SUPPORTING INFORMATION

A Porous 3D Heterometal-Organic Framework Containing Both Lanthanide and High-Spin Fe(II) Ions

Bin Zhao, Xiao-Yan Chen, Zhi Chen, Wei Shi, Peng
Cheng,* Shi-Ping Yan, Dai-Zheng Liao

General Methods

Analyses for C, H and N were carried out on a Perkin-Elmer analyzer. PXRD were recorded on a rigakudmax 2500 diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Thermal gravimetric analyses were completed on a NETZSCH TG 209 instrument. Variable-temperature magnetic susceptibilities were performed on a Quantum Design MPMS-7 SQUID magnetometer. Diamagnetic corrections were made with Pascal's constants for all the constituent atoms. The luminescent spectra were recorded on WGY-10 spectrometer. And the Mössbauer spectra were measured by an Oxford MS-500 model constant acceleration Mössbauer spectrometer with a 1024 multichannel analyzer. The velocity was calibrated by an α-Fe foil. The radiation source was ${ }^{57} \mathrm{Co} / \mathrm{Rh}$. A xenon (methane) proportional counter was used as a detector. Computer fits were performed to all measured data.

Crystal Structure Determination

Diffraction intensity data for single crystals of 1-3 were collected at room temperature on a Bruker Smart CCD diffractometer equipped with graphitemonochromated $\operatorname{Mo} K \alpha$ radiation $(\lambda=0.71073$ \AA). The structures were solved by the direct method and refined by the full-matrix least-squares method on F^{2} with anisotropic thermal parameters for all non-hydrogen atoms. ${ }^{[1,2]}$ Hydrogen atoms were located geometrically and refined isotropically. See the CIF file for details.

Crystal data for 2 and 3

For $2\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{GdFe}_{1.5} \mathrm{~N}_{3} \mathrm{O}_{16.5}\right): \mathrm{M}=817.41$, Hexagonal, $P 6 / m c c, a=b=15.291(4) \AA, c=$ $15.573(7) \AA,, V=3153.4(17) \AA^{3}, Z=4,2 \theta_{\max }=50.02^{\circ}, T=293(2) \mathrm{K}, R_{\text {int }}=0.1206$, reflections collected/unique $=7195 / 948, \mathrm{GOF}=1.018, R 1[I>2 \sigma(I)]=0.0343$ and $w R 2=0.0927$. Crystal data
for $3\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{TbFe}_{1.5} \mathrm{~N}_{3} \mathrm{O}_{16.5}\right): \mathrm{M}=819.07$, Hexagonal, $P 6 / m c c, a=b=15.199(2) \AA, c=15.589(5)$ $\AA, V=3118.8(12) \AA^{3}, Z=4,2 \theta_{\max }=50.06^{\circ}, T=293(2) \mathrm{K}, R_{\text {int }}=0.0550$, reflections collected/unique $=11486 / 948, \mathrm{GOF}=1.089, R 1[I>2 \sigma(I)]=0.0256$ and $w R 2=0.0673$.

Table S1. Crystal data and structure refinement of 1-3

	1	2	3
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{EuFe}_{1.5} \mathrm{~N}_{3} \mathrm{O}_{16.5}$	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{GdFe}_{1.5} \mathrm{~N}_{3} \mathrm{O}_{16.5}$	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{TbFe}_{1.5} \mathrm{~N}_{3} \mathrm{O}_{16.5}$
Formula weight	812.12	817.41	819.07
Temperature	293(2) K	293(2) K	293(2) K
Wavelength	0.71073 A	0.71073 A	0.71073 A
Monochromator	Graphite	Graphite	Graphite
Crystal System	Hexagonal	Hexagonal	Hexagonal
Space group	P6/mcc	P6/mcc	P6/mcc
Unit cell Dimensions	$a=b=15.238(3) \AA$	$a=b=15.291$ (4) \AA	$a=b=15.199(2) \AA$
	$c=15.663(5) \AA$	$c=15.573(7) \AA$	$c=15.589(5) \AA$
	$\gamma=120^{\circ}$	$\gamma=120^{\circ}$	$\gamma=120^{\circ}$
Volume	3149.8(13) \AA^{3}	3153.4(17) \AA^{3}	3118.8(12) \AA^{3}
Z	4	4	4
Density (calculated)	$1.713 \mathrm{Mg} / \mathrm{m}^{3}$	$1.722 \mathrm{Mg} / \mathrm{m}^{3}$	$1.744 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.728 \mathrm{~mm}^{-1}$	$2.839 \mathrm{~mm}^{-1}$	$3.012 \mathrm{~mm}^{-1}$
$F(000)$	1596	1600	1604
θ	3.09 to 25.02°	3.08 to 25.01°	3.10 to 25.03°
Limiting indices	$\begin{aligned} & -18 \leq h \leq 12 \\ & -4 \leq k \leq 18 \\ & -18 \leq l \leq 18 \end{aligned}$	$\begin{aligned} & -5 \leq h \leq 18 \\ & -18 \leq k \leq 17 \\ & -17 \leq l \leq 17 \end{aligned}$	$\begin{aligned} & -18 \leq h \leq 16 \\ & -12 \leq k \leq 18 \\ & -18 \leq l \leq 17 \end{aligned}$
Reflections collected / unique	$\begin{aligned} & 8226 / 960 \\ & {[R(\text { int })=0.0603]} \end{aligned}$	$\begin{aligned} & 7195 / 948 \\ & {[R(\text { int })=0.1206]} \end{aligned}$	$\begin{aligned} & 11486 / 948 \\ & {[R(\text { int })=0.0550]} \end{aligned}$
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	960 / 0 / 74	948 / 0 / 76	948 / 0 / 74
Goodness-of-fit on F^{2}	1.082	1.018	1.089
Final R indices [$1>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0245 \\ & w R_{2}=0.0621 \end{aligned}$	$\begin{aligned} & R_{1}=0.0343 \\ & w R_{2}=0.0927 \end{aligned}$	$\begin{aligned} & R_{l}=0.0256 \\ & w R_{2}=0.0673 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0468 \\ & w R_{2}=0.0733 \end{aligned}$	$\begin{aligned} & R_{1}=0.0643 \\ & w R_{2}=0.1049 \end{aligned}$	$\begin{aligned} & R_{l}=0.0422 \\ & w R_{2}=0.0742 \end{aligned}$
Largest diff. Peak and hole	1.014 and -0.569 e. \AA^{-3}	1.311 and -0.398 e. \AA^{-3}	1.054 and -0.320 e. \AA^{-3}

Figure S1. The space filling and ball-stick modes of the cross section of 1D tunnel in 1. Color codes: green, Eu; grey, C; red, O; purple, Fe.

Figure S2. The wall of 1D channel was constructed by interweaving left- and right-hand sextuple-stranded helixes.

Figure S3. (Top) Side view of 'water pipe' in 1D channel with C_{6} symmetry. (Bottom) The distance between adjacent water in the 1D channel, and hydrogen bonds between lattice water molecules and coordinated water on Fe^{2+}.

Figure S4. TG plots of complexes 3, 3a and $\mathbf{3 b}$.

Figure S5. a) the simulated PXRD pattern for 3; b), c) and d) corresponding to experimental ones for 3, 3a (dehydrated) and $\mathbf{3 b}$ (adsorbed $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$), respectively.

Figure S6. Plots of $\chi_{\mathrm{M}} T$ versus T for 2.

Figure S7. Emission spectra of complex 1 in DMF at RT (excited at 304 nm) in the presence of various concentrations of $\mathrm{Mg}^{2+}\left(\mathrm{MgCl}_{2}\right)$ ions: $0 \sim 3$ equivalents Mg^{2+} ions with respect to complex 1. Color codes: black, no addition; red, one equivalent; blue, two equivalents; green, three equivalents.

Figure S8. Emission spectra of complex 1 in DMF at RT (excited at 304 nm) in the presence of various concentrations of $\mathrm{Zn}^{2+}\left(\mathrm{ZnCl}_{2}\right)$ ions: $0 \sim 3$ equivalents Zn^{2+} ions with respect to complex 1. Color code: black, no addition; red, one equivalent; blue, two equivalents; green, three equivalents

Figure S9. Emission spectra of complex 1 in DMF at RT (excited at 304 nm) in the presence of various concentrations of $\mathrm{Cd}^{2+}\left(\mathrm{CdCl}_{2}\right)$ ions: $0 \sim 3$ equivalents Cd^{2+} ions with respect to complex 1. Color code: black, no addition; red, one equivalent; blue, two equivalents; green, three equivalents.

Figure S10. Emission spectra of complex 1 in DMF at RT (excited at 304 nm) in the presence of various concentrations of $\mathrm{Fe}^{2+}\left(\mathrm{FeCl}_{2}\right)$ ions: $0 \sim 2$ equivalents Fe^{2+} ions with respect to complex 1.

Figure S11. Emission spectra of complex $\mathbf{3}$ in DMF at RT (excited at 311 nm) in the presence of various concentrations of $\mathrm{Mg}^{2+}\left(\mathrm{MgCl}_{2}\right)$ ions: $0 \sim 2$ equivalents Mg^{2+} ions with respect to complex 3. Color code: black, no addition; red, one equivalent; blue, two equivalents.

Figure S12. Emission spectra of complex 3 in DMF at RT (excited at 311 nm) in the presence of various concentrations of $\mathrm{MCl}_{2}(\mathrm{M}=\mathrm{Zn},(\mathrm{a}) ; \mathrm{Ni},(\mathrm{b}) ; \mathrm{Cu},(\mathrm{c}) ; \mathrm{Fe},(\mathrm{d}))$ ions: $0 \sim 3$ equivalents M^{2+} ions with respect to complex 3. Color code: black, no addition; red, one equivalent; blue, two equivalents; green, three equivalents.

References

(1) Sheldrick, G. M. SHELXS 97, Program for the Solution of Crystal Structures; University of Göttingen: Germany, 1997.
(2) Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997.

