Supplementary Material (ESI) for *Chemical Communications* This journal is © The Royal Society of Chemistry 2008

Electronic Supplementary Information

Solvent dependent asymmetric hydrogenation with self-assembled catalysts: a combined catalytic, NMR- and IR-study

Ivan A. Shuklov, ^a Natalia V. Dubrovina, ^b* Enrico Barsch, ^{a,c} Ralf Ludwig, ^{a,c} Dirk Michalik, ^a Armin Börner^{a,b}*

Contribution from: ^aLeibniz-Institut für Katalyse an der Universität Rostock e.V., A.-Einstein-Str. 29a, 18059 Rostock (Germany). Fax: (+49)381-1281-5202. E-mail: <u>natalia.dubrovina@uni-rostock.de</u>, <u>armin.boerner@catalysis.de</u>. ^bInstitut für Chemie der Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock (Germany). ^cInstitut für Chemie der Universität Rostock, Dr.-Lorenz-Weg 1, 18059 Rostock (Germany).

Experimental

NMR-Study

 31 P NMR spectra were recorded on a AVANCE 500 spectrometer at 162.0 MHz. The 31 P chemical shifts are referenced to 85% H₃PO₄ as external standard.

IR-Study

The IR measurements were performed with a Bruker Vertex 70 FTIR-spectrometer. The spectrometer was purged continuously with dry air during the experiments in order to minimize contributions from atmospheric water vapor. A L.O.T.-Oriel variable-temperature cell equipped with CaF_2 windows and an optical pathlength 0.05 mm was used. Temperatures were maintained with an external Haake DC-30/K-20 cryostat and were monitored with a NiCrNi-thermocouple attached directly to the cell. For each spectrum 75 scans at a spectral resolution of 0.5 cm⁻¹ were recorded. Subtraction of the solvent's, instrument's and cell window's optical response was carried out by using reference spectra of the solvent spectra obtained at the same temperatures as the sample spectra.

In the literature, up to now IR-studies of the tautomeric system 2-hydroxypyridine/2-pyridone in TFE were unknown. For IR-spectra in MeOH and chlorinated alkanes (CHCl₃), see: S. Castillo, J. Favrot, T. Bourssou, J. F. Brazier, M. T. Boisdon, A. Zwick, *Spectrochimica Acta* **1994**, *50A*, 1121-1139; D. Schioeberg, G. Zundel, *J. Chem. Soc., Faraday Trans.* 2 **1973**, *69*, 771-81.

Ab-initio-calculations at the B3LYP level

Ab-initio-calculations at the B3LYP level were performed within Gaussian 03, Revision C.02, M. J. Frisch, G.
W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K.
N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,

M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.