Supporting Information for

Methyl Glycosides Are Identified as Glycosyl Donors for the Synthesis of Glycosides, Disaccharides and Oligosaccharides

Srinivasa Rao Vidadala and Srinivas Hotha* Division of Organic Chemistry, Combi Chem – Bio Resource Center National Chemical Laboratory, Pune – 411 008, INDIA Fax: (+) 91 20 2590 2624

<u>s.hotha@ncl.res.in</u>

Contents

Abstract	Page Number 2
General Experimental Techniques	2
General Experimental Procedure	2
¹ H, ¹³ C and DEPT NMR Spectral Charts of Compounds 1 , 2a , 2b , 2f , 2g , 2h , 3a , 3b , 4a , 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 6a , 6b , 6c , 6d , 7a , 7b , 7c , 8a , 8b , 8c , 9a , 9b , 10b , 11 , 12	3-36
Mass Spectral Characterization Data	37
UPLC Chromatograms of Crude Reaction Mixtures	38-53

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 Abstract

Stable methyl glycosides are identified as glycosyl donors in the presence of $AuBr_3$ in acetonitrile. A panel of aglycones comprising aliphatic, alicyclic, steroidal and sugar alcohols are examined successfully for the glycosylation reaction. Methyl glycosides of di- and tri- saccharides are converted to corresponding tri- and tetra- saccharides exploiting salient features of our novel activation protocol.

General Experimental Techniques and Apparatus

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Unless otherwise reported all reactions were performed under argon atmosphere. Removal of solvent *in vacuo* refers to distillation using a rotary evaporator attached to an efficient vacuum pump. Products obtained as solids or syrups were dried under high vacuum. AuCl₃ was purchased from Aldrich. Analytical thin-layer chromatography was performed on pre-coated silica plates (F_{254} , 0.25 mm thickness); compounds were visualized by UV light or by staining with anisaldehyde spray. ¹H, ¹³C NMR spectra were recorded on 200 MHz for ¹H and 50 MHz for ¹³C NMR or 300 MHz for ¹H and 75 MHz for ¹³C NMR or 500 MHz for ¹H and 125 MHz for ¹³C NMR spectrometers. LC-MS data was recorded on UPLC coupled Mass Spectrometer (Waters). Chemical shifts (δ_H) are quoted in ppm and are referenced to tetramethylsilane (internal).

General Procedure for AuBr₃ mediated Glycosylation

To a solution of glycosyl donor (0.1 mmol) and aglycone (0.12 mmol) in anhydrous acetonitrile (4 ml) was added 10 mol% of AuBr₃ under argon atmosphere at room temperature. The resulting mixture was heated to 70°C and stirred till the completion of the reaction as judged by TLC analysis (Table 1 of manuscript). The reaction mixture was concentrated *in vacuo* to obtain a crude residue which was purified by conventional silica gel column chromatography using ethyl acetate-petroleum ether as mobile phase.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 <u>Mass Spectral Characterization Data</u>

Sl. No.	Compound Number	Calculated Mol. Wt.	Observed Mol. Wt. (M ⁺ +23 for Na)
1.	1	578.694	601.475
2.	2a	464.55	488.215
3.	2b	506.501	529.383
4.	2f	492.517	515.357
5.	2g	506.501	529.383
6.	2h	506.501	529.380
7.	3 a	987.181	1010.029
8.	3b	1029.131	1051.837
9.	4 a	432.508	456.378
10.	5a	554.673	577.400
11.	5b	568.699	591.499
12.	5c	582.726	605.583
13.	5d	630.769	653.555
14.	5e	909.291	931.13
15.	5f	580.710	603.529
16.	5g	554.673	577.400
17.	5h	554.673	577.400
18.	5i	554.673	577.400
19.	5j	554.673	577401
20.	6a	608.763	631.403
21.	6b	678.90	701.02
22.	6c	1015.148	1037.901
23.	6d	1029.131	1051.911
24.	7a	1029.131	1051.911
25.	7b	1029.131	1051.911
26.	7c	1029.131	1051.911
27.	8 a	1029.131	1051.837
28.	8b	1029.131	1051.911
29.	8c	1029.131	1051.910
30.	9a	987.181	1009.882
31.	9b	1043.115	1065.774
32.	10b	1517.554	1541.203
33.	11	1517.554	1540.074
34.	12	1992.032	2015.441

UPLC Chromatograms of Crude Reaction Mixtures

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Time and Temperature Optimization Studies using AuBr₃ using Isopropyl Mannoside

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

