## (Electronic Supplementary Information)

# Vinylidene rutheniums with an electrostructurally flexible NO ligand and their ruthenacyclobutene formation 

Mamoru Yamaguchi, ${ }^{\text {a }}$ Yasuhiro Arikawa, ${ }^{\text {a }}$ Yoshimasa Nishimura, ${ }^{\text {a }}$ Keisuke Umakoshi ${ }^{\text {b }}$ and Masayoshi Onishi*b

${ }^{\text {a }}$ Graduate School of Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan. ${ }^{\text {b }}$ Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan.

## Contents

Experimental Procedures
Table S1. Crystallographic data for $\mathbf{2 a} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{4} \cdot{ }^{\bullet} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathbf{4 b}$,

## Experimental Procedures

General Procedures. Reactions were carried out under an atmosphere of dry dinitrogen, whereas subsequent workup was performed in air. Commercially available reagent grade chemicals were used without any further purification, including 54\% $\mathrm{HBF}_{4}$ solution of diethyl ether (Fluka). The starting materials $\mathrm{RuCl}_{3}\left(\mathrm{PAr}_{3}\right)_{2}(\mathrm{NO})$ ( $\mathrm{Ar}=$ $\left.\mathrm{Ph}(\mathbf{1 a}), p-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{1 b})\right)$ were prepared by previously reported methods. ${ }^{1} \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ using a Varian Gemini-300 and a JEOL JNM-AL-400 spectrometer, referenced to the signals of TMS, solvents employed, or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as standards, respectively. Infrared spectra $(\mathrm{KBr}$ pellets) were run on a JASCO FT/IR-420 spectrometer. Fast atom bombardment mass spectra (FAB-MS) were obtained on a JEOL JMS-SX102A or a JEOL JMS-700N spectrometers. Elemental analyses were performed using a PERKIN ELMER 2400II elemental analyzer.

## Preparations of $\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PAr}_{3}\right)_{2}\left\{=\mathbf{C =}=\mathbf{C H}\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{Me}\right)\right\}$ ( $\mathrm{Ar}=\mathbf{P h}$ (2a), $\boldsymbol{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}$

 (2b)): $\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}(0.18 \mathrm{~g}, 1.55 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~g}, 1.48 \mathrm{mmol})$, and $(\mathrm{CuOTf})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(5.4 \mathrm{mg}, 11 \mu \mathrm{~mol})$ were added to a $\mathrm{C}_{6} \mathrm{H}_{6}(10 \mathrm{~mL})$ solution of $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{NO})(1 \mathbf{a})(0.11 \mathrm{~g}, 0.14 \mathrm{mmol})$. The mixture was refluxed for 1 h and evaporated to dryness. The residue was separated by chromatography on a silica gel using a toluene eluent. From the second red band, $\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\left\{=\mathrm{C}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}$ (2a) was isolated as a red solid ( $86 \mathrm{mg}, 76 \%$ ). From the first band, the collected fraction was further chromatographed on a silica gel column using hexane as an eluent. After additional preparative TLC purification with hexane, the diyne compound $\left(\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ ) was isolated (ca. 12 mg , ca. $37 \%$ based on 1a), which was characterized by NMR, IR, and EI-HR-MS spectra. Similarly to the $\mathbf{2 a}$ formation from $\mathbf{1 a}$ under the support by the $\mathrm{Cu}(\mathrm{I})$ catalyst, the
$\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}(\mathbf{2 b})$ in a $47 \%$ yield.
When the similar reaction was carried out for $\mathbf{1 a}$ in the absence of the $\mathrm{Cu}(\mathrm{I})$ catalyst, the mono(alkynyl) complex $\mathrm{RuCl}_{2}\left\{\mathrm{C} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{NO})$ (3a) was obtained (29\%) as a major product, besides $\mathbf{2 a}$ in a decreased yield, $24 \%$. Furthermore the complex $\mathbf{3 a}$ was treated with $\mathrm{HC} \equiv \mathrm{CPh}$ in the presence of the $\mathrm{Cu}(\mathrm{I})$ catalyst and $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing $\mathrm{C}_{6} \mathrm{H}_{6}$, and the formation of diyne compounds, $\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ and $\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CPh}$, along with a $\mathrm{HC} \equiv \mathrm{CPh}$ dimerization, probably enyne product, was observed in hexane-extracted material.
$\mathbf{R u C l}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)_{2}\left\{=\mathbf{C = C H}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}\right)\right\}(\mathbf{2 a}):$ IR (KBr, pellet): $v(\mathrm{C}=\mathrm{C}, \mathrm{N}=\mathrm{O}) 1651$ (s) 1624 (s) $1604(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{\mathrm{I}} \mathrm{H}$ NMR ( $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right): \delta 7.59-7.31\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right), 6.77$ $\left(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1.2 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{Me}\right), 6.52\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{Me}\right), 6.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $\left.1.2 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{Me}\right), 5.79\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{Me}\right), 5.12(\mathrm{t}, J=4.9 \mathrm{~Hz}, 0.4 \mathrm{H}$, $\left.=\mathrm{C}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 4.91$ ( $\mathrm{t}, J=5.5 \mathrm{~Hz}, 0.6 \mathrm{H},=\mathrm{C}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ ), 2.21 (s, 1.8 H , $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$, $2.10\left(\mathrm{~s}, 1.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}\right): \delta 30.8(\mathrm{~s}, 0.6 \mathrm{P}$, $\mathrm{PPh}_{3}$ ), $29.1\left(\mathrm{~s}, 0.4 \mathrm{P}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}\right): \delta 324.9(\mathrm{t}, J=20 \mathrm{~Hz}$, $\mathrm{Ru}=C_{\alpha}$ ), 324.4 ( $\mathrm{t}, J=20 \mathrm{~Hz}, \mathrm{Ru}=C_{\alpha}$ ), 116.3 (brs, $=\mathrm{C}=C_{\beta}$ ). FAB-MS ( $\mathrm{m} / \mathrm{z}$ ): 776.8 $\left([\mathrm{M}-(\mathrm{NO})]^{+}\right), 690.7\left(\left[\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right), 655.9\left(\left[\mathrm{Ru}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{NClOP}_{2} \mathrm{Ru}: \mathrm{C}, 66.95 ; \mathrm{H}, 4.74 ; \mathrm{N}, 1.74$. Found: C, 67.28; H, 4.91; N, 1.63.
$\mathbf{R u C l}(\mathbf{N O})\left\{\mathbf{P}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}\right)_{3}\right\}_{2}\left\{=\mathbf{C =}=\mathbf{C H}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}\right)\right\}$ (2b): IR (KBr, pellet): $v(\mathrm{C}=\mathrm{C}, \mathrm{N}=\mathrm{O})$ 1650 (s) 1620 (s) $1598(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}\right): \delta 7.33$ (brs, 12 H , $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 7.09$ (brs, 12H, $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 6.72\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1.2 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right)$, $6.46\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 6.22\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1.2 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{6} H_{4} \mathrm{Me}\right)\right), 5.72$ (d, $\left.J=8.1 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 5.11\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 0.4 \mathrm{H},=\mathrm{C}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 4.88$ $\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 0.6 \mathrm{H},=\mathrm{C}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right.$ ), 2.26 (brs, $\left.18 \mathrm{H}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 2.09$ (brs, 3 H , $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}\right): \delta 28.2\left(\mathrm{~s}, 0.6 \mathrm{P}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 26.6(\mathrm{~s}$,
$\left.0.4 \mathrm{P}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}\right): \delta 325.5\left(\mathrm{t}, J=21 \mathrm{~Hz}, \mathrm{Ru}=C_{\alpha}\right)$, $325.3\left(\mathrm{t}, J=20 \mathrm{~Hz}, \mathrm{Ru}=C_{\alpha}\right), 116.4-115.8\left(\mathrm{~m},=\mathrm{C}=C_{\beta}\right)$. FAB-MS $(\mathrm{m} / \mathrm{z}): 860.7$ $\left([\mathrm{M}-\mathrm{NO}]^{+}\right), 774.6 \quad\left(\left[\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right)_{2}\right]^{+}\right)$, $739.7 \quad\left(\left[\mathrm{Ru}(\mathrm{NO})\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right)_{2}\right]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{50} \mathrm{NClOP}_{2} \mathrm{Ru}: \mathrm{C}, 68.72 ; \mathrm{H}, 5.65 ; \mathrm{N}, 1.57$. Found: C, 69.01; H, 5.68; N, 1.44.
$\mathbf{R u C l}_{2}\left\{\mathbf{C} \equiv \mathbf{C}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}\right)\right\}\left(\mathbf{P P h}_{3}\right)_{2} \mathbf{( N O )} \mathbf{( 3 a ) : I R ( K B r , ~ p e l l e t ) : ~} v(\mathrm{C} \equiv \mathrm{C}) 2124$ (w), $v(\mathrm{~N} \equiv \mathrm{O})$ $1866(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.00-7.95\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.41-7.33(\mathrm{~m}, 18 \mathrm{H}$, $\left.\mathrm{PPh}_{3}\right), 6.87\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{Me}\right), 6.47\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{Me}\right), 2.27(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right) . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.7\left(\mathrm{~s}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 135.5$ ( $\mathrm{s}, C_{6} \mathrm{H}_{4} \mathrm{Me}$ ), $134.7\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, \mathrm{PPh} h_{3}\right), 130.7\left(\mathrm{~s}, C_{6} \mathrm{H}_{4} \mathrm{Me}\right), 130.5\left(\mathrm{~s}, \mathrm{PPh}_{3}\right), 129.7(\mathrm{t}, J$ $\left.=25 \mathrm{~Hz}, \mathrm{PPh}_{3}\right), 128.2\left(\mathrm{~s}, C_{6} \mathrm{H}_{4} \mathrm{Me}\right), 127.9\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, \mathrm{PPh}_{3}\right), 123.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{4} \mathrm{Me}\right)$, 114.9 (t, $J=1.4 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{C} \equiv \mathrm{C}$ ), $98.0(\mathrm{~s}, \mathrm{Ru}-\mathrm{C} \equiv \mathrm{C}), 21.3\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$. FAB-MS ( $\mathrm{m} / \mathrm{z}$ ): 806 ([M-Cl] $\left.]^{+}\right), 776\left([\mathrm{M}-\mathrm{Cl}-(\mathrm{NO})]^{+}\right), 691\left(\left[\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{37} \mathrm{NCl}_{2} \mathrm{OP}_{2} \mathrm{Ru}: \mathrm{C}, 64.21 ; \mathrm{H}, 4.43 ; \mathrm{N}, 1.66$. Found: C, 64.09; H, 4.42; N, 1.69.

## Preparation of $\mathrm{RuCl}\left[\mathrm{C}(\mathrm{COOMe})=\mathbf{C H C}\left\{=\mathbf{C H}\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{Me}\right)\right\}\right]\left\{\mathbf{P}\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{Me}\right)_{3}\right\}_{2}(\mathrm{NO}) \quad$ (4b

 and 4b'): Methyl propiolate ( $\mathrm{HC} \equiv \mathrm{CCOOMe}$ ) ( $34 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$ ) and tetrafluoroboric acid, $\mathrm{HBF}_{4}\left(4.5 \mu \mathrm{~L}, 0.033 \mathrm{mmol}, 54 \%\right.$ in diethyl ether) were added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ( 5.0 mL ) of $\mathrm{RuCl}(\mathrm{NO})\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right\}_{2}\left\{=\mathrm{C}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}$ (2b) ( $\left.0.17 \mathrm{~g}, 0.19 \mathrm{mmol}\right)$. After the mixture was concentrated to ca. 1.0 mL , the residue was separated by chromatography on a silica gel using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent to give $\operatorname{RuCl}\left[\mathrm{C}(\mathrm{COOMe})=\mathrm{CHC}\left\{=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}\right]\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right\}_{2}(\mathrm{NO})(4 \mathrm{~b}$ (53 mg, 29\%) and 4b' ${ }^{\prime}(86 \mathrm{mg}, 46 \%)$ ).$\operatorname{RuCl}\left[\mathrm{C}(\mathbf{C O O M e})=\mathbf{C H C}\left\{=\mathbf{C H}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathrm{Me}\right)\right\}\right]\left\{\mathbf{P}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathrm{Me}_{3}\right)_{3} \mathbf{2}_{2} \mathbf{N O}\right)(\mathbf{4 b}):$ IR (KBr, pellet): $v(\mathrm{~N} \equiv \mathrm{O}) 1768(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(\mathrm{COOMe})=\mathrm{CH}), 7.54-7.50$
$\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{P}\left(\mathrm{C}_{6} H_{4} \mathrm{Me}\right)_{3}\right), 7.04\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{P}\left(\mathrm{C}_{6} H_{4} \mathrm{Me}\right)_{3}\right), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 6.58\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 5.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 3.28$ (s, $3 \mathrm{H}, \mathrm{COOMe}$ ), 2.27 (s, $21 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} M e\right)$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} M e\right)$, overlapping). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 23.6\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 167.8(\mathrm{~s}, \mathrm{COOMe})$, 151.6 ( $\mathrm{t}, J=11 \mathrm{~Hz}, \mathrm{Ru}-C_{\alpha}$ ), 150.0 ( $\left.\mathrm{t}, J=5.3 \mathrm{~Hz}, \mathrm{C}(\mathrm{COOMe})=C \mathrm{H}\right)$, 139.7 ( s , $\left.\mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 135.7\left(\mathrm{~s}, \mathrm{CH}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 135.2\left(\mathrm{t}, J=9.6 \mathrm{~Hz}, \mathrm{Ru}-C_{\alpha}\right), 134.8$ ( s , $\left.\mathrm{CH}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 134.5\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, \mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 130.4\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right)$, $128.3\left(\mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 128.2\left(\mathrm{t}, J=24 \mathrm{~Hz}, \mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right)$, $128.1(\mathrm{~s}$, $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 127.9\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right), 50.5(\mathrm{~s}, \mathrm{COOMe}), 21.4\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} M e\right)_{3}\right), 21.2(\mathrm{~s}$, $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right) . \quad$ FAB-MS $\quad(\mathrm{m} / \mathrm{z}): \quad 975.3 \quad\left([\mathrm{M}]^{+}\right), \quad 940.4 \quad\left([\mathrm{M}-\mathrm{Cl}]^{+}\right), \quad 775.2$ $\left(\left[\operatorname{RuCl}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right\}_{2}(\mathrm{NO})\right]^{+}\right), \quad 671.2 \quad\left(\left[\mathrm{M}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right]^{+}\right) . \quad$ Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{54} \mathrm{NClO}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 67.72 ; \mathrm{H}, 5.58 ; \mathrm{N}, 1.44$. Found: C, 67.96; H, 5.85; N, 1.19.
$\mathbf{R u C l}\left[\mathbf{C}(\mathbf{C O O M e})=\mathbf{C H C}\left\{=\mathbf{C}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}\right)(\mathbf{H})\right\}\right]\left\{\mathbf{P}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}\right)_{3}\right\}_{2}(\mathbf{N O}) \quad(\mathbf{4 b}): \quad$ IR $\quad(\mathrm{KBr}$, pellet): $v(\mathrm{~N} \equiv \mathrm{O}) 1806(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.54-7.48\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right)$, $7.18-7.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(\mathrm{COOMe})=\mathrm{CH}\right.$ and $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{H})$, overlapping $), 6.92(\mathrm{~d}, J=8.0$ $\left.\mathrm{Hz}, 12 \mathrm{H}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 6.74\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{H})\right), 6.46(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)(H)\right), 3.29$ (s, 3H, COOMe), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} M e\right)(\mathrm{H})\right), 2.23$ (s, 18H, $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ : $\delta 24.7\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 167.5(\mathrm{~s}, C O O M e), 156.6(\mathrm{t}, J=5.3 \mathrm{~Hz}, \mathrm{C}(\mathrm{COOMe})=C \mathrm{H}), 148.4(\mathrm{t}, J=13$ $\left.\mathrm{Hz}, \mathrm{Ru}-C_{\alpha}\right), 139.8\left(\mathrm{~s}, \mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 137.8\left(\mathrm{~s}, C\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{H})\right), 135.4\left(\mathrm{~s}, \mathrm{C}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{H})\right)$, $134.4\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 130.3\left(\mathrm{~s}, \mathrm{C}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{H})\right), 128.3(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $\left.\mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 127.9\left(\mathrm{t}, J=24 \mathrm{~Hz}, \mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right), 127.3\left(\mathrm{~s}, \mathrm{C}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{H})\right), 50.4$ (s, $\mathrm{COOMe}), 21.3\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} M e\right)_{3}\right), 21.3\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{H})\right.$ ) (Two quaternary carbon resonance peaks can't be assigned because of overlapping.). FAB-MS ( $\mathrm{m} / \mathrm{z}$ ): 975.3 $\left([\mathrm{M}]^{+}\right), 940.4\left([\mathrm{M}-\mathrm{Cl}]^{+}\right), 775.2\left(\left[\operatorname{RuCl}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right\}_{2}(\mathrm{NO})\right]^{+}\right), 671.2\left(\left[\mathrm{M}-\mathrm{P}\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3}\right]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{54} \mathrm{NClO}_{3} \mathrm{P}_{2} \mathrm{Ru}$ : C, 67.72; H, 5.58; $\mathrm{N}, 1.44$. Found: C, 67.25; H,

X-ray Crystal Structure Determinations: Crystallographic data are summarized in Table S1. X-ray quality single crystals were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / MeOH (for $\mathbf{2 a} \cdot \mathbf{2} \mathbf{C H}_{2} \mathrm{Cl}_{2}$ and $\mathbf{4 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and benzene / hexane (for $\mathbf{4 b}$ ). Diffraction data were collected at room temperature on a Rigaku AFC7 diffractometer equipped with a MSC/ADSC Quantum CCD area detector by using graphite-monochromated Mo $\mathrm{K} \alpha$ radiation. Seven preliminary data frames were measured at $0.5^{\circ}$ increments of $\omega$, in order to assess the crystal quality and preliminary unit cell parameters. The intensity images were obtained with $\omega$ scans of $0.5^{\circ}$ interval per frame for duration of $30 \mathrm{~s}\left(\mathbf{2 a} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and $35 \mathrm{~s}\left(\mathbf{4} \mathbf{b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and $\left.\mathbf{4} \mathbf{b} \mathbf{}\right)$. The frame data were integrated using an MSC d*TREK program package, and the data set were corrected for absorption using a REQAB program.

The calculations were performed with a TEXSAN program package. Crystal structures were solved by direct methods for $\mathbf{2 a} \cdot \mathbf{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{4 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and by Patterson methods for $\mathbf{4 b}$, and refined on $F^{2}$ by the full-matrix least squares method. In the case of $\mathbf{2 a} \cdot \mathbf{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, each asymmetric unit contains a half molecule of $\mathbf{2 a}$ and one $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule, and one of the chloride atom of the solvent molecule is disordered with occupancy factors of $0.5 / 0.5$. Anisotropic refinement was applied to all non-hydrogen atoms except for the solvent molecules of $\mathbf{2 a} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and hydrogen atoms were put at calculated positions with C-H distances of $0.97 \AA$, while hydrogen atoms of all solvent molecules were not located.

Table S1. Crystallographic data for $\mathbf{2 a} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{4 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathbf{4 b}$,

|  | $\mathbf{2 a} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 4b ${ }^{-\mathrm{CH}_{2} \mathrm{Cl}_{2}}$ | 4b' |
| :---: | :---: | :---: | :---: |
| formula | $\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{NCl}_{5} \mathrm{OP}_{2} \mathrm{Ru}$ | $\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{NCl}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}$ | $\mathrm{C}_{55} \mathrm{H}_{54} \mathrm{NClO}_{3} \mathrm{P}_{2} \mathrm{Ru}$ |
| fw | 977.14 | 1060.44 | 975.51 |
| cryst system | monoclinic | triclinic | triclinic |
| space group | $P 22_{1} / \mathrm{m}$ (No. 11) | P-1 (No. 2) | P-1 (No. 2) |
| color of crystal | orange | amber | amber |
| crystal size (mm) | $0.35 \times 0.15 \times 0.06$ | $0.80 \times 0.40 \times 0.03$ | $0.20 \times 0.20 \times 0.20$ |
| $a(\AA)$ | 9.523(3) | 10.957(1) | 12.712(2) |
| $b(\AA)$ | 22.815(7) | 15.466(1) | 12.742(1) |
| $c(\AA)$ | 10.988(2) | 17.537(2) | 15.986(2) |
| $\alpha$ (deg) | 90 | 78.638(2) | 80.906(2) |
| $\beta$ (deg) | 103.112(4) | 71.9489(9) | 75.435(2) |
| $\gamma(\mathrm{deg})$ | 90 | 71.3085(8) | 88.018(2) |
| $V\left(\AA^{3}\right)$ | 2324.9(11) | 2660.7(5) | 2474.6(5) |
| Z | 2 | 2 | 2 |
| $\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.396 | 1.324 | 1.309 |
| $\mu\left(\mathrm{cm}^{-1}\right)$ | 7.28 | 5.48 | 4.78 |
| $2 \theta_{\text {max }}$ (deg) | 55.0 | 55.0 | 55.0 |
| no. of all reflns collected | 19792 | 23134 | 21470 |
| no. of unique reflns | 5302 | 11356 | 10553 |
| $R_{\text {int }}$ | 0.067 | 0.027 | 0.034 |
| no. of obsd reflns ${ }^{a}$ | 2441 | 6974 | 6957 |
| no. of parameters | 266 | 595 | 568 |
| $R^{\text {b }}$ | 0.135 | 0.091 | 0.068 |
| $R w^{c}$ | 0.191 | 0.122 | 0.086 |
| GOF ${ }^{d}$ | 1.15 | 1.40 | 1.02 |

${ }^{a}$ All data. ${ }^{b} R=\Sigma\left|F o^{2}-F c^{2}\right| / \Sigma F o^{2} . \quad{ }^{c} R w=\left\{\Sigma w\left(F o^{2}-F c^{2}\right)^{2} / \Sigma w\left(F o^{2}\right)^{2}\right\}^{1 / 2}$.
${ }^{d}$ GOF $=\left[\left\{\Sigma w(|F o|-|F c|)^{2}\right\} /(N o-N p)\right]^{1 / 2}$, where No and $N p$ denote the number of data and parameters.

## References

[1] (a) M. B. Fairy, R. J. Irving, J. Chem. Soc., (A), 1966, 64, 475. (b) S. D. Robinson,
M. F. Uttley, J. Chem. Soc., Dalton Trans., 1972, 1.

