Electronic Supporting Information

Detection of Hg²⁺ by Cyanobacteria in Aqueous media.

Moorthy Suresh, Sanjiv K. Mishra, Sandhya Mishra* and Amitava Das*

Contents

1. Absorption spectrum of C-Phycocyanin	S 1
2. Emission spectrum of C-Phycocyanin	S2
3. Emission spectra with different metal ions	S3
4. Absorption spectrum of phycocyanobilin in phosphate buffer	S4
5. Absorption spectrum of phycocyanobilin in water	S 5
6. Binding constant for C-PC with various cations in phosphate buffer:	S6
7. Mass spectrum of phycocyanobilin	S7
8. Mass spectrum of phycocyanobilin with Hg^{2+}	S 8
9. IR spectrum of phycocyanobilin	S9
10. IR spectrum of phycocyanobilin with Hg^{2+}	S10
11. Confocal images in different time interval	S11
12. Competitive metal ion study	S12
13. HPLC study	S13
14. ¹ H NMR spectra for phycocyanobilin	S14

<u>1. Absorption spectrum of C-Phycocyanin.</u>

Figure S1 : Absorption spectrum of C-Phycocyanin (2.57 x 10^{-8} M) with phosphate buffer at pH 7.2.

2. Emission Spectrum of C-Phycocyanin.

Figure S2 : Fluorescence emission spectrum of C-Phycocyanin (2.57 x 10^{-8} M) with phosphate buffer at pH 7.2. Excitation at 580 nm.

3. Emission spectra with different metal ions.

Figure S3: Changes in emission spectra of C-PC upon addition of different metal ions in phosphate buffer at pH 7.2. Excitation wavelength that was used for studies is 580 nm.

<u>4. Absorption spectrum of Phycocyanobilin in phosphate buffer:</u>

Figure S4 : Absorption spectrum of phycocyanobilin $(1 \times 10^{-4} \text{M})$ in phosphate buffer at pH 7.2.

5. Absorption spectrum of Phycocyanobilin in water:

Figure S5 : Absorption spectrum of phycocyanobilin $(1.0 \times 10^{-4} M)$ in water

<u>6. Binding constant for C-PC with various cations in phosphate buffer (pH = 7.2):</u>

Metal ions	Binding constant (K _f) ^a
Na ⁺	_b
K^+	_b
Cs^+	_ b
Ca ²⁺	$(2.5\pm0.10)x10^{3}M^{-1}$
Mg^{2+}	_ b
Sr^{2+}	_ b
Ba^{2+}	_ ^b
Cr ³⁺	_ ^b
Fe ³⁺	_ ^b
Ni ²⁺	_ b
Cu ²⁺	$(3.0\pm0.15)x10^{3}M^{-1}$
Hg^{2+}	$(2.7\pm0.2)x10^4M^{-1}$
Cd^{2+}	$(3.1\pm0.2)x10^{3}M^{-1}$
Co ²⁺	_ b
Zn^{2+}	_ b

^aBinding constant for each metal ions is an average of five independent experiments. Values were evaluated based on the fluorescence titration at room temperature. Spectral changes for Na^+ , K^+ , Cs^+ , Mg^{2+} , Sr^{2+} , Ba^{2+} , Cr^{3+} , Fe^{3+} , Ni^{2+} , Co^{2+} and Zn^{2+} were not significant to enable us to evaluate respective binding constant values.

7. Mass spectra of Phycocyanobilin:.

Fig S6: ESI-mass spectrum of phycocyanobilin extracted from *C-Phycocyanin* using Micromass Q-Tof microTM, equipped with ESI source and Q-Tof analyzer.

8. Mass spectra of Phycocyanobilin with Hg²⁺:.

Fig S7: ESI-mass spectrum of ESI-mass spectrum of phycocyanobilin with Hg2+using Micromass Q-Tof microTM, equipped with ESI source and Q-Tof analyzer.

c:\irspec~1\anasci\adas\msuresh\cpcchro2.sp - Recorded at CSMCRI,03-06-08

<u>10. IR spectra of Phycocynobilin with Hg²⁺</u>:

<u>11. Confocal images at different time intervels:</u>

Fig S8. Confocal images of *spirulina platensis* with 10 μ M Hg²⁺ in 1:1 water / ethanol when exposed to 20 μ M L₁ in a different time interval.

<u>12. Fluorescence competitive metal ion study of C-PC with Hg²⁺</u>:

Fig S9: Change in the emission spectra of C-PC (4.0 x 10^{-8} M) in the presence of Hg²⁺ (8.0 x 10^{-4} M) with various other metal ions (Co²⁺, Ni²⁺, Cu²⁺, Ca²⁺, Cd²⁺, Ca²⁺, Sr²⁺ Mg²⁺, Zn²⁺, Na⁺, K⁺, Li⁺, Fe³⁺) (8.0 x 10^{-3} M) in phosphate buffer at pH 7.2. Excitation at 580 nm.

13. HPLC study:

Purity of phycocyanobilin sample is further demonstrated by HPLC studies. A Waters HPLC system 2695 separation module (Alliance) coupled with Waters 2696 photodiode array UV-vis detector (PDA) was used for the HPLC separations on analytical C₈ column, 25cm x 4.6mm, 5 μ m. The column is equilibrated with mobile combination of 95% water and 5% methanol (0.1% acetic acid). The flow rate was 0.5 ml/min. The PDA detector was set to monitor the absorbance of eluent at 590 nm. Two fractions of phycocyanobilin chromophore were found in HPLC chromatogram at t_r= 1.8 min, (69.37%) and t_r = 2.0 min (30.63%) which corresponds to the existence of cis-trans isomers of phycocyanobilin.

Fig S10: HPLC profile of phycocyanobilin using analytical C_8 column (25cm x 4.6mm) and water/CH₃OH (95:5, v/v). Figure (a) shows the profile with 10 min retention time, while (b) shows retention time upto 50 minutes.

Fig S11: ¹H NMR spectra for phycocyanobilin in CDCl₃