Metallophthalocyanine Complex, Cr (TBPC)OTf: An Efficient, Recyclable Lewis Acid
 Catalyst in the Regio- and Stereoselective Rearrangement of Epoxides to Aldehydes

Kohji Suda, * Shin-ichiro Nakajima, Yasumi Sato, and Toshikatsu Takanami*

Meiji Pharmaceutical University
Noshio, Kiyose, Tokyo 204-8588, Japan

SUPPORTING INFORMATION

General: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a JEOL JNM-EX270, JNM-AL300, and JNM-GSX400 spectrometer. The chemical shifts were reported in ppm relative to CHCl_{3} ($\delta=7.24$) for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and relative to the central CDCl_{3} resonance $\left(\delta=77.0\right.$) for ${ }^{13} \mathrm{C}$-NMR. IR spectra were recorded on a JASCO FT/IR-7000 spectrophotometer. UV-visible absorption spectra were measured with a Hitachi U-3210 spectrophotometer using dichloromethane as a solvent and reference in $1.0-\mathrm{cm}$ quartz cells. Optical rotation was measured on a JASCO DIP-4 polarimeter. The mass spectroscopic data were obtained on a JEOL JNM-DX302 spectrometer. Chiral HPLC analysis was performed on a JASCO GULLIVER-series instrument. Merck kiesel-gel 60 and Merck kiesel-gel $60 \mathrm{~F}_{254}$ were employed for silica gel column and thin layer chromatography, respectively. 1,2-Dichloroethane was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Free base 2,9,16,23-tetra-tert-butylphthalocyanin, $\mathrm{H}_{2}(\mathrm{TBPC})$, was purchased from Aldrich. All other commercially available reagents were used without further purification unless otherwise stated.

Preparation of [2,9,16,23-tetra-tert-butylphthalocyaninato]chromium(III) chloride, $\mathbf{C r}(\mathbf{T B P C}) \mathbf{C l}$: The corresponding free base 2,9,16,23-phthalocyanine H_{2} (TBPC) $(2.22 \mathrm{~g}, 3.3$ mmol) was dissolved in 150 mL of refluxing DMF. After waiting for several hours ($1-2 \mathrm{~h}$) for the phthalocyanine to dissolve, $\mathrm{CrCl}_{2}(2 \mathrm{~g})$ was added to the refluxing solution. The reaction mixture was refluxed for 5 h under Ar , and then allowed to cool to room temperature. The volume of the solvent was reduced to ca. 50 mL under a reduced pressure, poured into brine (1 L), and allowed to stand for 12 h at room temperature. The resulting precipitate was collected by filtration, and washed with water $(20 \mathrm{~mL} \times 3)$ to give crude $\mathrm{Cr}(\mathrm{TBPC}) \mathrm{Cl}$. The crude $\mathrm{Cr}(\mathrm{TBPC}) \mathrm{Cl}$ was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, and then filtered. The filtrate was concentrated under a reduced pressure. The residue was applied to an aluminum column (Merck Aluminum oxide 90 active basic, activity stage I) and eluted with CHCl_{3}. The remaining H_{2} (TBPC) was eluted as a blue band with the solvent front. This was followed by a slow-moving green band of $\mathrm{Cr}(\mathrm{TBPC}) \mathrm{Cl}$. After the $\mathrm{Cr}(\mathrm{TBPC}) \mathrm{Cl}$ was eluted from the column,
the volume of CHCl_{3} was reduced to ca. 50 mL under a reduced pressure. The solution containing the $\mathrm{Cr}(\mathrm{TBPC}) \mathrm{Cl}$ was washed with $1 \mathrm{M} \mathrm{HCl},(100 \mathrm{~mL} \times 2)$, dried over MgSO_{4}, and concentrated in vacuo. The resulting solid was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexane and dried at $100{ }^{\circ} \mathrm{C}$ under a reduced pressure ($<1 \mathrm{mmHg}$) for 12 h to give purified Cr (TBPC)OTf ($1.50 \mathrm{~g}, 61 \%$). UV-visible spectrum and IR spectrum are shown in Fig. 1 and Fig. 2, respectively, on page S8. HRFAB-MS: calcd for $\left[\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{ClCrN}_{8}\right]^{+} 823.3096$, found 823.3098.

Preparation of [2,9,16,23-tetra-tert-butylphthalocyaninato]chromium (III) triflate,

 $\mathbf{C r}$ (TBPC)OTf: $\mathrm{Cr}(\mathrm{TBPC}) \mathrm{Cl}(165 \mathrm{mg}, 0.2 \mathrm{mmol})$ and AgOTf ($62 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added to a flame-dried, argon-purged two-necked 100 mL round-bottom flask equipped with a condenser. Absolute THF (30 mL) was added, and the mixture was refluxed under Ar for 5 h . The reaction mixture was allowed to cool to room temperature, and concentrated in vacuo. The resulting residue was dissolved in dry dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{ca} .30 \mathrm{~mL})$. The solution was filtered through a pad of Celite, and the filter cake was washed with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $10 \mathrm{~mL} \times 3$). The combined filtrate was concentrated under a reduced pressure to give crude $\mathrm{Cr}(\mathrm{TPP}) \mathrm{OTf}$ as a dark greenish solid. The crude Cr (TBPC)OTf was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca .50 mL), and the solution was filtered through a membrane filter (Millipore Durapore HVLP02500) under Ar. At this point, Ag salts can be completely removed. The volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reduced to ca. 30 mL under a reduced pressure. Hexane (100 mL) was added, and the mixture was allowed to stand at room temperature for 5 h under Ar. The resulting solid was collected by filtration with a membrane filter (Millipore Durapore HVLP02500), and dried under a reduced pressure $(<1 \mathrm{mmHg})$ at $100^{\circ} \mathrm{C}$ for 12 h to give purified Cr (TBPC)OTf (168 mg , 90%). UV-visible spectrum and IR spectrum are shown in Fig. 3 and Fig. 4, respectively, on page S9. HRFAB-MS: calcd for $\left[\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{SCr}\right]^{+}$937.2927, found 937.2944.Preparation of epoxides: Optical active epoxy silyl ethers $\mathbf{1 d},{ }^{1} \mathbf{1 e},{ }^{2} \mathbf{1 f},{ }^{2} \mathbf{1 g},{ }^{3}$ and $\mathbf{1 h}^{3}$ were prepared by the reported methods. Other epoxides were prepared by simple epoxidation of olefins with MCPBA. The absolute configuration of epoxides $\mathbf{1 d} \mathbf{h}$ was determined by comparison of the optical rotations with those of authentic samples. ${ }^{1-3}$

8-(tert-Butyldimethylsiloxy)-2,6-dimethyl-2-octene oxide (1a) $)^{3}$: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta 3.71-3.59(2 \mathrm{H}, \mathrm{m}), 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{t}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.61+21(7 \mathrm{H}, \mathrm{m})$, $0.90(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.05(6 \mathrm{H}, \mathrm{s})$.

1-Cyclohexyliden-1-hexene oxide (1b): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 2.70(1 \mathrm{H}, \mathrm{t}, J=6.0$ $\mathrm{Hz}), 1.78-1.34(16 \mathrm{H}, \mathrm{m}), 0.92(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 64.92$, $62.73,35.82,29.45,28.94,27.96,25.91,25.08,24.99,22.76,14.17$.

5-Methyl-5-decene oxide (1c) (cis / trans $=1: 1$): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 2.69(1 \mathrm{H}$, br $\mathrm{t}, J=6.0 \mathrm{~Hz}), 1.65-1.32(12 \mathrm{H}, \mathrm{m}), 1.27(3 \mathrm{H} \times 0.5, \mathrm{~s}$, for cis-isomer), $1.23(3 \mathrm{H} \times 0.5$, s, for E-isomer), 0.87-0.99 ($6 \mathrm{H}, \mathrm{m}$), ${ }^{13} \mathrm{C}$-NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 65.0$ (for cis-isomer), 63.7 (for trans-isomer), 61.0 (for cis-isomer), 60.9 (for trans-isomer), 38.7 (for trans-isomer), 32.7 (for $c i s$-isomer), 29.0 (for $c i s$-isomer), 28.8 (for trans-isomer), 28.6 (for trans-isomer), 28.3 (for $c i s$-isomer), 27.8 (for $c i s$-isomer), 27.6 (for trans-isomer), 23.2 (for trans-isomer), 22.9 (for $c i s$-isomer), 22.8 (for trans-isomer), 22.7 (for cis-isomer), 22.5 (for cis-isomer), 16.7 (for trans-isomer), 14.2, 14.2.

(2S,3S)-3-Isopropyl-2-phenyl-2,3-epoxypropan-1-triphenylsilyl ether (1d) ${ }^{1}:[\alpha]_{\mathrm{D}}{ }^{23}=$ $-24.8^{\circ}\left(c 1.04, \mathrm{CHCl}_{3},>99 \% e e\right),\left[\right.$ lit. $\left.{ }^{1}[\alpha]_{\mathrm{D}}{ }^{26}=-24.8^{\circ}\left(c 1.83, \mathrm{CHCl}_{3},>99 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.27(20 \mathrm{H}, \mathrm{m}), 4.08(2 \mathrm{H}, \mathrm{s}), 2.94(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 0.99-0.92$ $(4 \mathrm{H}, \mathrm{m}), 0.74(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$. The ee was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the Mosher's ester derived from the corresponding epoxy alcohol with (-)-MTPA chloride.

(2R,3R)-2-(2,2-Dibromoethenyl)-2-methyl-3-(3-methyl-2-butenyl) oxirane (1e) ${ }^{2}:[\alpha]_{\mathrm{D}}{ }^{25}=$ $-48.3^{\circ}\left(c \quad 0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2},>99 \% e e\right),\left[l i t .{ }^{2}[\alpha]_{\mathrm{D}}{ }^{25}=-47.1^{\circ}\left(c \quad 0.675, \mathrm{CH}_{2} \mathrm{Cl}_{2},>95 \% e e\right)\right] ;$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 6.72(1 \mathrm{H}, \mathrm{s}), 5.24(1 \mathrm{H}, \mathrm{brt}, J=7.2 \mathrm{~Hz}), 3.01(1 \mathrm{H}, \mathrm{t}, J=6.3$ $\mathrm{Hz}), 2.18-2.40(2 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s})$. The $e e$ was determined by ${ }^{1} \mathrm{H}$-NMR analysis of the Mosher's ester derived from the corresponding epoxyalcohol with (+)-MTPA chloride.

(2R,3R)-2-Ethenyl-2-methyl-3-(2-phenylethyl)oxirane (1f) ${ }^{2}:[\alpha]_{D}{ }^{25}=+15.9^{\circ}$ (c 1.20, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2},>99 \% e e\right),\left[\mathrm{lit} .^{2}[\alpha]_{\mathrm{D}}{ }^{25}=+15.3^{\circ}\left(c 1.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}), $\delta 7.32-7.28(2 \mathrm{H}, \mathrm{m}), 7.22-7.18(3 \mathrm{H}, \mathrm{m}), 5.63(1 \mathrm{H}, \mathrm{dd}, J=10.8$ and 17.4 Hz$), 5.27$ $(1 \mathrm{H}, \mathrm{dd}, J=1.1$ and 17.4 Hz$), 5.16(1 \mathrm{H}, \mathrm{dd}, J=1.1$ and 10.8 Hz$), 2.93-2.81(1 \mathrm{H}, \mathrm{m}), 2.85$ $(1 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{dt}, J=8.1$ and 13.9 Hz$), 2.03-1.80(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{s})$. The $e e$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the Mosher's ester derived from the corresponding epoxyalcohol with (+)-MTPA chloride.

(2R,3R)-1-(tert-butyldimethylsilyloxy)-3-phenyl-2,3-epoxypropane (1g) ${ }^{4}:[\alpha]_{D}{ }^{23}=+27.9^{\circ}$ (c 1.12, $\mathrm{CHCl}_{3},>99 \%$ ee), $\left[\right.$ lit. $\left.{ }^{3}[\alpha]_{\mathrm{D}}{ }^{24}=+27.6^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}, 98 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.39-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.97(1 \mathrm{H}, \mathrm{dd}, J=3.1$ and $12.1 \mathrm{~Hz}, \mathrm{CHOSi}), 3.83(1 \mathrm{H}$, dd, $J=4.4$ and $12.1 \mathrm{~Hz}, \mathrm{CHOSi}), 3.81(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{PhCH}), 3.17-3.13(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}-\mathrm{O}\right), 0.93\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.12\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right), 0.11\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$. The ee was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the Mosher ester derived from the corresponding epoxy alcohol with (-)-MTPA chloride.

(2S,3S)-1-(tert-butyldimethylsilyloxy)-3,7-dimethyl-2,3-epoxyoct- 6-ene (1h) ${ }^{4}:[\alpha]_{\mathrm{D}}{ }^{23}=$ -4.80° (c 1.04, $\mathrm{CHCl}_{3},>99 \%$ ee $),\left[\right.$ lit. ${ }^{3}[\alpha]_{\mathrm{D}}{ }^{24}=-4.57^{\circ}$ (c 1.00, $\mathrm{CHCl}_{3}, 95 \%$ ee)]; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 5.10(1 \mathrm{H}$, br t $), 3.73(2 \mathrm{H}, \mathrm{dd}, J=1.2$ and 5.3 Hz$), 2.90(1 \mathrm{H}, \mathrm{t}, J=5.3$ $\mathrm{Hz}), 2.08(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.68\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\right), 1.61\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\right)$, $1.65-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-\mathrm{O}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}-\mathrm{O}\right), 0.91\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.09\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$, $0.08\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$. The ee was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the Mosher ester derived from the corresponding epoxy alcohol with (+)-MTPA chloride.

General procedure for the catalytic rearrangement of epoxides to aldehydes: The phthalocyanine catalyst $\mathrm{Cr}(\mathrm{TBPC}) \mathrm{OTf}$ was dried over silica gel for 10 h under a reduced pressure (1 mmHg) at $100^{\circ} \mathrm{C}$ just before its use. To a solution of epoxides $\mathbf{1}(1.0 \mathrm{mmol})$ in freshly distilled 1,2 -dichloroethane (5 mL) was added $\operatorname{Cr}(\mathrm{TBPC}) \mathrm{OTf}(9.4 \mathrm{mg}, 0.01 \mathrm{mmol})$. The mixture was heated to reflux under Ar until shown to be complete by TLC analysis. The reaction mixture was concentrated under a reduced pressure, and hexane (10 mL) was added. The mixture was allowed to stand for 12 h , and then filtered through a membrane filter
(Millipore Durapore HVLP02500) to remove the catalyst. The filtrate was concentrated under a reduced pressure, and the residue was purified by flush chromatography on silica-gel (1:10 AcOEt / hexane) to afford the title product 3 .

7-(tert-Butyldimethylsiloxy)-2,2,5-trimethylheptanal (3a) $)^{3}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $9.44(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 3.69-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right), 1.60-1.07\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right.$ and $\left.3 \mathrm{CH}_{2}\right), 1.04$ $\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}\right), 0.02\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.07 ; \mathrm{H}, 11.96$. Found: C, 66.98; H, 11.98.

1-Butylcyclohexanecarbaldehyde (3b) ${ }^{1}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 9.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, $1.91-1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.56-1.07\left(14 \mathrm{H}, \mathrm{m}, 7 \mathrm{CH}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 207.4,49.7,36.3,31.1,25.9,25.6,23.4,22.64,13.9$.

2-Butyl-2-methylhexanal (3c): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 9.43$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), 1.54-1.05 $\left(12 \mathrm{H}, \mathrm{m}, 6 \mathrm{CH}_{2}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}\right), 0.89\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100.4 \mathrm{MHz}$, CDCl_{3}), $\delta 206.7,49.1,35.4,26.3,23.5,18.3,14.1$.

(S)-3-Methyl-2-phenyl-2-((triphenylsilyloxy)methyl)butanal (3d) ${ }^{1}:[\alpha]_{\mathrm{D}}{ }^{23}=-28.1^{\circ}(c 1.05$, $\left.\mathrm{CHCl}_{3}, 98 \% e e\right),\left[\right.$ lit. $\left.{ }^{1}[\alpha]_{\mathrm{D}}{ }^{26}=-28.5^{\circ}\left(c \quad 0.29, \mathrm{CHCl}_{3},>99 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 9.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.66-7.07(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.28(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{CHOSi})$, $4.25(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{CHOSi}), 2.74\left(1 \mathrm{H}\right.$, septet, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. The ee was determined by HPLC analysis after the conversion of the aldehyde, 3d, to the corresponding alcohol with NaBH_{4} [DAICEL CHIRACEL OD-H, 2-propanol/hexane $=0.2: 500$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=13.5 \mathrm{~min}$ (minor isomer) and 14.0 min (major isomer), detection at 220 nm].

(S)-2-(2,2-Dibromovinyl)-2,5-dimethylhex-4-enal (3e) $)^{2}:[\alpha]_{\mathrm{D}}{ }^{25}=+23.1^{\circ}\left(c 1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, 99% ee $),\left[\mathrm{lit}^{2}{ }^{2}[\alpha]_{\mathrm{D}}{ }^{25}=+22.3^{\circ}\left(c 0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2},>95 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $9.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 6.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{CBr}_{2}\right), 5.06\left(1 \mathrm{H}, \mathrm{tq}, J=1.5\right.$ and $\left.7.5 \mathrm{~Hz}, \mathrm{C} \underline{H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.43\left(1 \mathrm{H}, \mathrm{dd}, J=7.5\right.$ and $\left.14.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}-\mathrm{CHO}\right), 2.34(1 \mathrm{H}, \mathrm{dd}, J=7.5$ and 14.5 Hz , $\left.\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CHO}\right), 1.73\left(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}-\mathrm{CHO}\right)$. The ee was determined by HPLC analysis after the conversion of the aldehyde, $\mathbf{3 e}$, to the corresponding alcohol with NaBH_{4} [DAICEL CHIRACEL OD-H, 2-propanol/hexane $=$ 1:100, flow rate $1.5 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=11.3 \mathrm{~min}$ (minor isomer) and 12.6 min (major isomer), detection at 220 nm].

(S)-2-Methyl-2-phenethylbut-3-enal (3f) $)^{2}:[\alpha]_{\mathrm{D}}{ }^{25}=+26.7^{\circ}\left(c 1.15, \mathrm{CH}_{2} \mathrm{Cl}_{2},>99 \%\right.$ ee), [lit. ${ }^{2}$ $\left.[\alpha]_{\mathrm{D}}{ }^{25}=+25.8^{\circ}\left(c 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 9.43(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, $7.32-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.22-7.17(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.86\left(1 \mathrm{H}, \mathrm{dd}, J=10.8\right.$ and $\left.17.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.34\left(1 \mathrm{H}, \mathrm{dd}, J=0.7\right.$ and $\left.10.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.20\left(1 \mathrm{H}, \mathrm{dd}, J=0.7\right.$ and $\left.17.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 2.64-2.47 (2H, m, CH2-C), 1.94-1.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{CH}_{2}$), $1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. The ee was determined by HPLC analysis after the conversion of the aldehyde, $\mathbf{3 g}$, to the corresponding alcohol with NaBH_{4} [Daicel CHIRACEL OD-H, 2-propanol/hexane $=10: 90$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{R}}=21.2 \mathrm{~min}$ (major isomer) and 22.8 min (minor isomer), detection at 254 nm].

(R)-3-(tert-Butyldimethylsilyloxy)-2-phenylpropanal (3g) $)^{4}:[\alpha]_{\mathrm{D}}{ }^{23}=+32.8^{\circ}\left(c 1.15, \mathrm{CHCl}_{3}\right.$, $>99 \%$ ee $),\left[\right.$ lit. $\left.{ }^{3}[\alpha]_{\mathrm{D}}{ }^{22}=+32.3^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}, 98 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $9.84(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{CHO}), 7.41-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.25(1 \mathrm{H}, \mathrm{dd}, J=7.3$ and 10.1 Hz , CHOSi), $3.98(1 \mathrm{H}, \mathrm{dd}, J=5.7$ and $10.1 \mathrm{~Hz}, \mathrm{CHOSi}), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{PhC} \underline{H}), 0.85$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.01\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \mathrm{Si}\right),-0.01\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \mathrm{Si}\right)$. The ee was determined by HPLC analysis after the conversion of aldehyde $\mathbf{3 h}$ to the corresponding alcohol with NaBH_{4} and then to the benzoic ester with $\mathrm{PhCOCl}, \mathrm{DMAP}$, and $\mathrm{Et}_{3} \mathrm{~N}$ [DAICEL CHIRALPAK AD-H, 2-propanol/hexane $=1: 500$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}} 18.3 \mathrm{~min}$ (minor isomer) and 19.6 min (major isomer), detection at 220 nm].

(S)-2-((tert-Butyldimethylsilyloxy)methyl)-2,6-dimethylhept-5-enal (3h) $)^{4}:[\alpha]_{\mathrm{D}}{ }^{23}=+6.80^{\circ}$ (c 1.12, $\mathrm{CHCl}_{3},>99 \%$ ee $),\left[\mathrm{lit} .^{3}[\alpha]_{\mathrm{D}}{ }^{24}=+6.45^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}, 95 \% e e\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 9.56(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 5.06(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{CH}=\mathrm{C}), 3.68(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{CHOSi})$, $3.57(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{CHOSi}), 1.96-1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}\right)$, $1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}\right), 1.63-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{C}-\mathrm{CHO}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.87(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{t} \mathrm{Bu}\right), 0.03\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$. The ee was determined by HPLC analysis after the conversion of the aldehyde, $\mathbf{3 j}$, to the corresponding alcohol with NaBH_{4} and then to the p-nitrobenzoic ester with $p-\mathrm{NO}_{2}-\mathrm{PhCOCl}, \mathrm{DMAP}$, and $\mathrm{Et}_{3} \mathrm{~N}$ [DAICEL CHIRALPAK OD-H, 2-propanol/hexane $=1: 500$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}} 19.3 \mathrm{~min}$ (major isomer), detection at 250 nm].

Molecular structures of meso-substituted porphyrins given in Table 1:

$$
\begin{aligned}
& \operatorname{Cr}(\text { TPFP }) O T f: R^{1}=R^{2}=R^{3}=C_{6} F_{5} \\
& \operatorname{Cr}\left(\text { DPP-Br)OTf: } R^{1}=P h, R^{2}=H, R^{3}=B r\right. \\
& \operatorname{Cr}(\text { DPP-2Br }) O T f: R^{1}=P h, R^{2}=R^{3}=B r \\
& \operatorname{Cr}(D P P-C N) O T f: R^{1}=P h, R^{2}=H, R^{3}=C N \\
& \operatorname{Cr}(D P P-2 C N) O T f: R^{1}=P h, R^{2}=R^{3}=C N
\end{aligned}
$$

These porphyrin catalysts can be prepared from metal insertion reaction of the corresponding free base porphyrins with CrCl_{2} followed by axial ligand exchange with AgOTf. The starting free base porphyrins were prepared by the literature methods. ${ }^{5}$

References

1 T. Kimura, N. Yamamoto, Y. Suzuki, K. Kawano, Y. Norimine, K. Ito, S. Nagato, Y. Iimura and M. Yonaga, J. Org. Chem., 2002, 67, 6228-6231.
2 M. E. Jung and D. C. D'Amico, J. Am. Chem. Soc., 1993, 115, 12208-12209.
3 K. Maruoka, T. Ooi, S. Nagahara and H. Yamamoto, Tetrahedron, 1991, 47, 6983-6998.
4 K. Suda, T. Kikkawa, S. Nakajima and T. Takanami, J. Am. Chem. Soc., 2004, 126, 9554-9555.

5 (a) H_{2} (DPP-Br) and H_{2} (DPP-2Br): S. G. DiMagno, V. S. Y. Lin and M. J. Therien, J. Org. Chem., 1993, 58, 5983-5993; (b) $\mathrm{H}_{2}(\mathrm{DPP}-\mathrm{CN})$ and $\mathrm{H}_{2}(\mathrm{DPP}-2 \mathrm{CN})$: T. Takanami, M. Hayashi, H. Chijimatsu, W. Inoue and K. Suda, Org. Lett., 2005, 7, 3937-3940; (c) H_{2} (TPFP): commercially available.

Fig. 1. UV-vis spectrum of $\mathbf{C r}(\mathbf{T B P C}) \mathrm{Cl}$ in $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{2}$.

Fig. 2. IR spectrum of $\mathbf{C r}(\mathbf{T B P C}) \mathrm{Cl}$

Fig. 3 UV-vis spectrum of $\mathbf{C r}(\mathbf{T B P C}) O T f$ in $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$.

Fig. 4. IR spectrum of $\mathbf{C r}$ (TBPC)OTf.

