Supplementary Information

One-pot Three-component Tandem Reaction of Diazo Compounds with Anilines and Unsaturated Ketoesters: a Novel Synthesis of 2,3-Dihydropyrrole Derivatives

Yingguang Zhu, Changwei Zhai, Yongli Yue, Liping Yang, Wenhao Hu*
Department of Chemistry, East China Normal University, Shanghai 200062, P. R. China
whu@chem.ecnu.edu.cn

Table of Contents
Page
General Considerations S2
Synthesis of Substrates S2
General Procedure for the One-pot Three-component Tandem Reaction of Diazo Compounds with Anilines and β, γ-Unsaturated α-Ketoesters S2
Characterization Data of Compounds S3
Notes and References S16
NMR spectra for the Compounds S17

General Considerations:

All moisture sensitive reactions were performed under an argon atmosphere in a well-dried reaction flask. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 1$, 2 -dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ and chloroform $\left(\mathrm{CHCl}_{3}\right)$ were freshly distilled over calcium hydride, toluene from sodium benzophenone ketyl, respectively, prior to use. All commercially available reagents were directly used as received from vendors, unless otherwise stated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brucker- 500 MHz spectrometer. Chemical shifts are reported in ppm relative to the internal standard tetramethylsilane ($\delta=0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ NMR and deuteriochloroform ($\delta=77.00 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR spectroscopy. HRMS spectra were recorded on a GCT Premier instrument.

Synthesis of Substrates:

β, γ-unsaturated α-ketoesters $\mathbf{3 a - 3 g}$ were prepared according to the literature procedure. ${ }^{1}$ Substrate $\mathbf{3 h}$ was synthesized following another literature procedure. ${ }^{2}$ Various aryl diazo compounds 1a-1d were prepared by the treatment of corresponding arylacetate with p-acetamidobenzenesulfonyl azide (p-ABSA) in the presence of DBU following the general procedure. ${ }^{3}$

General procedure for the one-pot three-component tandem reaction of diazo compounds with anilines and $\boldsymbol{\beta}, \boldsymbol{\gamma}$-unsaturated $\boldsymbol{\alpha}$-ketoesters:

To a stirred solution of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$, anilines $2(1.2 \mathrm{mmol})$ and β, γ-unsaturated α-ketoesters $\mathbf{3}(1 \mathrm{mmol})$ in toluene (8 ml) was added diazo compounds $\mathbf{1}$ $(1.2 \mathrm{mmol})$ in 4 ml of toluene over 1 h via a syringe pump at $45^{\circ} \mathrm{C}$ under Argon. After completion of the addition, the reaction mixture was cooled to room temperature. Citric acid monohydrate ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added and the reaction mixture was refluxed for 3-4 h under azeotropic distillation conditions. After the reaction was completed, the reaction mixture was cooled to room temperature. Solvent was removed, and a portion of crude product was subjected to ${ }^{1} \mathrm{H}$ NMR analysis for determination of the product ratio. The crude product was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=1: 80 \sim 1: 40$) to give the corresponding three-component products 5.

Characterization Data of Compounds:

Diastereomers cis-5g/trans-5g, cis-5i/trans-5i, cis-5k/trans-5k, cis-5m/trans-5m and cis-5p/trans-5p were unable to be separated in a pure isomer by flash chromatography on silica gel and characterized as a mixture of diastereomers.

($2 S^{*}, 3 R^{*}, 5 R^{*}$)-dimethyl 5-hydroxy-1,2,3-triphenylpyrrolidine -2,5 -dicarboxylate (4a): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.68-7.66 (m, 2H), 7.29-7.19 (m, 6H), 7.02-6.99 (m, 2H), 6.92 (d, J = 6.5 Hz, 2H), $6.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H})$, 4.03 (dd, $J=14.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}$, $J=14.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.66,171.75,142.60,139.72,134.64,128.83,128.57,128.56,128.16,128.09,127.78$, 126.97, 118.98, 115.52, 91.34, 77.92, 57.55, 53.97, 51.82, 44.11; HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 431.1733$, found 431.1732.

(2R*,3R*,5S*)-dimethyl 5-hydroxy-1,2,3-triphenylpyrrolidine -2,5-dicarboxylate (4b): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21$ (m, $1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.63$ (dd, $J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{t}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.51$, $173.09,141.95,135.22,133.89,130.12,129.09,128.74,127.87,127.69,127.19,126.62$, $119.05,115.94,88.78,78.33,53.96,52.64,52.23,41.46$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 431.1733$, found 431.1736 .

(2R*,3R*,5R*)-dimethyl 5-hydroxy-1,2,3-triphenylpyrrolidine -2,5-dicarboxylate (4c): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.18-7.04 $(\mathrm{m}, 10 \mathrm{H}), 6.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{dd}, J=14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.91$ ($\mathrm{s}, 3 \mathrm{H}$), $3.63(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=14.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=$
$12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.03,173.47,142.75,135.39,134.59$,
129.78, 129.12, 128.82, 127.97, 127.73, 127.23, 126.74, 119.75, 115.89, 90.64, 79.23, 53.82, 53.53, 53.01, 43.19; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 431.1733$, found 431.1733.

(2S*,3R*,5S*)-dimethyl 5-hydroxy-1,2,3-triphenylpyrrolidine -2,5-dicarboxylate (4d): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.58$ $(\mathrm{m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}$, $1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

(2S*,3R*)-dimethyl 2,3-dihydro-1,2,3-triphenyl-1H-pyrrole-2,5 -dicarboxylate (cis-5a): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 2.79 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.35,162.43,143.69,142.42,140.43$, $138.60,129.43,128.24,128.13,128.03,127.78,127.70,127.52,122.80,121.05,115.32$, 83.70, 63.26, 52.09, 50.98; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 413.1627$, found 413.1622 .

(2R*,3R*)-dimethyl 2,3-dihydro-1,2,3-triphenyl-1H-pyrrole-2,5 -dicarboxylate (trans-5a): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.11-7.08 (m, 2H), 7.02-6.92 (m, 9H), $6.84(\mathrm{~d}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.41,162.15,143.03,140.13,137.77,135.74,129.56,128.92,128.11,127.68,126.96$, 126.86, 126.80, 123.39, 122.39, 118.81, 84.59, 59.37, 52.54, 52.06; HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 413.1627$, found 413.1622.

(2S*,3R*)-dimethyl 3-(4-chlorophenyl)-2,3-dihydro-1,2-diphen yl-1H-pyrrole-2,5-dicarboxylate (cis-5b): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26$ $(\mathrm{m}, 5 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, ~ J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.84(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, $3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.23, 162.31, $143.45,142.12,140.83,137.13,133.60,130.75,128.29,128.18,127.91,127.41,123.10$, 121.30, 114.57, 83.58, 62.36, 52.14, 51.13; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClNO}_{4}\left(\mathrm{M}^{+}\right)$ 447.1237, found 447.1239.

(2R*,3R*)-dimethyl 3-(4-chlorophenyl)-2,3-dihydro-1,2-diphen yl-1H-pyrrole-2,5-dicarboxylate (trans-5b): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.11-7.08 (m, 2H), 7.03-6.90 (m, 8H), $6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.29,162.02,142.83,140.50,136.45,135.50,132.81,130.76$, 128.82, 128.14, 128.06, 127.79, 127.15, 127.03, 123.63, 122.64, 117.90, 84.40, 58.52, 52.60, 52.10; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClNO}_{4}\left(\mathrm{M}^{+}\right) 447.1237$, found 447.1239.
 (2S*,3R*)-dimethyl 3-(4-fluorophenyl)-2,3-dihydro-1,2-diphen yl-1H-pyrrole-2,5-dicarboxylate (cis-5c): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}$, $3 H), 7.08-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.85$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.30,163.28,162.36$, 161.32, 143.54, 142.22, 140.61, 134.36, 134.34, 131.11, 131.04, 128.29, 128.18, 127.87, $127.45,123.00,121.19,114.99,114.89,114.82,83.57,62.36,52.12,51.10$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{FNO}_{4}\left(\mathrm{M}^{+}\right) 431.1533$, found 431.1534.

(2R*,3R*)-dimethyl 3-(4-fluorophenyl)-2,3-dihydro-1,2-diphen yl-1H-pyrrole-2,5-dicarboxylate (trans-5c): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.11-7.09 (m, 2H), 7.02-6.92 (m, 6H), 6.86-6.84 (m, 2H), 6.73-6.66 (m, 4H), 5.93 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.34,162.78,162.06,160.83,142.87,140.27,135.61,133.59$, $133.57,130.98,130.91,128.83,128.12,127.02,126.96,123.52,122.52,118.25,114.59$, 114.42, 84.41, 58.43, 52.56, 52.06; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{FNO}_{4}\left(\mathrm{M}^{+}\right)$431.1533, found 431.1534 .

(2S*,3R*)-dimethyl 3-(3-bromophenyl)-2,3-dihydro-1,2-diphen yl-1H-pyrrole-2,5-dicarboxylate (cis-5d): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 3 \mathrm{H})$, 7.34-6.33 (m, 1H), 7.28-7.26 (m, 1H), 7.21-7.18 (m, 1H), 7.08-7.05 (m, 2H), 6.92-6.89 (m, 1H), 6.73 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.06$, $162.29,143.45,142.21,141.00,132.57,130.83,129.62,128.37,128.22,128.02$, 127.95, 127.44, 123.11, 122.09, 121.24, 114.19, 83.62, 62.74, 52.18, 51.15; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right) 491.0732$, found 491.0733.

(2R*,3R*)-dimethyl 3-(3-bromophenyl)-2,3-dihydro-1,2-diphen yl-1H-pyrrole-2,5-dicarboxylate (trans-5d): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right)$ 8 7.15-7.10 (m, 3H), 7.03-6.95 (m, 6H), 6.88-6.84 (m, 4H), 6.73-6.71 (m, 1H), $5.91(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.05,161.94,142.79,140.64,140.31,135.51,132.47,129.97,129.08,128.71,128.14$, $128.08,127.20,126.99,123.73,122.71,121.79,117.53,84.43,58.80,52.59,52.11$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$491.0732, found 491.0733.

(2S*,3R*)-dimethyl 2,3-dihydro-3-(4-nitrophenyl)-1,2-diphenyl -1H-pyrrole-2,5-dicarboxylate (cis-5e): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.18-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.73$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $169.04,162.10,147.38,146.32,143.03,141.75,141.61,130.28,128.43,128.27,128.20$, $127.35,123.68,123.21,121.93,113.33,83.78,62.13,52.25,51.25$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 458.1478$, found 458.1480 .

(2R*,3R*)-dimethyl 2,3-dihydro-3-(4-nitrophenyl)-1,2-diphenyl -1H-pyrrole-2,5-dicarboxylate (trans-5e): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.17(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.60$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.18,171.11,147.70,145.68,143.57,139.41$, 137.02, 129.30, 129.05, 128.53, 128.16, 127.95, 125.82, 123.25, 118.73, 113.67, 81.61, 69.08, 52.87, 52.81; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 458.1478$, found 458.1480.

(2S*,3R*)-dimethyl 2,3-dihydro-1,2-diphenyl-3-p-tolyl-1H-py rrole-2,5-dicarboxylate (cis-5f): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H})$, 7.23-7.21 (m, 2H), 7.14-7.12 (m, 2H), 7.08-7.05 (m, 2H), 6.91-6.89 $(\mathrm{m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(1 \mathrm{H}$, d, $J=3.0 \mathrm{~Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.43,162.52,143.82,142.57,140.27,137.42,135.46,129.37$, $128.72,128.24,128.14,127.74,127.54,122.76,121.05,115.68,83.64,63.05,52.08$, 51.00, 21.08; HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$427.1784, found 427.1785 .

(2R*,3R*)-dimethyl 2,3-dihydro-1,2-diphenyl-3-p-tolyl-1H-py rrole-2,5-dicarboxylate (trans-5f): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.11-7.08 (m, 2H), 7.01-6.93 (m, 6H), 6.83-6.79 (m, 4H), 6.65-6.63 $(\mathrm{m}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.51,162.20,143.08,139.88,136.65,135.73,134.57,129.41$, 128.99, 128.37, 128.10, 126.84, 126.77, 123.26, 122.24, 119.24, 84.59, 59.11, 52.52, 52.05, 20.96; HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}\left(\mathrm{M}^{\dagger}\right)$ 427.1784, found 427.1785.

($2 S^{*}, 3 \mathrm{R}^{*}$) and ($2 \mathrm{R}^{*}, 3 \mathrm{R}^{*}$)-dimethyl 2,3-dihydro-1,2-diphenyl -3-m-tolyl-1H-pyrrole-2,5-dicarboxylate (cis-5g+trans-5g) (mixture of diastereomers): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (d , $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 6 \mathrm{H})$, $6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-5g), $5.87(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, cis- $\mathbf{5 g}), 5.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-5g), $4.45(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}$, cis-5g), $3.76(\mathrm{~s}, 3 \mathrm{H}$, trans -5 g), $3.76(\mathrm{~s}, 3 \mathrm{H}$, cis- $\mathbf{5 g}$), 3.44 (s, 3 H , trans- $\mathbf{5 g}$), 2.80 (s, 3H, cis-5g), 2.34 (s, 3H, cis-5g), 2.08 (s, 3H, trans-5g); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.34,169.36,162.52,162.19,143.11,139.97,137.58,137.26,130.35,130.11$, 128.91, 128.25, 128.14, 128.12, 127.75, 127.65, 127.55, 127.52, 126.86, 126.69, 126.60, $123.35,122.75,122.30,121.01,119.12,115.58,84.65,83.68,63.35,59.45,52.49,52.09$, 52.05, 50.96, 21.33, 21.00; HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 427.1784$, found 427.1789 .

(2S*,3S*)-dimethyl 2,3-dihydro-1,2-diphenyl-3-(thiophen-2-yl) -1H-pyrrole-2,5-dicarboxylate (cis-5h): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H})$, 6.92-6.89 (m, 1H), $6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.88,162.30,143.72,142.25,142.11,140.21,128.30,128.21,127.87,127.55,126.74$,
$126.59,125.53,122.78,120.61,114.39,83.74,58.32,52.15,51.30$; HRMS (EI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$419.1191, found 419.1192.

(2R*,3S*)-dimethyl 2,3-dihydro-1,2-diphenyl-3-(thiophen-2-yl) -1H-pyrrole-2,5-dicarboxylate (trans-5h): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right)$ 8 7.12-7.08(m, 3H), 7.07-6.95 (m, 6H), 6.86-6.84 (m, 2H), 6.71-6.70 (m, 1H), 6.51-6.50 (m, 1H), $6.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.66(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.45,162.05,142.66,141.28,140.17,135.00,128.55,128.09,127.21$, $127.13,126.98,126.36,125.41,123.48,122.68,117.67,84.31,53.86,52.71,52.12$; HRMS (EI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 419.1191$, found 419.1192.

($2 S^{*}, 3 R^{*}$) and ($2 R^{*}, 3 R^{*}$)-dimethyl 2,3-dihydro-1-(4-methoxy phenyl)-2,3-diphenyl-1H-pyrrole-2,5-dicarboxylate (cis-5i+trans -5i) (mixture of diastereomers): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 8 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 1 H, trans-5i), $5.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, cis-5i), $5.62(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-5i), $4.66(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, cis-5i), $3.75(\mathrm{~s}, 3 \mathrm{H}$, trans $-5 \mathbf{i}), 3.72(\mathrm{~s}, 3 \mathrm{H}$, trans $-5 \mathbf{i}), 3.70(\mathrm{~s}, 3 \mathrm{H}$, cis-5i), 3.69 (s, 3H, cis-5i), 3.42 (s, 3H, trans-5i), 2.92 (s, 3H, cis-5i); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.23,162.14,156.47,140.59,138.10,136.58,136.47,129.57,129.39,128.79$, 128.12, 128.06, 127.62, 126.83, 126.78, 125.15, 125.08, 118.38, 113.45, 113.26, 84.47, 58.94, 55.27, 52.45, 51.99; HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 443.1733$, found 443.1732.

(2S*,3R*)-dimethyl 1-(4-bromophenyl)-2,3-dihydro-2,3-diphenyl -1H-pyrrole-2,5-dicarboxylate (cis-5j): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.93(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.83$
($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.24,162.07,142.76,141.83,139.99,138.30$, $131.09,129.38$, $128.39,128.12,128.03,127.85,127.41,123.07,116.37,115.81,83.69$, 63.12, 52.20, 51.20; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$491.0732, found 491.0734.

(2R*,3R*)-dimethyl 1-(4-bromophenyl)-2,3-dihydro-2,3-diphenyl -1H-pyrrole-2,5-dicarboxylate (trans-5j): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.93(\mathrm{~m}, 6 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.02$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.42, 161.83, 141.97, 139.57, $137.41,135.00,131.07,129.52,128.85,127.77,127.12,127.09,126.96,123.76,119.53$, 116.01, 84.56, 59.24, 52.78, 52.20; HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$ 491.0732, found 491.0734.

($2 S^{*}, 3 R^{*}$) and ($2 \mathrm{R}^{*}, 3 \mathrm{R}^{*}$)-dimethyl 1-(4-fluorophenyl)-2,3-dihy dro-2,3-diphenyl-1H-pyrrole-2,5-dicarboxylate (cis-5k+trans-5k) (mixture of diastereomers): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.92-6.86$ $(\mathrm{m}, 4 \mathrm{H}), 6.82-6.72(\mathrm{~m}, 8 \mathrm{H}), 5.98(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-5k), 5.93 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, cis-5k), $5.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-5k), 4.63 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, cis- $\mathbf{5 k}$), $3.75(\mathrm{~s}, 3 \mathrm{H}$, trans- $\mathbf{5 k}$), $3.70(\mathrm{~s}, 3 \mathrm{H}$, cis $-5 \mathrm{k}), 3.47(\mathrm{~s}, 3 \mathrm{H}$, trans-5k), 2.89 (s, 3H, cis-5k); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.25, 169.82, 162.16, $161.90,160.38,158.45,141.63,140.07,137.72,135.86,129.53,129.34,128.79,128.23$, 128.12, 127.77, 127.70, 127.47, 126.97, 126.95, 126.90, 124.88, 124.81, 124.78, 124.72, $119.08,114.94,114.80,114.76,84.55,84.01,61.95,58.99,52.55,52.06,51.11$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{FNO}_{4}\left(\mathrm{M}^{+}\right) 431.1533$, found 431.1532 .

(2S*,3R*)-dimethyl 2,3-dihydro-1-(4-nitrophenyl)-2,3-diphenyl
-1H-pyrrole-2,5-dicarboxylate (cis-5I): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.19,161.44,149.10,141.49,140.86$, $138.41,137.13,129.39,128.73,128.33,128.25,127.17,124.42,119.49,118.20,83.47$, 64.52, 52.57, 51.57; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 458.1478$, found 458.1481 .

($2 S^{*}, 3 R^{*}$) and ($2 R^{*}, 3 R^{*}$)-dimethyl 2,3-dihydro-1-(4-methoxy phenyl)-2,3-diphenyl-1H-pyrrole-2,5-dicarboxylate (cis-5m+ trans-5m) (mixture of diastereomers): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H})$, 7.06-6.99 (m, 5H), 6.94-6.90 (m, 5H), 6.82-6.80 (m, 4H), 6.77 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 1 H , trans-5m), 5.87 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, cis- 5 m), 5.46 ($\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-5m), 4.45 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, cis-5m), $3.81(\mathrm{~s}, 3 \mathrm{H}$, cis-5m), $3.75(\mathrm{~s}, 3 \mathrm{H}$, trans-5m), $3.74(\mathrm{~s}, 3 \mathrm{H}$, cis-5m), 3.66 (s, 3H, trans-5m), 3.48 ($\mathrm{s}, 3 \mathrm{H}$, trans-5m), 2.77 (s, 3H, cis-5m); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.23,162.14,156.47,140.59,138.10,136.58,136.47,129.57$, 129.39, 128.79, 128.12, 128.06, 127.62, 126.83, 126.78, 125.15, 125.08, 118.38, 113.45, 113.26, 84.47, 58.94, 55.27, 52.45, 51.99; HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$ 443.1733 , found 443.1732 .

(2S*,3R*)-dimethyl 2-(4-bromophenyl)-2,3-dihydro-1,3-diphe nyl-1H-pyrrole-2,5-dicarboxylate (cis-5n): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33-7.24 (m, 5H), 7.09-7.06 (m, 2H), 6.91-6.88 (m, 1H), 6.69-6.67 $(\mathrm{m}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.85,162.31,143.50,141.72,140.33$, $138.18,131.42,129.41,129.40,128.31,128.11,127.88,122.91,122.00,120.56,115.01$,
83.22, 63.58, 52.20, 51.11; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$491.0732, found 491.0733.

(2R*,3R*)-dimethyl 2-(4-bromophenyl)-2,3-dihydro-1,3-diphe nyl-1H-pyrrole-2,5-dicarboxylate (trans-5n): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.13-6.96 (m, 8H), $6.84(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.78(\mathrm{~m}$, $2 \mathrm{H}), 6.76$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (d, $J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.78,161.97,142.83,140.04,137.24,135.12,130.64,129.93,129.48,128.26,127.94$, 127.36, 123.62, 122.12, 121.24, 118.88, 84.18, 59.58, 52.64, 52.13; HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$491.0732, found 491.0733 .

(2S*,3R*)-dimethyl 2-(3-bromophenyl)-2,3-dihydro-1,3-diphe nyl-1H-pyrrole-2,5-dicarboxylate (cis-50): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H})$, 6.93-6.90 (m, 1H), 6.72-6.70 (m, 2H), $5.89(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.63,161.11,143.68,142.32,139.22,136.97,129.75,129.54,128.63,128.26,127.14$, $126.95,126.72,125.04,121.85,121.30,119.60,113.95,82.03,62.23,51.01,49.96$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$491.0732, found 491.0732.

(2R*,3R*)-dimethyl 2-(3-bromophenyl)-2,3-dihydro-1,3-diphe nyl-1H-pyrrole-2,5-dicarboxylate (trans-5o): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.16-7.04 (m, 7H), 7.01-6.98 (m, 2H), 6.88-6.83 (m, 3H), 6.79-6.77 (m, 2H), 5.97 (s, 1H), $5.56(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.37, 160.77, $141.75,138.99,137.36,136.07,130.99,128.79$, 128.24, 127.17, 127.12, 126.70, 126.28, 126.26, 122.65, 121.20, 120.07, 117.73, 82.95, 58.62, 51.48, 50.96; HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$491.0732, found 491.0732 .

Single-crystal X-ray structure determinations were performed on a Bruker SMART APEX II diffractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$ Å). Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software. Scaling and absorption corrections were applied using SADABS multi-scan technique supplied by George Sheldrick. ${ }^{4}$ The structures were solved by direct methods and refined by full-matrix least-squares on F^{2} with anisotropic displacement parameters for non-H atoms using SHELX-97. ${ }^{5}$

Crystal data of 4a

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
zyg-1
$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5}$
431.47

296(2) K
$0.71073 \AA$
Triclinic, $P \overline{1}$
$a=9.0431(2) \AA \quad$ alpha $=104.7420(10)$ deg.
$\mathrm{b}=9.1987(2) \AA \quad$ beta $=98.0810(10)$ deg.
$\mathrm{c}=14.3311(2) \AA \mathrm{gamma}=101.1600(10) \mathrm{deg}$.
$1108.22(4) \AA^{3}$

Z, Calculated density	$2,1.293 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.090 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	456
Crystal size	$0.628 \times 0.624 \times 0.516 \mathrm{~mm}$
Theta range for data collection	1.50 to 25.01 deg.
Limiting indices	$-10<=\mathrm{h}<=10,-10<=\mathrm{k}<=10,-17<=\mathrm{l}<=17$
Reflections collected / unique	$15997 / 3889[\mathrm{R}(\mathrm{int})=0.0181]$
Completeness to theta $=25.01$	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.897856
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3889 / 0 / 290$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.031
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0375, \mathrm{wR} 2=0.1014$
R indices (all data)	$\mathrm{R} 1=0.0411, \mathrm{wR} 2=0.1062$
Extinction coefficient	$0.034(3)$
Largest diff. peak and hole	0.353 and -0.352 e. A^{-3}

Crystal data of $\mathbf{4 c}$

Identification code
Empirical formula
Formula weight
zyg-2
$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5}$
431.47

Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $\quad P 2{ }_{1} / \mathrm{n}$
Unit cell dimensions	$a=13.6991(6) \AA \quad$ alpha $=90$ deg.
	$b=9.8616(5) \AA \quad$ beta $=105.5260(10)$ deg
	$\mathrm{c}=17.5991(8) \AA \quad$ gamma $=90 \mathrm{deg}$.
Volume	2290.79(19) A^{3}
Z, Calculated density	4, $1.251 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.087 \mathrm{~mm}^{\wedge}-1$
F(000)	912
Crystal size	$0.354 \times 0.340 \times 0.255 \mathrm{~mm}$
Theta range for data collection	1.68 to 25.01 deg .
Limiting indices	$-16<=\mathrm{h}<=16,-11<=\mathrm{k}<=11,-19<=1<=20$
Reflections collected / unique	$26067 / 4025[\mathrm{R}(\mathrm{int})=0.0213]$
Completeness to theta $=25.01$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.839748
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4025 / 0 / 289
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.025
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0426, \mathrm{wR} 2=0.1168$
R indices (all data)	$\mathrm{R} 1=0.0506, \mathrm{wR} 2=0.1257$
Largest diff. peak and hole	0.479 and -0.430 e. A^{-3}

Notes and References:

1 Y.-C. Wu, L. Liu, H.-J. Li, D. Wang and Y.-J. Chen, J. Org. Chem., 2006, 71, 6592.
2 T. Vaijayanthi and A. Chadha, Tetrahedron: Asymmetry, 2007, 18, 1077.
3 M. P. Doyle, M. A. Mckervey and T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998.
4 SAINT V 7.34 Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Madison, WI, 2001.

5 G. M. Sheldrick, SHELX-97; Bruker Analytical X-Ray Systems, Inc.: Madison, WI, 1997.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

름

4a

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

咅

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

5

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

喜

| V

trans-5a

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

需

trans－5b

吉

安安多
꿍응
ต ํ ํ
$1 V$

trans－5b

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

镸

的员8	$\stackrel{\square}{0}$	억육	\％
m N	๕๐	答云	－
	｜	1	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

皆

\％	N
皿运辰	¢

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

\＄	m	埙
國だが	\％	กั่
		1

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

ะ

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

言

$\underset{\sim}{\text { NG }}$

들

-21.08

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

Nö

喜

g NㅔㅇNN	二 50
あ ミス゚	
	V

\＆

$\stackrel{\text { ヘ }}{1}$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

唇

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

合

N	¢్ల
㐌	ถึ

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

镸

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

E

＊${ }_{\sim}^{\sim}$	ก 188

离卡只

ppor		160		120	100	80	60 40		20
	180	160	140	120	100	80			

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

ล

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

品䍐足禺世 㕨 ゆ8

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

言

*	กั
	¢

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

ء

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

