Supporting Information

A Conformational Transition in the Structure of a 2'-Thiomethyl-Modified DNA Visualized at High Resolution

Pradeep S. Pallan,^a Thazha P. Prakash,^b Feng Li,^a Robert L. Eoff,^a Muthiah Manoharan^c and Martin Egli^{*a}

^aDepartment of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, ^bDepartment of Medicinal Chemistry, Isis Pharmaceuticals Inc., Carlsbad, California 92008, and ^cDepartment of Drug Discovery, Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts 02142

*E-mail: martin.egli@vanderbilt.edu

Oligonucleotide synthesis: Both modified DNA oligonucleotides GCGTAU*ACGC and CGCGAAU*U*CGCG (U*=2'-SMe-rU) were synthesized via the solid-phase phosphoramidite approach and following published procedures.^{S1} The 10mer and 12mer were purified by reverse phase HPLC and characterized by ES-MS and their purities were >95% as evaluated by capillary gel electrophoresis.

Crystallization and data collection: Crystals were grown by the hanging-drop vapor diffusion technique using the Nucleic Acid Miniscreen^{S2} (Hampton Research, Aliso Viejo, CA). Crystals were mounted in nylon loops without further cryo-protection and frozen in liquid nitrogen. Diffraction data were collected on insertion beamlines at sector 21 of the Life Sciences Collaborative Access Team (LS-CAT) at the Advanced Photon Source (Agonne National Laboratory, Argonne, Illinois). Diffraction data were processed with the programs HKL2000^{S3} (RNase-H complex; see below) or XDS^{S4} (10 and 12-mer duplexes). Both the 10mer and 12mer crystals are of space group $P2_12_12_1$, whereby the asymmetric unit contained a single duplex and two independent duplexes, respectively.

Fig. S1. Overall geometry of the A-form duplex formed by the decamer GCGTAU*ACGC. The view is into the central minor groove and a partial spermine molecule is visible near the G1:C20 terminus of the duplex. Local conformational flexibility in the backbones was resolved by applying dual occupancy for two phosphates in the crystallographic refinement.

Fig. S2. Comparison between the geometries of G-tract regions in the native (green) and 2'-SMemodified (purple) DDDs. Only the superimpositions of the (A) top and (B) bottom G-tracts for the first of the two modified DDD duplexes per asymmetric unit in the structure of [CGCGAAU*U*CGCG]₂ is shown. The deviations relative to the native DDD for the second duplex are very similar.

Table S1. Selected crystal data and refinement parameters for the duplexes [GCGTAU*ACGC]₂ and [CGCGAAU*U*CGCG]₂ and the complex between *B. halodurans* RNase H (*Bh*-RNase H) and [CGCGAAU*U*CGCG]₂ (U*=2'-*S*Me-U).

Parameter	5'-CGCGAAU*U*CGCG-3'	5'-GCGTAU*ACGC-3'	Bh-RNase H (D132N mutant)/
T urumeter			5'-CGCGAAU*U*CGCG-3'
Crystal data			
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	<i>C</i> 2
No. of strands per asym. unit	4	2	1 RNase H and 1 single strand
Cell dimensions			
a, b, c (Å)	40.07 43.22 88.71	24.69 42.92 46.12	81.93 66.62 38.77
$\alpha, \beta, \gamma(^{\circ})$	90.0 90.0 90.0	90.0 90.0 90.0	90.0 103.3 90.0
Data collection			
No. of reflections	43,276	23,179	26,499
Resolution (Å; last shell)	1.25 (1.33-1.25)	1.04 (1.09-1.04)	1.60 (1.66-1.60)
Completeness (%, last shell)	96.4 (92.2)	95.4 (88.6)	99.4 (96.9)
R-merge (%)	8.3	2.2	7.7
Refinement			
R-work / R-free	0.151/0.208	0.130/0.164	0.193/0.261
Number of atoms			
DNA / DNA and Protein	985	428	1,481
Water molecules	349	139	102
Ions/small molecules	7 Sr ²⁺ , 2 MPD	1 partial spermine	glycerol
B -factors			
DNA / DNA and Protein (Å ²)	22.9	13.9	59.2
Water ($Å^2$)	39.2	14.6	45.2
R.m.s. deviations			
Bond lengths (Å)	0.013	0.016	0.009
Bond angles (Å; 13 dist.)	0.03	0.03	0.03

References:

- S1. W. F. Lima, J. G. Nichols, H. Wu, T. P. Prakash, M. T. Migawa, T. K. Wyrzykiewicz, B. Bhat and S. T. Crooke, *J. Biol. Chem.* 2004, **279**, 36317-36326.
- S2. Berger, I.; Kang, C. H.; Sinha, N.; Wolters, M.; Rich, A. Acta Cryst. D 1996, 52, 465-468.
- S3. Otwinowski, Z.; Minor, W. Meth. Enzymol. 1997, 276, 307-326.
- S4. W. Kabsch, J. Appl. Cryst. 1993, 26, 795-800.