Synthesis procedure and structural characterization of the different MIL materials

$\underline{\text{MIL-47}(V) \text{ or } V^{IV}O(O_2C-C_6H_4-CO_2) [V_4O_4(O_2C-C_6H_4-CO_2)_4 \text{ per unit-cell}]}$

 $V^{IV}O(O_2C-C_6H_4-CO_2)$ was synthesized according to the published procedure.¹ VCl₃ and terephthalic acid were reacted in water at 200°C for 3 days. The resulting solid was washed with water, DMF, acetone and dried in air, and is formulated $V^{III}OH(O_2C-C_6H_4-CO_2).(HO_2C-C_6H_4-CO_2H)_X$ (x ~ 0.75). The solid was further placed in DMF at 150°C overnight (1g of solid for 50 ml of DMF), to afford after cooling down to room temperature and additional washing (DMF and acetone) the $V^{III}OH(O_2C-C_6H_4-CO_2).(DMF)_X$ (x ~ 0.8) solid.² Eventually, $V^{IV}O(O_2C-C_6H_4-CO_2)$ was obtained by heating the above-mentioned solid under primary vacuum at 250°C for 2 days. Nitrogen sorption measurement at 77K indicates a Langmuir surface area of about 1450 m².g⁻¹.

Solid	a (Å)	b (Å)	c (Å)	V (Å ³)	Space Group	Reference
V ^{III} OH(O ₂ C-C ₆ H ₄ -CO ₂).(HO ₂ C-C ₆ H ₄ -CO ₂ H) _{0.75} MIL-47 as	17.519(1)	12.168(1)	6.875(1)	1465.5(1)	P n a m	1
V ^{IV} O(O ₂ C-C ₆ H ₄ -CO ₂) MIL-47 (V)	16.143(1)	13.939(1)	6.818(1)	1534.1(1)	P n a m	1

Table S1: Unit-cell of the different forms of MIL-47(V)

MIL-53(Cr) or Cr^{III}OH(O₂C-C₆H₄-CO₂) [Cr₄(OH)₄(O₂C-C₆H₄-CO₂)₄ per unit-cell]

 $Cr^{III}(OH)(O_2C-C_6H_4-CO_2)$ was synthesized according to the published procedure.³ $Cr(NO_3)_3 \cdot 9H_2O$, terephthalic acid and hydrofluoric acid were reacted in water at 220°C for 3 days. The resulting solid was washed with water, DMF, acetone and dried in air, and is formulated $CrOH(O_2C-C_6H_4-CO_2).(HO_2C-C_6H_4-CO_2H)_X$ (x ~ 0.75). The solid was further placed in DMF at 150°C overnight (1g of solid for 50 ml of DMF), to afford after cooling down to room temperature and additional washing (DMF and acetone) $CrOH(O_2C-C_6H_4-CO_2).(DMF)_X$ (x ~ 0.8).² Eventually, $CrOH(O_2C-C_6H_4-CO_2)$ was obtained by heating the above-mentioned solid under primary vacuum at 250°C for 2 days. Nitrogen sorption measurement at 77K indicates a Langmuir surface area of about 1400 m².g⁻¹. The solid let in air afforded $Cr^{III}(OH)(O_2C-C_6H_4-CO_2).(H_2O)$, while redispersed in water, this leads to $Cr^{III}(OH)(O_2C-C_6H_4-CO_2).(n-4)$ or MIL-53(Cr)(H₂O)open.

Solid	a (Å)	b (Å)	b (Å) c (Å) β (°) V (<i>b</i>		V (Å ³)	Space Group	Reference	
Cr ^{III} OH(O ₂ C-C ₆ H ₄ -CO ₂).(HO ₂ C-C ₆ H ₄ - CO ₂ H) _{0.75} MIL-53 as	17.340(1)	12.178(1)	6.822(1)	-	1440.6(1)	Pnam	3	
$Cr^{III}(OH)(O_2C-C_6H_4-CO_2)$ MIL-53ht labelled MIL-53 <i>lp</i> (Cr)	16.733(1)	13.038(1)	6.812	-	1486.1(1)	I m c m	3	
Cr ^{III} (OH)(O ₂ C-C ₆ H ₄ -CO ₂).(H ₂ O) MIL-53lt labelled MIL-53 <i>np</i> (Cr)	19.685(1)	7.849(1)	6.782	104.9(1)	1012.0(1)	C 2/c	3	
Cr ^{III} (OH)(O ₂ C-C ₆ H ₄ -CO ₂).n(H ₂ O) MIL-53(H ₂ O)open labelled MIL-53 <i>lp</i> (Cr)	15.80(1)	14.15(1)	6.83(1)	-	1527.2(1)	I m c m	unpublished results	

Table S2: Unit-cell of the different forms of MIL-53(Cr):

lp = *large pore, np* = *narrow pore*

MIL-53(Fe) or Fe^{III}(OH)(O₂C-C₆H₄-CO₂) [Fe₄(OH)(O₂C-C₆H₄-CO₂)₄ per unit-cell]

Fe^{III}(OH)(O₂C-C₆H₄-CO₂) was synthesized according to the published procedure.⁴ FeCl₃·xH₂O and terephthalic acid (1, 1 mmol of each in 5 ml of DMF) were reacted in DMF at 150°C for 1 days. The resulting solid was washed with water, DMF, acetone and dried in air, and is formulated Fe^{III}(OH)(O₂C-C₆H₄-CO₂)(DMF)_X (x ~ 0.8). DMF was exchanged by deionised water at room temperature (1 g of the solid in 0.5 l of water) to afford Fe^{III}(OH)(O₂C-C₆H₄-CO₂)·(H₂O). Eventually, Fe^{III}(OH)(O₂C-C₆H₄-CO₂). x(H₂O) (0<x<0.5) and Fe^{III}(OH)(O₂C-C₆H₄-CO₂) was obtained by heating the above-mentioned solid in air at 50°C and 150°C, respectively. Nitrogen sorption measurement at 77K indicates no permanent microporosity.

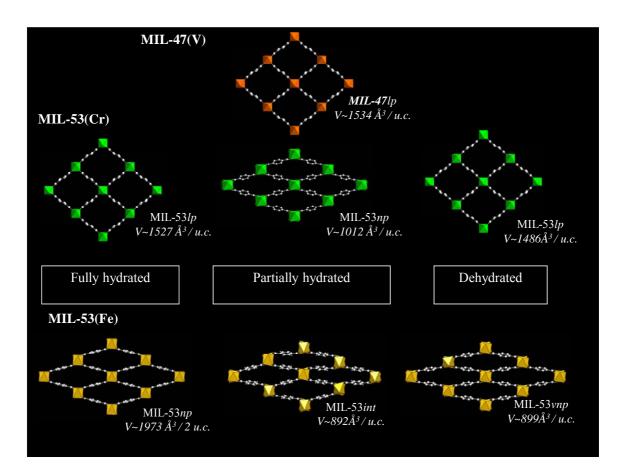

Solid	a (Å)	b (Å)	c (Å)	α (°)	β (°)	V (Å ³)	Space Group	Ref.
Fe ^{III} (OH)(O ₂ C-C ₆ H ₄ -CO ₂) MIL-53(Fe)ht labelled MIL-53 <i>vnp</i> (Fe)	21.269(1)	6.760(1)	6.884(2)	_	114.62(1)	899.6(1)	C2/c	5
Fe ^{III} (OH)(O ₂ C-C ₆ H ₄ -CO ₂). x(H ₂ O) (0 <x<0.5) labelled MIL-53 <i>int</i> (Fe)</x<0.5) 	6.886(5)	10.557(9)	13.466(2)	109.85(6)	88.05(6)	892.4(1)	<i>P</i> -1	5
Fe ^{III} (OH)(O ₂ C-C ₆ H ₄ -CO ₂).(H ₂ O) MIL-53(Fe)lt labelled MIL-53 <i>np</i> (Fe)	19.320(1)	15.036(1)	6.835(1)	-	96.30(1)	1973.5(1)*	C2/c	5

Table S3: Unit cell parameters of the different forms of MIL-53(Fe)

np = *narrow pore*, *int* = *intermediate pore*, *vnp* = *very narrow pore* * *for a 1x2x1 unit cell*

Figure S1: Crystal structures of the MIL-47(V), MIL-53(Cr) (*lp* and *np* versions) and MIL-53(Fe) (*np*, *int* and was versions) upon water decorption

vnp versions) upon water desorption.

⁵ F. Millange, N. Guillou, R. I. Walton, J.-M. Grenèche, G. Férey, *Chem. Commun.*, 2008, 4732.

¹ K. Barthelet, J. Marrot, D. Riou and G. Férey, Angew. Chem. Int. Ed., 2002, **41**, 281.

² C. Serre, S. Bourrelly, A. Vimont, N. A. Ramsahye, G. Maurin, P.L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes and G. Férey, *Adv. Mater.*, 2007, **19**, 2246.

³ C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër and G. Férey, J. Am. Chem. Soc., 2002, **124**, 13519.

⁴ G. Férey, F. Millange, M. Morcrette, C. Serre, M.-L. Doublet, J.-M. Grenèche, J.-M. Tarascon, *Angew. Chem. Int. Ed.*, 2007, **46**, 3259.