Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Self organized nano-tubes of TiO2-MoO3 with enhanced electrochromic properties

Electronic supplimentry information (ESI) †

Fig. S1. SEM (a) top and (b) cross-sectional view of self organized TiO₂-MoO₃ composite oxide nano-structure.

Fig. S2. TEM-SAD patterns of TiO₂-MoO₃ composite oxide nano-tubes (a) before and (b) after annealing at 550 °C in air showing the crystallization of the as prepared amorphous nano-tubes into polycrystaline structure after annealing. In (b) A: anatase TiO₂, R: rutile TiO₂ and M: α -MoO₃. (c) TEM image of the selected area of the annealed nano-tube sample.

Self organized nano-tubes of TiO2-MoO3 with enhanced electrochromic properties

Fig. S3. XPS spectra of (a) O1s, (b)Ti2p and (c) Mo3d in TiO₂-MoO₃ composite oxide nanotubes. Spectra of O1s and Ti2p in TiO₂ nano-tubes have also been shown in (a) and (b) for comparaison.

Fig. S4 EDX spectrum of TiO₂-MoO₃ composite oxide nano-tubes.

Fig. S5. Normalized reflectivity (ΔR) from the surface of amorphos TiO₂-MoO₃ composite oxide nano-tube with respect to the number of anonic and cathodic cycle between +1.0V to -0.7V in 0.1M HClO₄ aquous solution.