Phosphoramidite Accelerated Copper (I)-Catalyzed [3+2] Cycloadditions of Azides and Alkynes

Lachlan Campbell-Verduyn^a, Leila Mirfeizi^b, Rudi A. Dierckx^b, Philip H. Elsinga^{b*}, and Ben L. Feringa^{a*}

 ^a Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
^b Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Supplementary Information

Table of Contents

General Information	2
Experimental Procedure for the Preparation of Azides	3
Synthesis and Characterization of 1,4-Disubstituted Triazoles	4
Radiolabelling Procedure	9
References	9

General Information

All reactions were carried out in oven dried glassware. CuSO₄·5H₂O, sodium ascorbate and dimethyl sulfoxide were purchased from Aldrich and used as received. ¹H-, ¹³C-, and ¹⁹F-NMR were recorded on a Varian AMX400 (400, 100.59 MHz, and 200 MHz respectively) using CDCl₃ as solvent unless otherwise indicated. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CHCl₃: δ 7.26 for ¹H and δ 77.0 for ¹³C). Data are reported as follows: chemical shifts, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, dd=doublet of doublets, dt=doublet of triplets, td=triplet of doublets, m=multiplet, br=broad), coupling constants (Hz), and integration. Flash chromatography was performed on silica gel. All reactions were monitored by thin layer chromotography on Merck F-254 silica gel plates or by ¹H NMR. Visualization of the TLC plates was performed with KMnO₄ staining reagent and UV (254 nm). Conversion of reactions was determined by GC-MS (GC HP6890, MS HP5973) with an HP5 column (Agilent Technologies, Palo Alto, CA) or by ¹H NMR. Mass spectra were recorded on an AEI-MS-902 mass spectrometer by EI (70 eV) measurements. Melting points are uncorrected. Phosphoramidites were synthesized as described in the literature (1). ¹H and ¹³C NMR data is provided for all synthesized compounds. Spectra were in accordance with published experimental data and references are provided for known compounds. HRMS mass data is provided for all new compounds.

Safety

Working with azides should always be done carefully. Organic azides, particularly those of low molecular weight, or with high nitrogen content, are potentially explosive. Heat, light and pressure can cause decomposition of the azides. Furthermore, the azide ion is toxic, and sodium azide should always be handled with gloves. Heavy metal azides are particularly unstable, and may explode if heated or shaken. Any experiment in which azides are to be heated in the presence of copper should involve the use of a blast shield.

Experimental Procedure for the Preparation of Azides

General Procedure A: To a stirred solution of the corresponding bromide (1.0 eq) in a 50 mL water/acetone mixture (1:4) was added NaN₃ (1.5 eq). The resulting suspension was stirred at room temperature for 24 hours. DCM was added to the mixture and the organic layer was separated. The aqueous layer was extracted with 3 x 10 mL aliquots of DCM and the combined organic layers were dried over MgSO₄. Solvent was removed under reduced pressure, and the azide was sufficiently pure to use without further work up. In the case of the synthesis of 1-azidooctane, DMSO was used as solvent and the reaction was quenched with water.

N₃

Benzyl azide². Yellow oil. From 2.5 mmol benzyl bromide, 100 % yield. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.43 (m, 5H), 4.35 (s, 2H); ¹³C NMR (100.59 MHz, CDCl₃): δ 135.5, 129.3, 128.3, 128.2, 54.8.

1-(Azidomethyl)-4-fluorobenzene². Pale yellow oil. From 2.5 mmol 1-(bromomethyl)-4-fluorobenzene, 99 % yield. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.39 (m, 2H), 7.00-7.11 (m, 2H), 4.30 (s, 2H); ¹³C NMR (100.59 MHz, CDCl₃): δ 162.5 (d, *J*= 328.7 Hz), 131.4, 129.9 (d, *J*= 11.4 Hz), 115.7 (d, *J*= 27.6 Hz), 54.0; ¹⁹F NMR (200 MHz, CDCl₃): δ -112.3.

Ethyl 2-azidoacetate³. Colorless oil. From 2.5 mmol ethyl bromoacetate, 100% yield. ¹H NMR (400 MHz, CDCl₃): δ 4.15 (q, *J*= 6.8 Hz, 2H), 3.77 (d, *J*= 1.2 Hz, 2H), 1.20 (td, *J*= 7.2, 1.2 Hz, 3H). ¹³C NMR (100.59 MHz, CDCl₃): δ 168.1, 61.5, 50.0, 13.8.

Cinnamyl azide. Colorless oil. From 2.5 mmol cinnamyl bromide, 97 % yield. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.45 (m, 5H), 6.67 (d, *J*= 16 Hz, 1H), 6.26 (dt, *J*= 16.0, 6.4 Hz, 1H), 3.95 (d, *J*= 6.4 Hz, 2H); ¹³C NMR (100.59 MHz, CDCl₃): δ 135.7, 134.5, 128.7, 128.2, 126.7, 122.4, 53.0; HRMS (EI) calcd for C₉H₉N₃ 159.0796, found 159.0790.

~~~~N<sub>3</sub>

**1-Azidooctane**<sup>2</sup>. Clear yellow oil. From 3.0 mmol of 1-bromooctane, 83 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.21 (t, *J*= 6.8 Hz, 2H), 1.56 (q, *J*= 6.8 Hz, 2H), 1.24-1.34 (m, 10 H), 0.85 (t, *J*= 6.4 Hz, 3H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  51.5, 31.8, 29.2, 29.2, 28.9, 26.8, 22.7, 14.1.

**General Procedure B**: To a stirred solution of the corresponding aromatic amine (1.0 eq) in acetonitrile (0.5 M) at 0 °C was added tert-butyl nitrite (1.5 eq), followed by azidotrimethylsilane (1.2 eq) in a dropwise fashion. The roundbottom flask was then removed from the ice bath and allowed to warm to room temerature and stir for a further 2 h. Solvent was removed under reduced pressure, and the azides were purified by column chromatography (pentane/ether).

**1-azido-4-bromobenzene<sup>4</sup>.** Yellow-orange solid. From 2.0 mmol 4-bromoaniline, 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.44 (d, *J*= 6.8 Hz, 2H), 6.89 (d, *J*= 8.8 Hz, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>): δ 139.1, 132.7, 120.5, 117.7.



**4-Azidobenzonitrile**<sup>5</sup>. Orange solid. From 3.0 mmol 4-aminobenzonitrile, 83% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 7.58 (td, J= 9.6, 2.0 Hz, 2H), 7.05 (td, J= 9.6 Hz, 0.8 Hz, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  144.5, 133.5, 119.5, 118.2, 108.0.



**Azidobenzene<sup>5</sup>.** Pale yellow oil. From 3.0 mmol aniline, 65 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 7.36-7.41 (m, 2H), 7.15-7.20 (m, 1H), 7.05-7.08 (m, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>): δ 140.0, 129.7, 124.8, 118.9.

**General Procedure C**: 1-azido-4-methoxybenzene was prepared according to literature procedures<sup>4</sup>.

**1-azido-4-methoxybenzene**<sup>4</sup>. Dark orange solid. From 2.0 mmol iodoanisole, 57 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 6.96 (d, *J*= 8.8 Hz, 2H), 6.89 (d, *J*= 8.4 Hz, 2H), 3.79 (s, 3H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>): δ 156.9, 132.2, 119.9, 115.0, 55.4.

General Procedure for the Synthesis of 1,4-Disubstituted Triazoles: In a sample vial,  $5.6 \times 10^{-3}$  mmol of CuSO<sub>4</sub>·5H<sub>2</sub>O and 2.8 ×  $10^{-2}$  mmol sodium ascorbate were dissolved in 1.2 mL distilled water. To the sample vial was added  $6.2 \times 10^{-3}$  mmol of MonoPhos in 0.4 mL DMSO. The resulting solution was vigorously stirred for 15 min. The solution was then added to a 25 mL oven-dried roundbottom flask containing 0.56 mmol of azide and 1.12 mmol of alkyne in 3 mL of a DMSO:H<sub>2</sub>O mixture (1:3). The roundbottom flask was sealed and the reaction mixture was vigorously stirred. Reaction progress was monitored by <sup>1</sup>H NMR. Upon reaction completion, 10 mL of H<sub>2</sub>O was added to the reaction mixture. For solid products, the reaction mixture was placed in an ice bath and

the precipitated solid product was filtered and washed with 3 x 5 mL of cold water. For oil products, the resulting reaction mixture was extracted with 3 x 15 mL of dichloromethane. The organic layers were combined and dried over MgSO<sub>4</sub> and the solvent was removed by vacuum evaporation. Crude oils were purified using silica gel chromatography (pentane:ether). The phosphoramidite ligands were also recovered from the mixture by column chromatography.



**1-benzyl-4-phenyl-1***H***-1,2,3-triazole.** White solid: mp 128-130 °C. 91 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.80 (d, *J*= 7.2 Hz, 2H), 7.66 (s, 1H), 7.32-7.42 (m, 8H), 5.58 (s, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  148.0, 135.0, 130.7, 129.1, 128.9, 128.7, 128.2, 128.1, 125.7, 120.1, 41.0. HRMS (EI) calcd for C<sub>15</sub>H<sub>13</sub>N<sub>3</sub> 235.1109, found 235.1098.



**1-(4-fluorobenzyl)-4-phenyl-1***H***-1,2,3-triazole**<sup>6</sup>. White solid: mp 129-131 °C. 84 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.78 (d, *J*= 7.2 Hz, 2H), 7.67 (s, 1H), 7.37 (t, *J*= 7.2 Hz, 2H), 7.25-7.28 (m, 3H), 7.03 (t, *J*= 8.8 Hz, 2H), 5.49 (s, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  163.0 (d, *J*= 248.0 Hz), 148.5, 130.8 (d, *J*= 3.0 Hz), 130.6, 130.2 (d, *J*= 9.0 Hz), 129.0, 128.4, 125.9, 119.7, 116.3 (d, *J*= 21.0 Hz), 53.6.



**1-(4-diphenyl)-1***H***-1,2,3-triazole<sup>7</sup>.** Pale yellow solid: mp183-184 °C. 88 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.20 (s, 1H), 7.92 (dt, *J*= 8.0, 1.6 Hz, 2H), 7.79 (dt, *J*= 8.4 Hz, 1.2 Hz, 2H), 7.55 (tt, *J*= 8.4, 1.6 Hz, 2H), 7.43-7.48 (m, 3H), 7.38 (tt, *J*= 7.6, 0.8 Hz, 1H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  148.8, 137.4, 130.6, 130.2, 129.3, 129.2, 128.8, 126.2, 120.9, 118.0.

**1-(4-bromophenyl)-4-phenyl-1***H***-1,2,3-triazole.** White solid: mp 231 °C. 71 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.17 (d, *J*= 3.2 Hz, 1H), 7.91 (dq, *J*= 6.4, 3.2 Hz, 2H), 7.68-7.70 (m, 4H), 7.47 (tt, *J*= 8.0 Hz, 1.6 Hz, 2H), 7.40 (dt, *J*= 8.0, 1.6 Hz, 1H); <sup>13</sup>C NMR

 $(100.59 \text{ MHz}, \text{CDCl}_3)$ :  $\delta$  149.1, 133.3, 136.4, 130.4, 129.4, 129.0, 126.3, 122.8, 122.3, 117.7. HRMS (EI) calcd for C<sub>14</sub>H<sub>10</sub>N<sub>3</sub>Br 300.0131, found 300.0130.



**4-(4-phenyl-1***H***-1,2,3-triazol-1-yl)benzonitrile.** Pale yellow solid: mp 234 °C. 81 % yield. <sup>1</sup>H NMR (400 MHz, d6-DMSO):  $\delta$  9.45 (s, 1H), 8.15 (q, *J*= 8.1 Hz, 4H), 7.93 (d, *J*= 7.8 Hz, 2H), 7.50 (t, *J*= 7.8 Hz, 2H), 7.36-7.41 (m, 1H); <sup>13</sup>C NMR (100.59 MHz, d6-DMSO):  $\delta$  148.4, 140.2, 135.0, 130.5, 129.8, 129.2, 126.1, 121.0, 120.5, 118.8, 111.7. HRMS (EI) calcd for C<sub>15</sub>H<sub>10</sub>N<sub>4</sub> 247.0978, found 247.0977.



**1-(4-methoxyphenyl)-4-phenyl-1***H***-1,2,3-triazole.** Pale yellow solid: mp 160-161 °C. 80 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.11 (s, 1H), 7.90 (dd, *J*= 7.6, 0.8 Hz, 2H), 7.69 (dt, *J*= 9.2, 2.4 Hz, 2H), 7.46 (tt, *J*= 7.6 Hz, 1.2 Hz, 2H), 7.36 (tt, *J*= 7.6, 1.2 Hz, 1H), 7.04 (dt, *J*= 8.4, 2.4 Hz, 2H), 3.88 (s, 3H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  160.2, 148.6, 130.9, 130.8, 129.3, 128.7, 126.2, 122.6, 118.2, 115.2, 56.0. HRMS (EI) calcd for C<sub>16</sub>H<sub>15</sub>N<sub>3</sub>O 265.1215, found 265.1215.



**Ethyl 2-(4-phenyl-1***H***-1,2,3-triazol-1-yl)acetate<sup>8</sup>.** White solid: mp 99 °C. 83 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.91 (s, 1H), 7.84 (d, *J*= 7.2 Hz, 2H), 7.43 (t, *J*= 7.2 Hz, 2H), 7.34 (t, *J*= 7.2 Hz, 1H), 5.20 (s, 2H), 4.28 (q, *J*= 6.8 Hz, 2H), 1.31 (t, *J*= 6.8 Hz, 3H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  166.5, 148.4, 130.6, 129.1, 128.5, 126.0, 121.3, 62.7, 51.2, 14.3.



**1-octyl-4-phenyl-1***H***-1,2,3-triazole<sup>9</sup>.** White solid: mp 74-75 °C. 99 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.78 (d, *J*= 7.2 Hz, 2H), 7.73 (s, 1H), 7.36 (t, *J*= 7.2 Hz, 2H), 7.27 (t, *J*= 7.2 Hz, 1H), 4.32 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.20-1.27 (m, 10H), 0.82 (t, *J*= 7.2 Hz, 2H), 1.87 (br s, 2H), 1.87 (b

3.2 Hz, 3H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>): δ 147.7, 130.9, 128.9, 128.1, 125.7, 119.7, 50.5, 31.8, 30.4, 29.1, 29.0, 26.6, 22.7, 14.2.



**1-(4-fluorobutyl)-4-phenyl-1***H***-1,2,3-triazole.** White solid: mp 54-55 °C. 90 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (d, *J*= 10.0 Hz, 2H), 7.76 (s, 1H), 7.42 (t, *J*= 10.0 Hz, 2H), 7.30-7.35 (m, 1H), 4.56 (t, *J*= 7.2 Hz, 1H), 4.38-4.47 (m, 3H), 2.05-2.15 (m, 2H), 1.65-1.82 (m, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  148.1, 130.8, 129.1, 128.4, 125.9, 119.7, 83.5 (d, *J*= 330.1 Hz), 50.1, 27.3 (d, *J*= 91.3 Hz), 27.2. HRMS (EI) calcd for C<sub>12</sub>H<sub>14</sub>N<sub>3</sub>F 219.1172, found 219.1169.



**1-cinnamyl-4-phenyl-1***H***-1,2,3-triazole**<sup>7</sup>. Pale yellow solid: mp 134 °C. 96 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.85 (s, 1H), 7.82 (d, *J*= 6.8 Hz, 2H), 7.40-7.44 (m, 4H), 7.27-7.37 (m, 4H), 6.70 (d, *J*= 15.6 Hz, 1H), 6.37 (dt, *J*= 16.0 Hz, 6.4 Hz, 1H), 5.17 (d, 6.8 Hz, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  148.4, 135.7, 135.6, 130.8, 129.1, 129.0, 128.8, 128.4, 127.0, 126.0, 122.2, 119.6, 52.7.



**1-benzyl-4-(4-methoxyphenyl)-1***H***-1,2,3-triazole<sup>10</sup>.** Pale yellow solid: mp 143-144 °C. 86 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.72 (d, *J*= 8.8 Hz, 2H), 7.56 (s, 1H), 7.35-7.75 (m, 3H), 7.29-7.34 (m, 2H), 6.93 (d, *J*= 8.8 Hz, 2H), 5.55 (s, 2H), 3.82 (s, 3H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>): δ 159.9, 148.4, 135.1, 129.4, 129.0, 128.3, 127.3, 123.6, 119.0, 114.5, 55.5, 54.5.



**1-benzyl-4-(2-nitrophenyl)-1***H***-1,2,3-triazole.** Pale yellow solid: mp 110-112 °C. 62 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.01 (d, *J*= 7.6 Hz, 1H), 7.79 (d, *J*= 8.0 Hz, 1H), 7.73 (s, 1H), 7.63 (t, *J*= 7.6 Hz, 1H), 7.47 (t, *J*= 8.0 Hz, 1H), 7.34-7.40 (m, 3H), 7.28-7.31 (m, 2H), 5.58 (s, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  148.4, 142.7, 134.6, 132.8, 131.3, 129.4, 129.2, 129.1, 128.3, 124.9, 124.3, 123.2, 54.6. HRMS (EI) calcd for C<sub>15</sub>H<sub>12</sub>N<sub>4</sub>O<sub>2</sub> 281.1033, found 281.1030.

**1-benzyl-4-(4-fluoromethyl)phenyl)-1***H***-1,2,3-triazole.** White solid: mp 127-130 °C. 93 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (d, *J*= 7.6 Hz, 2H), 7.67 (s, 1H), 7.31-7.42 (m, 7H), 5.58 (s, 2H), 5.38 (d, *J*= 48.0 Hz, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  148.0, 136.3 (d, *J*= 16.8 Hz), 134.9, 131.3 (d, *J*= 3.1 Hz), 129.5, 129.1, 128.3, 128.2 (d, *J*= 5.3 Hz), 126.1, 120.0, 84.6 (d, *J*= 166.4 Hz), 54.5. HRMS (EI) calcd for C<sub>16</sub>H<sub>14</sub>N<sub>3</sub>F 268.1245, found 268.1243.

**ethyl 1-benzyl-1***H***-1,2,3-triazole-4-carboxylate<sup>11</sup>.** White solid: mp 83-85 °C. 87 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.97 (s, 1H), 7.36 (br s, 3H), 7.25-7.28 (m, 2H), 5.56 (s, 2H), 4.36 (q, *J*= 6.8 Hz, 2H), 1.35 (t, *J*= 6.8 Hz, 3H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>): δ 160.9, 140.8, 134.0, 129.5, 129.3, 128.5, 127.6, 61.5, 54.7, 14.5.



(1-benzyl-1*H*-1,2,3-triazol-4-yl)methanamine. White solid: mp 109-112 °C. 65 % yield. <sup>1</sup>H NMR (400 MHz, DMSO):  $\delta$  7.91 (s, 1H), 7.28-7.34 (m, 5H), 5.54 (s, 2H), 4.15 (s, 2H); <sup>13</sup>C NMR (100.59 MHz, DMSO):  $\delta$  147.0, 136.9, 129.4, 128.7, 123.3, 122.7, 53.4, 40.1. HRMS (EI) calcd for C<sub>10</sub>H<sub>12</sub>N<sub>4</sub> 189.1135, found 189.1135.

**1-benzyl-1***H***-1,2,3-triazole-4-carboxylic acid.** White solid: mp 128 °C. 59 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.48 (s, 1H), 7.33-7.38 (m, 5H), 5.64 (s, 2H); <sup>13</sup>C NMR (100.59 MHz, CDCl<sub>3</sub>):  $\delta$  162.1, 140.4, 135.2, 128.9, 128.6, 128.3, 128.1, 54.0. HRMS (EI) calcd for C<sub>10</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub> 204.0768, found 204.0768.

**Radiolabelling Procedure** 



[<sup>18</sup>F]- fluoride in [<sup>18</sup>O]-enriched H<sub>2</sub>O was captured on a QMA light Sep-Pak cartridge. The [<sup>18</sup>F]-fluoride was eluted with 4.5 mg of potassium bicarbonate. 20 mg of Kriptofix was subsequently added. Under argon atmosphere, the fluoride was dried three times with 0.5 mL of pure acetonitrile at 130 °C. The dried [<sup>18</sup>F]-fluoride was then added to 3.0 mg of 4-ethynylbenzyl 4-methylbenzenesulfonate in 0.5 mL dry DMSO. The solution was allowed to react for 10 min at 140 °C. The labeled product was adsorbed on a light C18 Sep-Pak cartridge and eluted with 5 mL pure methanol. The Sep-Pak eluate was then treated with semi-preparative HPLC on a C18-reversed phase column (mobile phase 60/40 methanol/water, retention time=12 min). For conditions of the click reaction, see general procedure. Conversion of the reaction was monitored by radio-TLC.

#### Literature

- 1) H. Bernsmann, M. van den Berg, R. Hoen, A.J. Minnaard, G. Mehler, M.T. Reetz, J.G. De Vries and B.L. Feringa. J. Org. Chem., 2005, **70**, 943-951.
- 2) S.G. Alvarez and M.T. Alvarez. Synthesis, 1997, 413-414.
- 3) F. Shi, J.P. Waldo, Y. Chen and R.C. Larock. Org. Lett., 2008, 10, 2409-2412.
- 4) W. Zhu and D. Ma. Chem. Commun., 2004, 888-889.
- 5) K. Barral, A.D. Moorhouse, and J.E. Moses. Org. Lett., 2007, 9, 1809-1811.
- 6) Y.-H. Hu, S.-L. Liu, Q.-Y. Tong, F.-R. Huang, Y.-J. Shen, H.-M. Qi and L. Du. *Youji Huaxue*, 2004, **24**, 1228-1232.
- 7) C.-Z. Tao, X. Cui, J. Li, A.-X. Liu, L. Liu and Q.-X. Guo. *Tetrahedron Lett.*, 2007, **48**, 3525-3529.
- 8) K. Odlo, E.A. Hoydahl and V. Trond. Tetrahedron Lett., 2007, 48, 2097-2099.
- 9) I.S. Park, M.S. Kwon, Y. Kim, J.S. Lee, J. Park. Org. Lett., 2008, 10, 497-500.
- 10) D. Luvino, C. Amalric, M. Smietana and J.-J. Vasseur. Synlett, 2007, 19, 3037-3041.
- 11) N. Candelon, D. Lastécouères, A.K. Diallo, J. R. Aranzaes, D. Astruc and J.-M. Vincent. *Chem. Commun.*, 2008, 741-743.