) [*J* = 8.9 Hz, Ar-H], 6.69 (d, *J* = 3.1 Hz, 1H, 6'-H), 6.61 (dd, *J* = 8.7, 3.1 Hz, 1H, 4'-H), 5.79 (s, 1H, 6-H), 4.62 (s, 2H, NCH₂toluyl), 3.75 (s, 3H, OCH₃), 2.60 (2H, 3'-H) and 2.56 (2H, 1'-H) [2 t, *J* = 7.6 Hz], 2.31 (s, 3H, ArCH₃), 2.26 (2H, 4-H) and 2.06 (2H, 3'-H) and 2.56 (2H, 1'-H) [2 t, *J* = 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.8 (NC=O), 158.9 (C-5''), 142.3 (C-1''), 137.0 (C), 134.3 (C), 133.2 (C-3''), 129.3 (2 C, CH), 127.5 (2 C, CH), 124.2 (C-6), 119.5 (C-5), 116.1 (CH), 114.8 (C-2''), 112.9 (CH), 55.4 (OCH₃), 48.5 (NCH₂toluyl), 35.8 (C-3'), 33.4 (C-1'), 31.3 (C-3), 27.7 (CH₂), 24.1 (C-4), 21.1 (ArCH₃); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₇BrNO₂ 428.1220, found 428.1220.

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9db:

The reaction was performed with the enamide **9db** (140 mg, 0.32 mmol) in anhydrous DMF (2.5 mL) with biphenyl ligand¹ **12** (25.7 mg, 20 mol%), Cs_2CO_3 (426 mg, 1.3 mmol) and Pd(OAc)₂ (7.3 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) first furnished the debromoenamide **10db** (34 mg, 30%) as brown viscous oil. Further elution of the column (ethyl acetate/hexane, 4:1) provided the amide **11db** (50 mg, 44%) as a colorless solid, which was recrystallized from a mixture of CH₂Cl₂ and hexane.

5-[3-(3-Methoxyphenyl)propyl]-1-(4-methylbenzyl)-3,4-dihydropyridin-2(1*H***)-one (10db): IR (neat): v_{max}/cm^{-1} = 3033, 2931, 2851, 1665, 1640, 1573, 1499, 1433, 1344, 1241, 1229, 1041, 702; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.17 (t,** *J* **= 7.9 Hz, 1H, 5''-H), 7.13 (d, 2H) and 7.11 (d,** 2H) [J = 8.9 Hz, Ar-H], 6.72 (dd, J = 7.9, 2.3 Hz, 1H, 4''-H), 6.68 (d, J = 7.9, 3.1 Hz, 1H, 6''-H), 6.67 (s, 1H, 2''-H), 5.75 (s, 1H, 6-H), 4.61 (s, 2H, NCH₂toluyl), 3.78 (s, 3H, OCH₃), 2.54 (2H, 3'-H) and 2.52 (2H, 1'-H) [2 t, J = 7.6 Hz], 2.31 (s, 3H, ArCH₃), 2.24 (2H, 4-H) and 2.01 (2H, 3-H) [2 t, J = 7.9 Hz], 1.68 (quintet, J = 7.63 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.8 (NC=O), 159.6 (C-5''), 143.6 (C-1''), 137.0 (C), 134.3 (C), 129.3 (2 C, CH), 129.2 (CH), 127.6 (2 C, CH), 124.0 (CH, C-6), 120.8 (CH), 119.7 (C-5), 114.2 (CH), 110.9 (CH), 55.1 (OCH₃), 48.5 (NCH₂toluyl), 35.2 (C-3'), 33.2 (C-1'), 31.3 (C-3), 29.0 (CH₂), 24.1 (C-4), 21.1 (ArCH₃); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₈NO₂ 350.2115, found 350.2115.

6-Methoxy-9'-methyl-2',3,3',4,6',10b'-hexahydro-2*H***,4'***H***-spiro[naphthalene-1,1'-pyrido[2,1***a***]isoindol]-4'-one (11db): m.p. 202–204 °C; IR (neat): v_{max}/cm^{-1} = 3033, 2931, 2859, 1665, 1640, 1609, 1572, 1499, 1434, 1344, 1241, 1220, 1041, 734, 702; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.07 (1H, 8'-H) and 6.89 (1H, 7'-H) [2 d,** *J* **= 7.6 Hz], 6.60 (s, 1H, 10'-H), 6.51 (d,** *J* **= 8.7 Hz, 1H, 8-H), 6.46 (d,** *J* **= 2.8 Hz, 1H, 5-H), 6.29 (dd,** *J* **= 8.7, 2.8 Hz, 1H, 7-H), 4.85 (d, 1H) and 4.66 (d, 1H) [***J* **= 15.3 Hz, 6'-H], 4.83 (s, 1H, 10b'-H), 3.62 (s, 3H, OCH₃), 2.90–2.70 (m, 2H), 2.60–2.35 (m, 2H), 2.26 (td,** *J* **= 14.0, 4.6 Hz, 1H), 2.19–1.75 (m, 5H), 2.10 (s, 3H, ArCH₃); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.3 (NC=O), 156.9 (C-6), 138.9 (C-10a'), 138.3 (C-8a), 136.7 (C-4a), 133.4 (C), 133.1 (C-6a'), 128.5 (CH), 128.3 (CH), 123.2 (CH), 122.4 (CH), 112.5 (CH), 112.3 (CH), 70.8 (C-10b'), 54.9 (OCH₃), 49.7 (C-6'), 41.8 (C-(1,1')), 38.9 (C-4), 36.5 (C-2'), 31.0 (C-3'), 30.9 (CH₂), 21.3 (ArCH₃), 19.8 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₆NO₂ 348.1958, found 348.1958.**

5-(2-Bromo-4-methoxyphenyl)pentanal (5e): The reaction was performed as described for compound **5a**. Thus, to a mixture of Pd(OAc)₂ (57.4 mg, 2 mol%), pentenylalcohol (1.8 mL, 17.9 mmol), triethylbenzylammonium chloride (2.9 g, 12.8 mmol) and NaHCO₃ (2.1 g, 25.5 mmol) in DMF (30 mL) was added iodobromide⁵ **4e** (4.0 g, 12.8 mmol), followed by stirring of the mixture for 24 h at 40 °C. Purification of the crude material by flash chromatography (ethyl acetate/hexane, 1:9) furnished aldehyde **5e** (2.35 g, 68%) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.76 (s, 1H, CH=O), 7.08 (d, *J* = 8.7 Hz, 1H, 6'-H), 7.07 (d, *J* = 2.8 Hz, 1H, 3'-H), 6.77 (dd, *J* = 8.7, 2.8 Hz, 1H, 5'-H), 3.75 (s, 3H, OCH₃), 2.67 (t, *J* = 7.6 Hz, 2H, 5-H), 2.45 (dt, *J* = 7.6, 1.5 Hz, 2H, 2-H), 1.75–1.52 (m, 4H, 3-H, 4-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 202.4 (CH=O), 158.3 (C-4'), 133.1 (C-1'), 130.5 (C-6'), 124.3 (C-2'), 117.8 (CH), 113.5 (CH), 55.4 (OCH₃), 43.6 (C-5), 34.8 (C-2), 29.6 (C-4), 21.6 (C-3).

⁵ (a) K. Orito, T. Hatakeyama, M. Takeo and H. Suginome, *Synthesis*, 1995, 1273-1277; (b) T. Jensen, H. Pedersen, B. Bang-Andersen, R. Madsen and M. Joergensen, *Angew. Chem.*, 2008, **120**, 902-904; *Angew. Chem. Int. Ed.*, 2008, **47**, 888-890.

Ethyl 7-(2-bromo-4-methoxyphenyl)-4-formylheptanoate (8e): The reaction was performed with aldehyde **5e** (2.35 g, 8.6 mmol), pyrrolidine (1.4 mL, 17.2 mmol), K₂CO₃ (3.6 g, 26 mmol), molecular sieves (4 Å, 2 g) and ethyl acrylate (1.3 mL, 12.1 mmol) as described above. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:6) furnished the aldehyde ester **8e** (2.1 g, 68% for two steps) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.58 (s, 1H, CH=O), 7.07 (d, *J* = 8.7 Hz, 1H, 6'-H), 7.06 (d, *J* = 3.8 Hz, 1H, 3'-H), 6.77 (dd, *J* = 8.7, 2.8 Hz, 1H, 5'-H), 4.11 (q, *J* = 7.1 Hz, 2H, OCH₂CH₃), 3.76 (s, 3H, OCH₃), 2.66 (t, *J* = 7.6 Hz, 2H, 7-H), 2.43–2.20 (m, 3H), 2.03–1.87 (m, 1H), 1.88–1.40 (m, 5H), 1.23 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 204.1 (CH=O), 172.9 (OC=O), 158.3 (C-4'), 132.9 (C-1'), 130.5 (C-6'), 124.3 (C-2'), 117.9 (CH), 113.6 (CH), 60.5 (OCH₂CH₃), 55.5 (OCH₃), 50.9 (C-4), 35.0 (CH₂Ar), 31.6 (C-2), 28.2 (CH₂), 27.4 (CH₂), 23.6 (C-3), 14.2 (OCH₂CH₃).

1-Benzyl-5-[3-(2-bromo-4-methoxyphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (9ea): As described for compound 9aa**, the formyl ester **8e** (2.1 g, 5.66 mmol), dissolved in CH₂ClCH₂Cl (10 mL) was reacted with benzylamine (1.2 mL, 11.3 mmol) and AcOH (0.32 mL, 5.6 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) furnished the cyclic enamide **9ea** (1.4 g, 80%) as a colorless solid, which was recrystallized from a mixture of CH₂Cl₂ and hexane, m.p. 86–88 °C. IR (neat): $v_{max}/cm^{-1} = 3063$, 3029, 2935, 2835, 1665, 1604, 1566, 1493, 1454, 1409, 1267, 1240, 1211, 1028, 702; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.40–7.20 (m, 5H, Ar-H), 7.07 (d, *J* = 2.5 Hz, 1H, 3''-H), 7.01 (d, *J* = 8.4 Hz, 1H, 6''-H), 6.75 (dd, *J* = 8.4, 2.5 Hz, 1H, 5''-H), 5.79 (s, 1H, 6-H), 4.66 (s, 2H, NCH₂Ph), 3.75 (s, 3H, OCH₃), 2.65–2.52 (m, 4H, 1'-H, 3'-H), 2.27 (2H, 4-H) and 2.05 (2H, 3-H) [2 t, *J* = 7.9 Hz], 1.65 (quintet, *J* = 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.9 (NC=O), 158.3 (C-4''), 137.3 (C), 133.2 (C-1''), 130.5 (C-6''), 128.6 (2 C, CH), 127.5 (2 C, CH), 127.3 (CH), 124.3 (C-2''), 124.2 (C-6), 119.7 (C-5), 117.8 (CH), 113.6 (CH), 55.5 (OCH₃), 48.8 (NCH₂Ph), 34.6 (C-3'), 33.2 (C-1'), 31.3 (CH₂, C-3), 27.9 (C-2'), 24.1 (C-4); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₅BrNO₂ 414.1063, found 414.1063.

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9ea: The reaction was performed with the enamide **9ea** (110 mg, 0.26 mmol) in anhydrous DMF (2 mL) with biphenyl ligand¹ **12** (21 mg, 20 mol%), Cs_2CO_3 (346 mg, 1.1 mmol) and Pd(OAc)₂ (5.9 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) first furnished the enamide **10ea** (30 mg, 34%) as brown viscous oil. This compound however, was not obtained pure. Further elution of the column (ethyl acetate-hexane, 4:1) furnished the polycyclic amide **11ea** (40 mg, 45%) as a colorless solid, which was recrystallized from a mixture of CH₂Cl₂ and hexane.

1-Benzyl-5-[3-(4-methoxyphenyl)propyl]-3,4-dihydropyridin-2(1*H*)-one (10ea). This compound was not obtained pure.

7-Methoxy-2',3,3',4,6',10b'-hexahydro-2*H***,4'***H***-spiro[naphthalene-1,1'-pyrido[2,1-***a***]isoindol]-4'-one (11ea): m.p. 195–197 °C; IR (neat): v_{max}/cm^{-1} = 3057, 2934, 1759, 1659, 1608, 1496, 1484, 1437, 1351, 1241, 1120, 998, 702; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.21 (d,** *J* **= 7.6 Hz, 1H, 10'-H), 7.10 (t,** *J* **= 7.6 Hz, 1H, 8'-H), 6.93 (t,** *J* **= 7.6 Hz, 1H, 9'-H], 6.83 (d,** *J* **= 8.7 Hz, 1H, 5-H), 6.77 (d,** *J* **= 7.6 Hz, 1H, 7'-H), 6.43 (dd,** *J* **= 8.7, 2.5 Hz, 1H, 6-H), 6.12 (d,** *J* **= 2.5 Hz, 1H, 8-H), 4.90 (d, 1H) and 4.76 (d, 1H) [***J* **= 16.0 Hz, 6'-H], 4.89 (s, 1H, 10b'-H), 3.39 (s, 3H, OCH₃), 2.76 (d, 1H) and 2.74 (d, 1H) [***J* **= 3.8 Hz], 2.57–2.41 (m, 2H), 2.32 (td,** *J* **= 14.0, 4.6 Hz, 1H), 2.20–1.70 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.5 (NC=O), 157.3 (C-7), 142.1 (C-8a), 138.8 (C-10a'), 135.8 (C-6a'), 129.4 (C-4a), 129.3 (CH), 127.5 (CH), 127.2 (CH), 122.7 (2 C, CH), 113.2 (CH), 111.3 (CH), 70.8 (C-10b'), 54.9 (OCH₃), 49.9 (C-6'), 42.8 (C-(1,1')), 38.6 (C-4), 36.2 (C-2'), 31.1 (C-3'), 29.7 (CH₂), 20.0 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₂H₂₄NO₂ 334.1802, found 334.1803.**

5-[3-(2-Bromo-4-methoxyphenyl)propyl]-1-(4-methylbenzyl)-3,4-dihydropyridin-2(1*H***)-one (9eb): As described for compound 9aa, the formyl ester 8e (700 mg, 1.9 mmol) in CH₂ClCH₂Cl (4 mL) was reacted with 4-methylbenzylamine (0.5 mL, 3.8 mmol) and AcOH (0.16 mL, 2.8 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) furnished the cyclic enamide 9eb (630 mg, 78%) as light brown viscous oil. IR (neat): v_{max}/cm^{-1} = 3033, 2935, 2835, 1664, 1604, 1515, 1492, 1407, 1239, 1209, 1035, 702; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.13 (d, 2H) and 7.11 (d, 2H) [***J* **= 8.9 Hz, Ar-H], 7.06 (d,** *J* **= 2.5 Hz, 1H, 3''-H), 7.01 (d,** *J* **= 8.4 Hz, 1H, 6''-H), 6.75 (dd,** *J* **= 8.4, 2.5 Hz, 1H, 5''-H), 5.78 (s, 1H, 6-H), 4.62 (s, 2H, NCH₂toluyl), 3.76 (s, 3H, OCH₃), 2.64–2.50 (m, 4H, 1'-H, 3'-H), 2.31 (s, 3H, ArCH₃), 2.26 (2H, 4-H) and 2.04 (2H, 3-H) [2 t,** *J* **= 7.9 Hz], 1.64 (quintet,** *J* **= 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.8 (NC=O), 158.3 (C-4''), 137.0 (C), 134.3 (C-1''), 133.2 (C), 130.6 (C-6''), 129.3 (2 C, CH), 127.5 (2 C, CH), 124.3 (C-2''), 124.1 (C-6), 119.6 (C-5), 117.8 (CH), 113.6 (CH), 55.5 (OCH₃), 48.5 (NCH₂toluyl), 34.6 (C-3'), 33.3 (C-1'), 31.3 (C-3), 27.9 (CH₂), 24.1 (C-4), 21.1 (ArCH₃); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₇BrNO₂ 428.1220, found 428.1218.**

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9eb: The reaction was performed with the enamide **9eb** (108 mg, 0.25 mmol) in anhydrous DMF (2 mL) with biphenyl ligand¹ **12** (20 mg, 20 mol%), Cs_2CO_3 (328 mg, 1.0 mmol) and Pd(OAc)₂ (5.7 mg, 10 mol%). After loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) first furnished the debromoenamide **10eb** (25 mg, 28%) as brown viscous oil. Further elution of the column using ethyl acetate-hexane (4:1) as eluent furnished the polycyclic amide **11eb** (38 mg, 43%) as a colorless solid, which was recrystallized from a mixture of CH₂Cl₂ and hexane.

5-[3-(4-Methoxyphenyl)propyl]-1-(4-methylbenzyl)-3,4-dihydropyridin-2(1*H***)-one (10eb): IR (neat): v_{max}/cm^{-1} = 3025, 2930, 2834, 1666, 1611, 1583, 1512, 1441, 1377, 1246, 1106, 1036, 702; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.14 (s, 4H, Ar-H), 7.00 (d, 2H) and 6.79 (d, 2H) [***J* **= 8.6 Hz, Ar-H], 5.73 (s, 1H, 6-H), 4.61 (s, 2H, NCH₂toluyl), 3.77 (s, 3H, OCH₃), 2.54 (2H, 3'-H) and 2.47 (2H, 1'-H) [2 t,** *J* **= 7.6 Hz], 2.32 (s, 3H, Ar-CH₃), 2.23 (2H, 4-H) and 1.99 (2H, 3-H) [2 t,** *J* **= 7.9 Hz], 1.65 (quintet,** *J* **= 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.8 (NC=O), 157.7 (C-4''), 137.0 (C), 134.3 (C-1''), 134.0 (C), 129.2 (4 C, CH), 127.6 (2 C, CH), 124.0 (C-6), 119.7 (C, C-5), 113.7 (2 C, CH), 55.2 (OCH₃), 48.5 (NCH₂toluyl), 34.2 (C-3'), 33.1 (C-1'), 31.3 (C-3), 29.3 (CH₂), 24.1 (C-4), 21.1 (ArCH₃); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₈NO₂ 350.2115, found 350.2115.**

7-Methoxy-9'-methyl-2',3,3',4,6',10b'-hexahydro-2H,4'H-spiro[naphthalene-1,1'-pyrido[2,1*a*]isoindol]-4'-one (11eb): m.p. 176–178 °C; IR (neat): $v_{max}/cm^{-1} = 3064$, 2927, 2857, 1726, 1661, 1609, 1500, 1437, 1344, 1238, 1119, 1038, 732, 702; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.08 (1H, 8'-H) and 6.90 (1H, 7'-H) [2 d, J = 7.6 Hz], 6.84 (d, J = 8.4 Hz, 1H, 5-H), 6.57 (s, 1H, 10'-H), 6.43 (dd, J = 8.4, 2.4 Hz, 1H, 6-H), 6.12 (d, J = 2.5 Hz, 1H, 8-H), 4.85 (d, 1H) and 4.71 (d, 1H) [J = 15.8 Hz, 6'-H], 4.84 (s, 1H, 10b'-H), 3.40 (s, 3H, OCH₃), 2.77 (d, 1H) and 2.75 (d, 1H) [J = 3.8 Hz, 4-H], 2.58–2.38 (m, 2H), 2.30 (td, J = 14.0, 4.6 Hz, 1H), 2.20–1.70 (m, 5H), 2.08 (s, 3H, ArCH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 172.5 (NC=O), 157.3 (C-7), 142.2 (C-8a), 139.0 (C-10a'), 136.8 (C-6a'), 132.9 (C), 129.4 (C-4a), 129.1 (CH), 128.4 (CH), 123.2 (CH), 122.3 (CH), 113.3 (CH), 111.1 (CH), 70.7 (C-10b'), 54.9 (OCH₃), 49.7 (C-6'), 42.8 (C-(1,1')), 38.7 (C-4), 36.2 (C-2'), 31.1 (C-3'), 29.7 (CH₂), 21.3 (ArCH₃), 20.0 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₆NO₂ 348.1958, found 348.1957.

4-(2-Bromo-4,5-dimethoxyphenyl)pentanal (6f) and 5-(2-Bromo-4,5-

dimethoxyphenyl)pentanal (5f): The reaction was performed as described for compound **5a**. Thus, to a mixture of Pd(OAc)₂ (56 mg, 2 mol%), pentenylalcohol (1.8 mL, 17.5 mmol),

triethylbenzylammonium chloride (2.8 g, 12.5 mmol) and NaHCO₃ (2.1 g, 25 mmol) in DMF (30 mL) was added iodobromide **4f** (4.3 g, 12.5 mmol), followed by stirring of the mixture for 24 h at 40 °C. Purification of the crude material by flash chromatography (ethyl acetate/hexane, 1:4) first furnished the branched aldehyde **6f** (700 mg, 18%) as colorless oil. Further elution of the column (ethyl acetate/hexane, 1:3) furnished the linear aldehyde **5f** (2.8 g, 74%) as colorless oil.

¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.70 (s, 1H, CH=O), 6.98 (s, 1H, Ar-H) and 6.67 (s, 1H, Ar-H), 3.84 (s, 3H) and 3.83 (s, 3H) [2 OCH₃], 3.28–3.12 (m, 1H, 4-H), 2.53–2.36 (m, 1H) and 2.36–2.23 (m, 1H) [2-H], 1.98–1.75 (m, 2H, 3-H), 1.21 (d, *J* = 6.9 Hz, 3H, 4-CH₃); ¹³C NMR (100 MHz,

CDCl₃): δ[ppm] = 202.1 (CH=O), 148.8 (C), 147.9 (C), 136.7 (C-1'), 115.4 (CH), 114.3 (C-2'), 109.5 (CH), 56.1 (OCH₃), 56.0 (OCH₃), 41.9 (C-2), 37.1 (C-4), 29.6 (C-3), 21.4 (C-5).

¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.75 (s, 1H, CH=O), 6.96 (s, 1H, Ar-H), 6.68 (s, 1H, Ar-H), 3.83 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 2.65 (t, *J* = 7.6 Hz, 2H, 5-H), 2.46 (dt, *J* = 7.1, 1.5 Hz, 2H, 2-H), 1.76–1.52 (m, 4H, 3-H, 4-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 202.4 (CH=O), 148.3 (C), 147.8 (C), 133.1 (C-1'), 115.5 (CH), 113.9 (C-2'), 112.8 (CH), 56.1 (OCH₃), 56.0 (OCH₃), 43.6 (C-5), 35.4 (C-2), 29.6 (C-4), 21.6 (C-3).

Ethyl 7-(2-bromo-4,5-dimethoxyphenyl)-4-formylheptanoate (8f): The reaction was performed with aldehyde **5f** (2.8 g, 9.3 mmol), pyrrolidine (1.5 mL, 18.5 mmol), K₂CO₃ (3.8 g, 27.8 mmol), molecular sieves (4 Å, 2 g) and ethyl acrylate (1.4 mL, 12.9 mmol) as described above. Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:3) furnished the aldehyde ester **5f** (2.3 g, 63% for two steps) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 9.58 (s, 1H, CH=O), 6.96 (s, 1H, Ar-H), 6.66 (s, 1H, Ar-H), 4.09 (q, *J* = 7.1 Hz, 2H, OCH₂CH₃), 3.83 (s, 3H, OCH₃), 3.81 (3H, s, OCH₃), 2.64 (t, *J* = 7.6 Hz, 2H, 7-H), 2.42–2.20 (m, 3H), 2.05–1.85 (m, 1H), 1.85–1.40 (m, 5H), 1.22 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 204.0 (CH=O), 172.8 (OC=O), 148.3 (C), 147.8 (C), 132.9 (C-1'), 115.5 (CH), 113.9 (C-2'), 112.8 (CH), 60.4 (OCH₂CH₃), 56.1 (OCH₃), 56.0 (OCH₃), 50.8 (C-4), 35.6 (C-7), 31.5 (C-2), 28.2 (CH₂), 27.4 (CH₂), 23.5 (C-3), 14.1 (OCH₂CH₃).

1-Benzyl-5-[3-(2-bromo-4,5-dimethoxyphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (9fa): As described for compound 9aa, the formyl ester 8f (2.0 g, 4.9 mmol) in CH₂ClCH₂Cl (10 mL) was reacted with benzylamine (1.1 mL, 10.0 mmol) and AcOH (0.3 mL, 4.9 mmol). Purification of the crude product by flash chromatography (ethyl acetate/hexane, 1:1) furnished the cyclic enamide 9fa (2.0 g, 90%) as a colorless solid, which was recrystallized from a mixture of CH₂Cl₂ and hexane, m.p. 110–112 °C; IR (neat): v_{max}/cm^{-1} = 3062, 3029, 2932, 2838, 1664, 1603, 1508, 1439, 1410, 1381, 1337, 1255, 1215, 1163, 1030, 959, 855, 731, 701; ¹H NMR (400 MHz, CDCl₃): δ[ppm] = 7.40–7.15 (m, 5H, Ar-H), 6.97 (s, 1H, Ar-H), 6.63 (s, 1H, Ar-H), 5.80 (s, 1H, 6-H), 4.66 (s, 2H, NCH₂Ph), 3.83 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 2.58 (t,** *J* **= 7.6 Hz, 4H, 1'-H, 3'-H), 2.28 (2H, 4-H) and 2.06 (2H, 3-H) [2 t,** *J* **= 7.9 Hz], 1.65 (quintet,** *J* **= 7.9 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): δ[ppm] = 168.9 (NC=O), 148.3 (C), 147.8 (C), 137.3 (C), 133.3 (C-1''), 128.6 (2 C, CH), 127.4 (2 C, CH), 127.3 (CH), 124.2 (C-6), 119.7 (C-5), 115.5 (CH), 113.9 (C-2''), 112.9 (CH), 56.1, 56.0 (2 OCH₃), 48.8 (NCH₂Ph), 35.3 (C-3'), 33.3 (C-1'), 31.3 (C-3), 28.1 (CH₂), 24.1 (C-4); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₇BrNO₃ 444.1169, found 444.1168.**

Palladium-catalyzed spiro cyclization of 5-(bromophenyl)propyl-substituted enamide 9fa: The reaction was performed with the enamide **9fa** (120 mg, 0.27 mmol) in anhydrous DMF (2 mL) with Ph₃P (14 mg, 20 mol%), Cs₂CO₃ (352 mg, 1.1 mmol) and Pd(OAc)₂ (6.1 mg, 10 mol%). After

loading of the reagents at room temperature, the mixture was heated to 120 °C, as described for compound **9aa**. Purification of the crude product mixture by flash chromatography (ethyl acetate/hexane, 1:1) first furnished the debromoenamide **10fa** (30 mg, 30%) as brown viscous oil. Further elution of the column (ethyl acetate/hexane, 9:1) furnished the polycyclic amide **11fa** (50 mg, 51%) as a colorless solid, which was recrystallized from a mixture of CH_2Cl_2 and hexane.

1-Benzyl-5-[3-(3,4-dimethoxyphenyl)propyl]-3,4-dihydropyridin-2(1*H***)-one (10fa): IR (neat): v_{max}/cm^{-1} = 2934, 2834, 1662, 1606, 1514, 1493, 1453, 1416, 1360, 1259, 1236, 1155, 1029, 732, 704; ¹H NMR (400 MHz, CDCl₃): <math>\delta[ppm] = 7.37–7.18 (m, 5H, Ar-H), 6.75 (d, 1H,** *J* **= 7.9 Hz, Ar-H), 6.62 (d, 1H,** *J* **= 7.9 Hz, Ar-H), 6.63 (s, 1H, 2''-H), 5.75 (s, 1H, 6-H), 4.66 (s, 2H, NCH₂Ph), 3.84 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 2.56 (t,** *J* **= 7.6 H, 2H, 3'-H), 2.49 (t,** *J* **= 7.6 H, 2H, 1'-H), 2.25 (t,** *J* **= 7.9 Hz, 2H, 4-H), 2.01 (t,** *J* **= 7.9 Hz, 2H, 3-H), 1.66 (quintet,** *J* **= 7.6 Hz, 2H, 2'-H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 168.8 (NC=O), 148.8 (C), 147.1 (C), 137.3 (C), 134.5 (C-1''), 128.6 (2 C, CH), 127.5 (2 C, CH), 127.3 (CH), 124.0 (C-6), 120.1 (C-6''), 119.9 (C-5), 111.6 (CH), 111.1 (CH), 55.9 (OCH₃), 55.7 (OCH₃), 48.7 (NCH₂Ph), 34.8 (C-3'), 33.1 (C-1'), 31.2 (C-3), 29.3 (CH₂), 24.1 (C-4); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₈NO₃ 366.2064, found 366.2063.**

6,7-Dimethoxy-2',3,3',4,6',10b'-hexahydro-2*H***,4'***H***-spiro[naphthalene-1,1'-pyrido[2,1***a***]isoindol]-4'-one (11fa): m.p. 173–175 °C; IR (neat): v_{max}/cm^{-1} = 3055, 2933, 2857, 1664, 1604, 1590, 1488, 1437, 1345, 1255, 1215, 1120, 722, 696; ¹H NMR (400 MHz, CDCl₃): \delta[ppm] = 7.20 (d,** *J* **= 7.6 Hz, 1H, 10'-H), 7.09 (t,** *J* **= 7.6 Hz, 1H, 8'-H), 6.93 (t,** *J* **= 7.6 Hz, 1H, 9'-H], 6.75 (d,** *J* **= 7.6 Hz, 1H, 7'-H), 6.39 (s, 1H, 8-H), 6.06 (s, 1H, 5-H), 4.89 (d, 1H) and 4.76 (d, 1H) [***J* **= 16.0 Hz, 6'-H], 4.87 (s, 1H, 10b'-H), 3.72 (s, 3H, OCH₃), 3.40 (s, 3H, OCH₃), 2.85–2.65 (m, 2H), 2.58–2.40 (m, 2H), 2.31 (td,** *J* **= 14.0, 4.3 Hz, 1H, 1H), 2.20–1.75 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): \delta[ppm] = 172.6 (NC=O), 146.8 (C-7), 146.7 (C-6), 138.9 (C-10a'), 135.7 (C-8a), 132.9 (C-6a'), 129.4 (C-4a), 127.6 (CH), 127.3 (CH), 122.9 (CH), 122.5 (CH), 110.5 (CH), 110.0 (CH), 70.8 (C-10b'), 55.4 (OCH₃), 55.3 (OCH₃), 49.9 (C-6'), 42.2 (C-(1,1')), 38.3 (C-4), 36.1 (C-2'), 31.1 (C-3'), 30.0 (CH₂), 19.9 (CH₂); HRMS (ESI): [M+H]⁺ calcd for C₂₃H₂₆NO₃ 364.1907, found 364.1905.** Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Fig. 1 X-ray structure of pentacycle 11aa.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

