(Electronic Supplementary Information)

Vinylidene rutheniums with an electrostructurally flexible NO ligand and their ruthenacyclobutene formation

Mamoru Yamaguchi,^a Yasuhiro Arikawa,^a Yoshimasa Nishimura,^a Keisuke Umakoshi^b and Masayoshi Onishi^{*b}

^a Graduate School of Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan. ^b Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan.

Contents Experimental Procedures

Table S1.Crystallographic data for 2a•2CH2Cl2, 4b•CH2Cl2, and 4b'

Experimental Procedures

General Procedures. Reactions were carried out under an atmosphere of dry dinitrogen, whereas subsequent workup was performed in air. Commercially available reagent grade chemicals were used without any further purification, including 54% HBF₄ solution of diethyl ether (Fluka). The starting materials RuCl₃(PAr₃)₂(NO) (Ar= Ph (**1a**), *p*-MeC₆H₄ (**1b**)) were prepared by previously reported methods.¹ ¹H, ¹³C {¹H}, and ³¹P {¹H} NMR spectra were recorded in CDCl₃ or CD₂Cl₂ using a Varian Gemini-300 and a JEOL JNM-AL-400 spectrometer, referenced to the signals of TMS, solvents employed, or 85 % H₃PO₄ as standards, respectively. Infrared spectra (KBr pellets) were run on a JASCO FT/IR-420 spectrometer. Fast atom bombardment mass spectra (FAB-MS) were obtained on a JEOL JMS-SX102A or a JEOL JMS-700N spectrometers. Elemental analyses were performed using a PERKIN ELMER 2400II elemental analyzer.

Preparations of $RuCl(NO)(PAr_3)_2 \{=C=CH(C_6H_4Me)\}$ (Ar= Ph (2a), p-MeC₆H₄ (2b)): $HC=CC_6H_4Me$ (0.18 g, 1.55 mmol), Et_3N (0.15 g, 1.48 mmol), and $(CuOTf)_2(C_6H_6)$ (5.4 mg, 11 µmol) were added to a C_6H_6 (10 mL) solution of RuCl₃(PPh₃)₂(NO) (1a) (0.11 g, 0.14 mmol). The mixture was refluxed for 1h and evaporated to dryness. The residue was separated by chromatography on a silica gel using а toluene eluent. From the second red band, $\operatorname{RuCl(NO)(PPh_3)_2}{=}C=CH(C_6H_4Me)}$ (2a) was isolated as a red solid (86 mg, 76%). From the first band, the collected fraction was further chromatographed on a silica gel column using hexane as an eluent. After additional preparative TLC purification with hexane, the divide compound $(MeC_6H_4)C=C-C=C(C_6H_4Me)$ was isolated (ca. 12 mg, ca. 37% based on 1a), which was characterized by NMR, IR, and EI-HR-MS spectra. Similarly to the 2a formation from 1a under the support by the Cu(I) catalyst, the complex $\operatorname{RuCl}_{3}\{P(C_{6}H_{4}Me)_{3}\}_{2}(NO)$ (1b) gave $\operatorname{RuCl}(NO)\{P(C_{6}H_{4}Me)_{3}\}_{2}\{=C=CH-$

S2

 (C_6H_4Me) (2b) in a 47% yield.

When the similar reaction was carried out for **1a** in the absence of the Cu(I) catalyst, the mono(alkynyl) complex $\text{RuCl}_2\{\text{C}=\text{C}(\text{C}_6\text{H}_4\text{Me})\}(\text{PPh}_3)_2(\text{NO})$ (**3a**) was obtained (29%) as a major product, besides **2a** in a decreased yield, 24%. Furthermore the complex **3a** was treated with HC=CPh in the presence of the Cu(I) catalyst and Et₃N in refluxing C₆H₆, and the formation of diyne compounds, PhC=C-C=C(C₆H₄Me) and PhC=C-C=CPh, along with a HC=CPh dimerization, probably enyne product, was observed in hexane-extracted material.

RuCl(NO)(**PPh**₃)₂{=**C**=**CH**(**C**₆**H**₄**Me**)} (2**a**): IR (KBr, pellet): ν(C=C, N=O) 1651 (s) 1624 (s) 1604 (m) cm⁻¹. ¹H NMR (CD₂Cl₂, -40 °C): δ 7.59–7.31 (m, 30H, PPh₃), 6.77 (d, J = 8.1 Hz, 1.2H, C₆ H_4 Me), 6.52 (d, J = 8.1 Hz, 0.8H, C₆ H_4 Me), 6.30 (d, J = 8.1 Hz, 1.2H, C₆ H_4 Me), 5.79 (d, J = 8.1 Hz, 0.8H, C₆ H_4 Me), 5.12 (t, J = 4.9 Hz, 0.4H, =C=CH(C₆H₄Me)), 4.91 (t, J = 5.5 Hz, 0.6H, =C=CH(C₆H₄Me)), 2.21 (s, 1.8H, C₆H₄Me), 2.10 (s, 1.2H, C₆ H_4Me). ³¹P{¹H} NMR (CD₂Cl₂, -40 °C): δ 30.8 (s, 0.6P, PPh₃), 29.1 (s, 0.4P, PPh₃). ¹³C{¹H} NMR (CD₂Cl₂, -40 °C): δ 324.9 (t, J = 20 Hz, Ru= C_{α}), 324.4 (t, J = 20 Hz, Ru= C_{α}), 116.3 (brs, =C= C_{β}). FAB-MS (m/z): 776.8 ([M-(NO)]⁺), 690.7 ([RuCl(NO)(PPh₃)₂]⁺), 655.9 ([Ru(NO)(PPh₃)₂]⁺). Anal. Calcd for C₄₅H₃₈NClOP₂Ru: C, 66.95; H, 4.74; N, 1.74. Found: C, 67.28; H, 4.91; N, 1.63.

RuCl(NO){**P**(**C**₆**H**₄**Me**)₃}₂{=**C**=**CH**(**C**₆**H**₄**Me**)} (2**b**): IR (KBr, pellet): v(C=C, N=O) 1650 (s) 1620 (s) 1598 (m) cm⁻¹. ¹H NMR (CD₂Cl₂, -40 °C): δ 7.33 (brs, 12H, P(C₆H₄Me)₃), 7.09 (brs, 12H, P(C₆H₄Me)₃), 6.72 (d, *J* = 7.7 Hz, 1.2H, CH(C₆H₄Me)), 6.46 (d, *J* = 8.1 Hz, 0.8H, CH(C₆H₄Me)), 6.22 (d, *J* = 7.7 Hz, 1.2H, CH(C₆H₄Me)), 5.72 (d, *J* = 8.1 Hz, 0.8H, CH(C₆H₄Me)), 5.11 (t, *J* = 4.8 Hz, 0.4H, =C=CH(C₆H₄Me)), 4.88 (t, *J* = 5.5 Hz, 0.6H, =C=CH(C₆H₄Me)), 2.26 (brs, 18H, P(C₆H₄Me)₃), 2.09 (brs, 3H, CH(C₆H₄Me)). ³¹P{¹H} NMR (CD₂Cl₂, -40 °C): δ 28.2 (s, 0.6P, P(C₆H₄Me)₃), 26.6 (s, 0.4P, P(C₆H₄Me)₃). ¹³C{¹H} NMR (CD₂Cl₂, -40 °C): δ 325.5 (t, J = 21 Hz, Ru= C_{α}), 325.3 (t, J = 20 Hz, Ru= C_{α}), 116.4 – 115.8 (m, =C= C_{β}). FAB-MS (m/z): 860.7 ([M-NO]⁺), 774.6 ([RuCl(NO)(P(C₆H₄Me)₃)₂]⁺), 739.7 ([Ru(NO)(P(C₆H₄Me)₃)₂]⁺). Anal. Calcd for C₅₁H₅₀NClOP₂Ru: C, 68.72; H, 5.65; N, 1.57. Found: C, 69.01; H, 5.68; N, 1.44.

RuCl₂{C=C(C₆H₄Me)}(PPh₃)₂(NO) (3a): IR (KBr, pellet): v(C=C) 2124 (w), v(N=O)1866 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 8.00 – 7.95 (m, 12H, PPh₃), 7.41 – 7.33 (m, 18H, PPh₃), 6.87 (d, J = 7.9 Hz, 2H, C₆H₄Me), 6.47 (d, J = 7.9 Hz, 2H, C₆H₄Me), 2.27 (s, 3H, C₆H₄Me). ³¹P{¹H} NMR (CDCl₃): δ 14.7 (s, PPh₃). ¹³C{¹H} NMR (CDCl₃): δ 135.5 (s, C₆H₄Me), 134.7 (t, J = 5.3 Hz, PPh₃), 130.7 (s, C₆H₄Me), 130.5 (s, PPh₃), 129.7 (t, J = 25 Hz, PPh₃), 128.2 (s, C₆H₄Me), 127.9 (t, J = 5.3 Hz, PPh₃), 123.8 (s, C₆H₄Me), 114.9 (t, J = 1.4 Hz, Ru-C=C), 98.0 (s, Ru-C=C), 21.3 (s, C₆H₄Me). FAB-MS (*m*/*z*): 806 ([M-Cl]⁺), 776 ([M-Cl-(NO)]⁺), 691 ([RuCl(NO)(PPh₃)₂]⁺). Anal. Calcd for C₄₅H₃₇NCl₂OP₂Ru: C, 64.21; H, 4.43; N, 1.66. Found: C, 64.09; H, 4.42; N, 1.69.

Preparation of RuCl[C(COOMe)=CHC{=CH(C₆H₄Me)}]{P(C₆H₄Me)₃}₂(NO) (4b) and 4b'): Methyl propiolate (HC=CCOOMe) (34 µL, 0.38 mmol) and tetrafluoroboric acid, HBF₄ (4.5 μ L, 0.033 mmol, 54% in diethyl ether) were added to a CH₂Cl₂ solution (5.0 mL) of RuCl(NO){P(C₆H₄Me)₃}₂{=C=CH(C₆H₄Me)} (**2b**) (0.17 g, 0.19 mmol). After the mixture was concentrated to ca. 1.0 mL, the residue was separated by chromatography on а silica gel using а CH₂Cl₂ eluent to give $RuCl[C(COOMe)=CHC\{=CH(C_6H_4Me)\}]\{P(C_6H_4Me)_3\}_2(NO)$ (4b (53 mg, 29%) and **4b'** (86 mg, 46%)).

RuCl[C(COOMe)=CHC{=CH(C₆H₄Me)}]{P(C₆H₄Me)₃}₂(NO) (4b): IR (KBr, pellet): v(N=O) 1768 (s) cm⁻¹. ¹H NMR (CDCl₃): \delta 7.94 (s, 1H, C(COOMe)=CH), 7.54 – 7.50 (m, 12H, $P(C_6H_4Me)_3$), 7.04 (d, J = 7.8 Hz, 12H, $P(C_6H_4Me)_3$), 6.91 (d, J = 8.0 Hz, 2H, $CH(C_6H_4Me)), 6.58 (d, J = 8.0 Hz, 2H, CH(C_6H_4Me)), 5.55 (s, 1H, CH(C_6H_4Me)), 3.28$ (s, 3H, COOMe), 2.27 (s, 21H, CH(C_6H_4Me) and P(C_6H_4Me)₃, overlapping). ³¹P{¹H} NMR (CDCl₃): δ 23.6 (s, P(C₆H₄Me)₃). ¹³C{¹H} NMR (CDCl₃): δ 167.8 (s, COOMe), 151.6 (t, J = 11 Hz, Ru– C_{α}), 150.0 (t, J = 5.3 Hz, C(COOMe)=CH), 139.7 (s, $P(C_6H_4Me)_3$, 135.7 (s, $CH(C_6H_4Me)$), 135.2 (t, J = 9.6 Hz, $Ru-C_{\alpha}$), 134.8 (s, $CH(C_6H_4Me)$), 134.5 (t, J = 5.4 Hz, $P(C_6H_4Me)_3$), 130.4 (t, J = 2.3 Hz, $CH(C_6H_4Me)$), 128.3 (t, J = 5.0 Hz, $P(C_6H_4Me)_3$), 128.2 (t, J = 24 Hz, $P(C_6H_4Me)_3$), 128.1 (s, $CH(C_6H_4Me)$, 127.9 (s, $CH(C_6H_4Me)$), 50.5 (s, COOMe), 21.4 (s, $P(C_6H_4Me)$), 21.2 (s, FAB-MS (m/z): 940.4 $CH(C_6H_4Me)).$ 975.3 $([M]^{+}),$ $([M-C1]^{+}),$ 775.2 $([RuCl{P(C_6H_4Me)_3}_2(NO)]^+), 671.2 ([M-P(C_6H_4Me)_3]^+).$ Anal. Calcd for C₅₅H₅₄NClO₃P₃Ru: C, 67.72; H, 5.58; N, 1.44. Found: C, 67.96; H, 5.85; N, 1.19.

 $RuCl[C(COOMe)=CHC\{=C(C_6H_4Me)(H)\}]\{P(C_6H_4Me)_3\}_2(NO) \quad (4b'): IR \quad (KBr, A) = CHC\{=C(C_6H_4Me)(H)\}\}$ pellet): v(N=O) 1806 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 7.54 – 7.48 (m, 12H, P(C₆H₄Me)₃), 7.18 - 7.12 (m, 3H, C(COOMe)=CH and C(C₆H₄Me)(H), overlapping), 6.92 (d, J = 8.0 Hz, 12H, $P(C_6H_4Me)_3$), 6.74 (d, J = 8.0 Hz, 2H, $C(C_6H_4Me)(H)$), 6.46 (s, 1H, $C(C_6H_4Me)(H)$, 3.29 (s, 3H, COOMe), 2.40 (s, 3H, $C(C_6H_4Me)(H)$), 2.23 (s, 18H, ³¹P{¹H} NMR (CDCl₃): δ 24.7 (s, P(C₆H₄Me)₃). $^{13}C{^{1}H}$ NMR $P(C_6H_4Me)_3).$ $(CDCl_3)$: δ 167.5 (s, COOMe), 156.6 (t, J = 5.3 Hz, C(COOMe)=CH), 148.4 (t, J = 13Hz, Ru– C_{α}), 139.8 (s, P($C_{6}H_{4}Me$)₃), 137.8 (s, C($C_{6}H_{4}Me$)(H)), 135.4 (s, C($C_{6}H_{4}Me$)(H)), 134.4 (t, J = 5.7 Hz, $P(C_6H_4Me)_3$), 130.3 (s, $C(C_6H_4Me)(H)$), 128.3 (t, J = 5.3 Hz, $P(C_6H_4Me)_3$, 127.9 (t, J = 24 Hz, $P(C_6H_4Me)_3$), 127.3 (s, $C(C_6H_4Me)(H)$), 50.4 (s, COOMe), 21.3 (s, $P(C_6H_4Me)_3$), 21.3 (s, $C(C_6H_4Me)(H)$) (Two quaternary carbon resonance peaks can't be assigned because of overlapping.). FAB-MS (m/z): 975.3 $([M]^+)$, 940.4 $([M-C1]^+)$, 775.2 $([RuCl{P(C_6H_4Me)_3}_2(NO)]^+)$, 671.2 $([M-P(C_6H_4Me)_3]^+)$. Anal. Calcd for C₅₅H₅₄NClO₃P₂Ru: C, 67.72; H, 5.58; N, 1.44. Found: C, 67.25; H,

5.64; N, 1.37.

X-ray Crystal Structure Determinations: Crystallographic data are summarized in Table S1. X-ray quality single crystals were obtained from CH_2Cl_2 / MeOH (for **2a**•2CH₂Cl₂ and **4b**•CH₂Cl₂) and benzene / hexane (for **4b**^{*}). Diffraction data were collected at room temperature on a Rigaku AFC7 diffractometer equipped with a MSC/ADSC Quantum CCD area detector by using graphite-monochromated Mo K α radiation. Seven preliminary data frames were measured at 0.5° increments of ω , in order to assess the crystal quality and preliminary unit cell parameters. The intensity images were obtained with ω scans of 0.5° interval per frame for duration of 30 s (**2a**•2CH₂Cl₂) and 35 s (**4b**•CH₂Cl₂ and **4b**^{*}). The frame data were integrated using an MSC d*TREK program package, and the data set were corrected for absorption using a REQAB program.

The calculations were performed with a TEXSAN program package. Crystal structures were solved by direct methods for $2a \cdot 2CH_2Cl_2$ and $4b \cdot CH_2Cl_2$ and by Patterson methods for $4b^{\circ}$, and refined on F^2 by the full-matrix least squares method. In the case of $2a \cdot 2CH_2Cl_2$, each asymmetric unit contains a half molecule of 2a and one CH_2Cl_2 solvent molecule, and one of the chloride atom of the solvent molecule is disordered with occupancy factors of 0.5 / 0.5. Anisotropic refinement was applied to all non-hydrogen atoms except for the solvent molecules of $2a \cdot 2CH_2Cl_2$, and hydrogen atoms were put at calculated positions with C-H distances of 0.97 Å, while hydrogen atoms of all solvent molecules were not located.

	$2a \cdot 2CH_2Cl_2$	4b•CH ₂ Cl ₂	4b'
formula	C47H49NCleOP2R1	$C_{\epsilon\epsilon}H_{\epsilon\epsilon}NCl_{2}O_{2}P_{2}Ru$	CeeHerNClO2P2Ru
fw	977.14	1060.44	975.51
cryst system	monoclinic	triclinic	triclinic
space group	<i>P</i> 2,/m (No. 11)	P - 1 (No. 2)	P - 1 (No. 2)
color of crystal	orange	amber	amber
crystal size (mm)	$0.35 \times 0.15 \times 0.06$	$0.80 \times 0.40 \times 0.03$	$0.20 \times 0.20 \times 0.20$
a (Å)	9 523(3)	10 957(1)	12 712(2)
$h(\text{\AA})$	22 815(7)	15.466(1)	12.712(2) 12 742(1)
$C(\dot{A})$	10.988(2)	17 537(2)	15.086(2)
α (deg)	90	78 638(2)	80.906(2)
β (deg)	103 112(4)	78.038(2)	75,435(2)
p(deg)	103.112(4)	71.3409(9)	75.455(2) 88.018(2)
γ (deg)	90	71.5065(6)	33.018(2)
V (A)	2524.9(11)	2000.7(3)	2474.0(3)
Z (3)	2	2	2
$\rho_{\rm calc} ({\rm g}{\rm cm}^3)$	1.396	1.324	1.309
μ (cm ⁻¹)	7.28	5.48	4.78
$2\theta_{\max}$ (deg)	55.0	55.0	55.0
no. of all reflns collected	19792	23134	21470
no. of unique reflns	5302	11356	10553
$R_{\rm int}$	0.067	0.027	0.034
no. of obsd reflns ^{<i>a</i>}	2441	6974	6957
no. of parameters	266	595	568
R^{b}	0.135	0.091	0.068
<i>Rw</i> ^c	0.191	0.122	0.086
GOF^{d}	1.15	1.40	1.02

Table S1. Crystallographic data for $2a \cdot 2CH_2Cl_2$, $4b \cdot CH_2Cl_2$, and 4b'

^{*a*} All data. ^{*b*} $R = \Sigma |Fo^2 - Fc^2| / \Sigma Fo^2$. ^{*c*} $Rw = \{\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (Fo^2)^2\}^{1/2}$.

^{*d*} GOF = $[\{\Sigma w (|Fo| - |Fc|)^2\}/(No - Np)]^{1/2}$, where *No* and *Np* denote the number of data and parameters.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

References

[1] (a) M. B. Fairy, R. J. Irving, J. Chem. Soc., (A), 1966, 64, 475. (b) S. D. Robinson,
M. F. Uttley, J. Chem. Soc., Dalton Trans., 1972, 1.