Supporting Information:

High-resolution Cross Reactive Array for Alkaloids



Analysis of Array Classification Ability

The data collected with the array represent the fluorescersmonses of 11 different sensofsK), to
each of 15 analytesl{15) at 5 or 6 different concentrations per analyte. There wirengasurements
taken for each analyte at each measured concentration.atkgiound fluorescence signé, for each
batch of six measurements was taken as the average of ther@@ntration readings for each of the six
measurements. Then, each fluorescence measurement wadinedrby dividing by the corresponding
fo for that analyte at that concentration.

Classification Schemes

Depending on the desired use of the sensor array there ambdifferent classification schemes that
can be used.

| One class per analyte per concentratioT his classification scheme is useful if one wishes to
determine concentration as well as analyte identity.

Il One class per analyte This method uses a single class to encompass all measusefoemll
concentrations of a single analyte. This allows the classifi predict the class of an analyte, but
it is unable to directly identify the concentration levely Brouping the measurements into fewer
classes, however, we potentially gain more accuracy, &s Hre more measurements per class to
train classifiers with.

Il One class for alkaloids, one class for steroid$his allows the classifier to learn to distinguish
alkaloids from steroids.

Table 1. Confusion matrix showing LOO classification errors for KN¢t§). Here we use all 11
sensors and classification schethe

Assigned Class

112|3|4|5|6]|7|8]9|10|11|12|13| 14| 15
1/3%|0|0|O0]O0O|]O|O0O]O|]O|J]O|lO|O]O]O0]|O
2|0|3%|0]0|]0|0|]0|]0O0|J]O|lO]O]O]O|O0]0O
3|]0/0|3|0|0|O0O}]O0O|]O0O|0O0|lO0O]O]|]O0O]O|O0O]0O
41 0|0]0|30|]0|lO0O]O0O|]O|O0O|O]O]O]O|O]O
5{0|]0|0]0|30/]0}]0|]0|J]O0O|lO0O]O]O0O]O|O0]0O
% 6| 0|0|O0O|]O0O|O0O|30]0|]0|J]O0O|lO0O]O0O]O]O|O0]0O0
S~ T70|0|0|0|0|0|30|0[0l0]0|0|0]0]O
g g8/ 0|l0|]0O0|O|O0O|O0|3|27/7/0|0]O0O]0O0O]O0O|O0]0O
s 9| 0/,0|0|]0|]O|O]|]O|O|3G|0]0]0O]O0O|O0O]O
F 10/ 0|00 |0|0]O0|O0O|O|O|30]0]0]l0]|0]O
i1/0}0|j0|0]O0O|]O|O0O|O]O]|]O|30l0]0O0]O0]|O0
12(0}j0|0|0]O0O|]O0O|O0O|lO0O]O]O|O0O|30]0]0/|0
3/0}j]0|]0|O0O]0O0O|]0O|O0O|O]O0O]O|O|O0O]|30]0/0
400|000 O0O|]O0O|O0O|O]O]|]O|O|O]O0O]|30/0
is{ojojo0|JO0O]O0O|O|O|O]O]O|O|O0O]O0O]|O0]30

Total Errors: 3/468

Accuracy Rate (95% conf.): 99.07% 4 0.72%




Classifier Error Rates

Given a set of training data, the accuracy of a classifiendichiwith that data can be estimated, but never
known exactly. We use the resampling technique called leaecout (LOO) to obtain an unbiased
estimate of the error rate. We make the standard assumpptairgiven a fixed number of trials, the
number of missclassifications will be binomially distriedtaround the true rate, and use this to obtain
95% confidence intervals for the true error rate of the di@sgb].

We use nonparametric classification technigues. K-neaghbors is one of the simplest such
techniques, yet it typically produces very good resultse Tethod is computationally expensive, but
not prohibitively so with our small number of training pan®68). The resulting confusion matrix from
the LOO error analysis of the KNN classifier used with clasatfon schemél is shown in Table 1.
This shows the only classification errors occurring betweéamd8. We note all three of these errors
are missclassifications at the lowest concentration lewel that7 and8 are well distinguished at higher
concentrations. Furthermore, in Table 2, we have sumnthtize LOO error rates for several KNN
classifiers with differingk values under each of the proposed classification schemes.lowhrate of
errors confirms that there is enough information in the featectors to accurately classify under any of
the proposed schemes.

Additionally, we evaluated the LOO error estimates for salvether classification techniques: sup-
port vector machines (SVMs) and classification trees.

SVM classifiers offer computationally efficient classifioat which would become important if the
number of training samples was dramatically increased.ciSgaly, we use C-SVM [8] for which a
value ofC = 10 provides good discriminatory power. We estimated erates using a linear kernel
as well as a radial basis function (RBF) kernel. The claggiios were computed using thibsvm
package [1], and results are reported in Table 2.

Classification trees are yet another family of non-paraimetassification techniques. We use Ross
Quinlan’s C4.5 algorithm[7]. This algorithm recursivelyilils a binary decision tree, where each de-
cision is a simple threshold measurement on a particulduriea The resulting decision tree classifier
has the advantage of being extremely computationally chesapvell as intuitively easy to understand.
The method, however, is only able to use discriminate plaeesendicular to one of the axes, and thus
performs poorly when optimal discriminate boundaries leefvclasses are non-linear or linear but not
perpendicular to any axis. In general, the LOO accuracyter@4.5 decision trees was much poorer
than the other techniques, however, under classificatioarselll results were acceptable. The resulting
decision tree is shown in Figure 1.

When comparing the performance of two classifier inferene¢hods for a particular dataset, it is
not always possible to confidently determine if one clagsiéidetter than the other [3]. Therefore, we
do not attempt to draw any conclusions about the best classigthod. It is evident from Table 1 that
any of the classification methods will produce acceptablydoror rates, with the possible exceptions of
linear SVM under schemkk and C4.5 under either scherher Il .
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Table 2. Classifier method vs. classification scheme comparisonixnétil error rates are estimated

to 95% confidence.

Classification Scheme
| [ 1l

KNN K=3 99.49% + 0.51% | 99.4%%+ 0.51% | 99.61% -+ 0.29%

o KNN K=4 99.61%+ 0.2%6 | 99.61%+ 0.29% | 99.61% + 0.2%%
2 KNN K=5 98.64% 1 0.93% | 98.64% - 0.93% | 99.61% -+ 0.2%%
D KNN K=6 99.07%+ 0.72% | 99.07% =+ 0.72% | 99.61% + 0.2%%
2 KNN K=7 98.64% + 0.93% | 98.43% + 1.48% | 99.61% + 0.2%9%
O SVMLinearC=10 | 9961%+0.2% | 96.94%+ 1.72% | 99.61% =+ 0.29%
SVMRBFC =10,y =1 | 99.61%+ 0.29% | 99.28% + 0.59% | 99.61% + 0.29%
C45 85.79% + 3.14% | 88.87% - 2.82% | 98.86% -+ 0.83%

<=1.012
0.667
18.0

<=1.486

0.808
463.0

<=5.421
0.545
22.0

Figure 1: This graph shows the decision tree derived for classifinagtheme 11l using the C4.5 al-
gorithm. Each leaf node is labled at the bottom by the finadsifecation decision, either "alkaloid” or
"steroid”. Non-leaf nodes are labeled by the sensor name liohathe split will be made. The edges
connecting a node to its children are labeled by the restiteoflecision. Also, each node is labeled with
2 other numbers. The upper number is the majority class pililyaand the lower number is the number
of training samples at that node. The pie charts show thahiison of training samples at each node,
and the node colors coorespond to the majority class prityafdihis tree achieves a 986%+ 0.83%
LOO accuracy rate.



Selection of Sensors

Given the very low error rates found with the full 11-sensoag we want to know how the array can
be simplified to reduce the number of sensors while still ha@&mmg a low error rate. To do this, we
used the LOO method to estimate the KNN (k=6) classificativoreate for each possible subset of the
original 11 sensors. This was done using the one class pltactassification schemd §. The results
shown below are all arrays with a 95% confidence bound for the eate below 2%. We have sorted
the arrays by error-rate and array size.

One of the most accurate 6-sensor arra\BIEDEGH] with error rate 989%+ 0.8%. The addition
of sensoiK, brings the error rate up to %%+ 0.7% accuracy which is the same as the full 11-sensor
array. The 6-sensor array’s LOO error-rate estimationesponds to 4 of 468 missclassifications. All
four missclassifications occur betweeand8 at the lowest concentration level. As it turns out, the error
are exactly the same for this array under either classificacheme or Il .

Finally, we have also provided auxiliary tables that orgarthe same subset analysis in a different
way. In Table 3 — Table 10 we have listed the top arrays Witk 3,...,10 sensors. Also, since sensors
B andG are included in almost every top ranked array, we were istedein how the sensor selection
would work in their absence. Hence, we have included thedoked arrays without sensdsandG as
Table 11. We see that even with all of the other sensors, d@tipossible to get better than a.9%+1.8%
accuracy. This shows the importance of sen&andG to the classification of the chosen analytes.

Size|| Sensors | Estimated Accuracy
7 A]B E[F[G][H K 99.1%=£0.7%
7 A B E G | H J|K 99.1%=0.7%
7 B|[C|DJE G | H K 99.1%=£0.7%
7 B|C|D|E|[F|G[H 99.1%=0.7%
7 B E[F[G][H J[K 99.1%£0.7%
8 B|C|D|E[F|G[H 99.1%£0.7%
8 B|C|D|E[F|G[H J 99.1%£0.7%
8 B|[C|DJE G|[H][I K 99.1%£0.7%
8 B|C|D|E|F|G J|K 99.1%0.7%
8 A|B|C|D|E|[F]|G K 99.1%=£0.7%
8 B|C|D|[E|F|G | K 99.1%=£0.7%
8 A|B|C|D]JE G | H K 99.1%=0.7%
8 A B E[F[G[H J|K 99.1%=£0.7%
8 B|[C|DJE G [H J[K 99.1%£0.7%
8 B|[C|D|E|[F|G[H]I 99.1%0.7%
8 AlB E[F|[G|H]|I K 99.1%£0.7%
9 A|B|C|D[E|[F[G][H K 99.1%0.7%
9 B|C|D|E|F|G I [J[K 99.1%=0.7%
9 A|B|C|D|E|[F]|G J|K 99.1%=£0.7%
9 B|[C|DJE G|[H[I]J[K 99.1%=£0.7%
9 B|[C|D|[E|[F|G[H]I K 99.1%=£0.7%
9 A B E[F|G|H[I]J][K 99.1%=£0.7%
9 A[B[C|D]JE G [H J[K 99.1%£0.7%
9 B|C|D|E[F|G[H J[K 99.1%£0.7%
9 A|B|C|D|E|F]|G | K 99.1%£0.7%

Continued on the next page
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Size|| Sensors | Estimated Accuracy

9 B|C|IDIE|F|G|H]|I|J 99.1%+0.7%
9 A|B|C|D|E G|H]|I K 99.1%+0.7%
10 A|/B|C|D| E|F|G|H J | K 99.1%+0.7%
10 BI{CIDIE|F|G|H|I|J|K 99.1%+0.7%
10 A|/B|C|DIE|F|G|H]I K 99.1%+0.7%
10 A|B|C|D|E G|H|I]J]|K 99.1%+0.7%
10 A|B|C|D|E|F|G 13| K 99.1%+0.7%
11 A/B|C|DIE|F|G|H|I|J|K 99.1%+0.7%
6 B|C|D|E G| H 98.9%+ 0.8%
6 B EIF|G|H K 98.9%+ 0.8%
6 B E|IF|G J | K 98.9%+ 0.8%
6 B|C|D G| H K 98.9%+ 0.8%
7 B|C|D F|G|H K 98.9%+ 0.8%
7 B E|IF|G|H]|I K 98.9%+ 0.8%
7 B|C|D|E G|H]|I 98.9%+ 0.8%
7 A | B E|IF|G J | K 98.9%+ 0.8%
7 A | B D|E G I K 98.9%+ 0.8%
7 B|C|ID|E|F|G K 98.9%+ 0.8%
7 A | B D|E G| H J 98.9%+ 0.8%
7 A | B DIE|F|G K 98.9%+ 0.8%
7 A|B|C|D G| H K 98.9%+ 0.8%
7 A | B D|E G| H K 98.9%+ 0.8%
7 B|C|D G|H]|I K 98.9%+ 0.8%
7 B E G|H|I]J]|K 98.9%+ 0.8%
7 B|C|D|E G| H J 98.9%+ 0.8%
8 A | B DIE|F|G I K 98.9%+ 0.8%
8 B|C|D F|G|H]|I K 98.9%+ 0.8%
8 A|B|C E G 13| K 98.9%+ 0.8%
8 A|B|C|D FIG|H K 98.9%+ 0.8%
8 A | B D|E G 13| K 98.9%+ 0.8%
8 A|B|C|D|E G J | K 98.9%+ 0.8%
8 A|/B|C|D|IE|F|G|H 98.9%+ 0.8%
8 A | B DIE|F|G|H K 98.9%+ 0.8%
8 A | B D|E G|H]|I K 98.9%+ 0.8%
8 B EIF|IG|H|I|J|K 98.9%+ 0.8%
8 A | B D|E G| H|I]J 98.9%+ 0.8%
8 A|B|C|D G|H]|I K 98.9%+ 0.8%
8 A | B D|E G| H J | K 98.9%+ 0.8%
8 B|C|D F|G|H J | K 98.9%+ 0.8%
8 A | B DIE|F|G J | K 98.9%+ 0.8%
8 A | B E|IF|G 13| K 98.9%+ 0.8%
8 B|C|D|E G|H|I]J 98.9%+ 0.8%
8 A | B E G|H|I]J]|K 98.9%+ 0.8%
8 A | B DIE|F|G|H J 98.9%+ 0.8%

Continued on the next page



Size|| Sensors | Estimated Accuracy
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Size|| Sensors | Estimated Accuracy

7 A | B D FIG|H K 98.4%+1.0%
7 B|C EIF|G|H J 98.4%+1.0%
7 A | B E|IF|G|H]|I 98.4%+1.0%
7 B|C E G| H J | K 98.4%+1.0%
7 B D|E G 13| K 98.4%+1.0%
7 A|B|C|D|E G J 98.4%+1.0%
7 A | B E G 13| K 98.4%+1.0%
7 B|C|D F| G I K 98.4%+1.0%
7 A|B|C|D F| G J 98.4%+1.0%
7 A|B|C|D|E|F|G 98.4%+1.0%
7 A|B|C|D|E G K 98.4%+1.0%
8 B DIE|IF|G|H]|I|J 98.4%+1.0%
8 B DIE|F|G|H]|I K 98.4%+1.0%
8 A|B|C F|G|H J | K 98.4%+1.0%
8 B|C E G|H|I]J]|K 98.4%+1.0%
8 A|B|C|D F| G [ |J 98.4%+1.0%
8 A|B|C|D FIG|H J 98.4%+1.0%
8 A | B DIE|F|G I 98.4%+1.0%
8 A|B|C|D F|G|H]|I 98.4%+1.0%
8 A|B|C|D F| G I K 98.4%+1.0%
8 A|B|C|D|E G I 98.4%+1.0%
8 B|C E|IF|G|H]|I 98.4%+1.0%
8 A|B|C E|IF|G|H]|I 98.4%+1.0%
8 A|B|C E|IF|G J | K 98.4%+1.0%
9 A|B|C|D FIGIH|I|J 98.4%+1.0%
9 A|B|C E|IF|G|H]|I|J 98.4%+1.0%
9 A|B|C E|IF|G|H J | K 98.4%+1.0%
9 A|B|C E|IF|G|H]|I K 98.4%+1.0%
10 A|B|C EIF|IG|H|I|J|K 98.4%+1.0%
5 A | B D|E G 98.2%+1.1%
6 A | B D|E G J 98.2%+1.1%
6 B|C|D F| G K 98.2%+1.1%
6 B|C|D F|G|H 98.2%+1.1%
6 A|B|C|D G| H 98.2%+1.1%
6 B|C E G J | K 98.2%+1.1%
6 B|C|D|E G K 98.2%+1.1%
6 A | B E|IF|G J 98.2%+1.1%
6 B DIE|F|G K 98.2%+1.1%
6 B E|IF|G|H]|I 98.2%+1.1%
6 A|B|C|D|E G 98.2%+1.1%
6 B|C|D|E G I 98.2%+1.1%
6 B D|E G I K 98.2%+1.1%
6 B D|E G J | K 98.2%+1.1%
6 B E G|H]|I K 98.2%+1.1%
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Size|| Sensors | Estimated Accuracy

6 A | B E|IF|G I 98.0%+1.2%
6 A | B DIE|F|G 98.0%+1.2%
6 B|C E|IF|G J 98.0%+1.2%
7 A|B|C F| G [ |J 98.0%+1.2%
7 A | B E G|H|I]J 98.0%+1.2%
7 A|B|C E G| H J 98.0%+1.2%
7 B|C F|G|H]|I K 98.0%+1.2%
7 B|C EIF|G|H K 98.0%+1.2%
7 A|B|C G| H J | K 98.0%+1.2%
7 A|B|C E|IF|G I 98.0%+1.2%
7 A|B|C FIG|H K 98.0%+1.2%
7 A | B DIE|F|G I 98.0%+1.2%
7 B D|E G|H]|I K 98.0%+1.2%
7 A | B D G|H]|I K 98.0%+1.2%
7 B|C F|G|H J | K 98.0%+1.2%
7 A|B|C G|H]|I K 98.0%+1.2%
7 A | B E|IF|G I 98.0%+1.2%
7 B|C E|IF|G J | K 98.0%+1.2%
7 A|B|C|D G|H]|I 98.0%+1.2%
7 A|B|C E G I K 98.0%+1.2%
8 C/ DIE|F|G|H J | K 98.0%+1.2%
8 B|C FIGIH|I]|J|K 98.0%+1.2%
8 A|B|C F| G 13| K 98.0%+1.2%
8 B|C E|IF|G|H]|I K 98.0%+1.2%
8 A | B D F|G|H J | K 98.0%+1.2%
8 A|B|C E G|H|I]J 98.0%+1.2%
10 A CIDIE|F|G|H|I|J|K 98.0%+1.2%
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Table 3. Size 3 arrays with highest KNN(k-6) classification accuranger classification schenik.

Sensors | Estimated Accuracy

94.4%+2.0%
CcC | D 94.0%+2.1%
G K 93.3%+2.2%
G 93.1%+2.2%
D|E 92.3%+2.4%

G 91.8%+2.4%
F| G 91.6%+ 2.5%

G 91.4%+2.5%
F 91.2%+2.5%
91.2%+2.5%
J 89.9%+2.7%
C E 89.9%+2.7%
E 89.9%+2.7%
E|F 89.7%+2.7%
J 89.7%+2.7%
D K 89.3%+2.8%
G J 88.9%+ 2.8%
G I 88.7%+2.8%
F 88.7%+2.8%
D I 88.4%+2.9%
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Table 4. Size 4 arrays with highest KNN(k-6) classification accurangler classification schentle.

Sensors | Estimated Accuracy

97.2%+1.4%
97.2%+1.4%
96.9%+ 1.5%
96.7%=+1.5%
96.5%+ 1.6%
K 96.3%+1.6%
H 96.3%+1.6%
K 96.3%+1.6%
K 96.1%+1.7%
E 96.1%+1.7%
J 95.9%+1.7%
I 95.9%+1.7%
95.9%+1.7%
95.9%+1.7%
J 95.7%+1.8%
c|D F 95.7%+1.8%
D|E 95.7%+1.8%
G J | K 95.5%+1.8%
c|D J 95.5%+1.8%
E G 95.5%+1.8%
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Table 5. Size 5 arrays with highest KNN(k-6) classification accuraager classification schenik.

Sensors | Estimated Accuracy

K 98.4%+1.0%
J 98.4%+1.0%
98.2%+1.1%
J 98.0%+1.2%
98.0%+1.2%
H 98.0%+1.2%
H K 97.8%+1.2%
J 97.8%+1.2%
K 97.8%+1.2%
I 97.8%+1.2%
97.8%+1.2%
K 97.8%+1.2%
J | K 97.6%+1.3%
H 97.6%+1.3%
97.6%+1.3%
97.6%+1.3%
K 97.6%+1.3%
97.6%+1.3%
I 97.4%+1.4%
I 97.4%+1.4%
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n
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Table 6. Size 6 arrays with highest KNN(k-6) classification accuraager classification schenik.

Sensors | Estimated Accuracy

98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
K 98.6%+ 0.9%
K 98.6%+ 0.9%
98.6%+ 0.9%
98.6%+0.9%
98.6%+0.9%
J | K 98.6%+0.9%
K 98.6%+0.9%
H 98.6%+ 0.9%
J 98.4%+1.0%
H 98.4%+1.0%
I K 98.4%+1.0%
H J 98.4%+1.0%
J 98.4%+1.0%
H K 98.4%+1.0%
K 98.4%+1.0%
H 98.4%+1.0%
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Table 7. Size 7 arrays with highest KNN(k-6) classification accurangler classification schentle.

Sensors | Estimated Accuracy
B E[F[G[H J[K 99.1%=+0.7%
B[C|DJE G|H K 99.1%=0.7%
B|C|D|E|F|G[H 99.1%=0.7%

A|B E G|H J[K 99.1%=0.7%

A|B E|F|[G|H K 99.1%=0.7%
B E G|H[T][J[K 98.9%= 0.8%
B E[F|[G|H]I K 98.9%=0.8%
B[C|D G|H]|I K 98.9%=0.8%
B[C|D FI|G|H K 98.9%=0.8%
B[C|DJE G |H J 98.9%=0.8%
B|C|D|E G|H]|I 98.9%=0.8%
B|C|D|E|F|G K 98.9%= 0.8%

A|B E|[F|G J[K 98.9%= 0.8%

A|B D|E G | K 98.9%= 0.8%

A|B D|E G|H K 98.9%= 0.8%

AlB D|E G |H J 98.9%=0.8%

AlB DIE|F|G K 98.9%=0.8%

AlB|C]|D G |H K 98.9%=0.8%
B E[F[G I [J]|K 98.6%=0.9%
B DI/E[F]|G J|K 98.6%=0.9%
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Table 8. Size 8 arrays with highest KNN(k-6) classification accuraager classification schenik.

Sensors | Estimated Accuracy

99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
J 99.1%+0.7%
I 99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
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Table 9. Size 9 arrays with highest KNN(k-6) classification accuraager classification schenik.

Sensors | Estimated Accuracy
B[C[DJE G[H[I]J[K 99.1%=+0.7%
B|[C|D|E|F]|G I [J]|K 99.1%=0.7%
B|C|D|E|F|G[H J|K 99.1%=0.7%
B|C|D|E|[F|[G[H]I K 99.1%=0.7%
B|C|D|E|F|[G|H][I]J 99.1%=0.7%

A|B E|[F|[G|H|IT]J]K 99.1%=0.7%

A|B|C|D]E G |H J|K 99.1%=+0.7%

A|B|C|D]E G|H]|I K 99.1%=+0.7%

A[B|C|D|E[F]|G J|K 99.1%=+0.7%

A[B|C|D|E[F]|G | K 99.1%=+0.7%

A|B|C|D|E|F|G|H K 99.1%=0.7%
B|C|D FIG|H|IT]J]K 98.9%= 0.8%

A|B D|E G|H|T][J[K 98.9%= 0.8%

A|B D|/E[F]|G I [J[K 98.9%= 0.8%

A|B D/E|F|G|H J|K 98.9%= 0.8%

AlB DIE|F|[G[H]I K 98.9%=0.8%

AlB DIE|F[G[H][I]J 98.9%=0.8%

AlB]|C E G|H[T]J]K 98.9%=0.8%

AlB|C]|D F|G|H J|K 98.9%= 0.8%

A|[B|C]|D FIG|H]|I K 98.9%= 0.8%
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Table 10. Size 10 arrays with highest KNN(k-6) classification accyracder classification schentie

Sensors | Estimated Accuracy

99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
99.1%+0.7%
98.9%+ 0.8%
98.9%+ 0.8%
98.9%+ 0.8%
98.4%+1.0%
98.0%+1.2%
97.2%+1.4%
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Table 11. Arrays with highest KNN(k-6) classification accuracy undessification schemié for
arrays without sensorB andG.

Size|| Sensors | Estimated Accuracy

95.5%+1.8%
95.5%+1.8%
95.5%+1.8%
95.2%+1.9%
95.2%+1.9%
95.0%+1.9%
95.0%+1.9%
94.8%+2.0%
94.6%+2.0%
94.6%+2.0%
94.2%+2.1%
94.2%+2.1%
I |J 94.2%+2.1%
94.0%+2.1%
94.0%+2.1%
93.8%+2.1%
93.8%+2.1%
93.8%+2.1%
93.8%+2.1%
93.8%+2.1%
93.5%+2.2%
93.5%+2.2%
93.5%+2.2%
93.3%+2.2%
93.3%+2.2%
93.3%+2.2%
93.3%+2.2%
93.3%+2.2%
93.1%+2.2%
93.1%+2.2%
93.1%+2.2%
93.1%+2.2%
92.9%+2.3%
92.9%+2.3%
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Visualization of Sensor Response

The chosen 6-sensor arraBgDEGH] achieves a LOO accuracy estimate of @84 0.8%. In order

to better understand how the individual sensor responses &he analytes to be distinguished, we
have visualized the data using 2 and 3 dimensional projextidecause the full sensor data for this
optimal array is 6 dimensional, there is no way for a single@3D projection to encode all of the
information that the KNN algorithm is able to make use of mdtassification decisions. In fact, we
know from the comprehensive subset analysis that the bestSer array has KNN accuracy well below
the BCDEGH] array. Thus, we cannot expect to be able to separate altasadt once with a single
3D projection. Instead, we have chosen to partion the agmliyito several sets and visualize each set
individually. The 15 sensors have been partitioned asvalc| 1,2}, {3,4},{5,6,7,8},{9,10,11,12},
and{13,14,15}. In order to find the best sensors to visually separate eaaljtarsubset, we used the
Vizrank[5] module for the Orange machine learning suite[2jzrank selects a subset of sensors that
leads to the best KNN classifier performance in the reduaa@iasionality space. This criterion leads to
projections that tend to minimize the overlap of classes.

The projections in Figures 2-7 were created with the mdtb[d{ plotting package, using sensor
subsets suggested by vizrank, selected from théB&et,D,E, G,H}. The plots show all the measured
data points for each analyte as circles, and the mean vafueafth concentration as a square. The
mean values are connected to form a concentration-paraetturve. Some of the subsets (€192})
separate easily in low dimensions, but others (¢3)4}) are hard to visualize with a single snapshot,
and only really start to separate in higher dimensional epa@/e needed a second image (Figure 4) for
{3,4}, showing a different angle of the same plot, in order to show the two analytes are separated
in this 3D space.

2.0 T
—aul

1.6} 1

I 1.4}

1.2¢

o'q.O 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 2: Visualization of analyte4 and2.
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Figure 3: Visualization of analyte8 and4.
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Figure 4: A second view of the same plot f@rand4. The curves are separated in this space, but it is
difficult to see with a single 2D projection. This shows thghgr concentration values separated.

S-19



4.0
3.5
3.0

G2.5

2.0
1.5

1.0

~N—
~

Figure 5: Visualization of analyte$,6,7, and8.
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Figure 6: Visualization of analyte$,10,11, and12.
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Figure 7: Visualization of analyte43,14, and15.

S-21




Analysis of Three-sensor Array [B,D,G]

As reported in Table 3, the three-sensor arByp|,G], was found to have a 940%4-2.03% KNN(k=6)
classification accuracy as estimated by the LOO method wéasgification schemi . We decided to
analyze this array further to understand how such a smaly avas able to perform so well. In Table 12
we have summarized the LOO errors of tBel),G] array as a confusion matrix.

In order to visually understand how the classification erroworespond to the actual overlap of
sensor responses, we have provided several 3D plots dB{beG] sensor response space. In Figures 8,
9, 10, and 11, we plot selected subsets of the sensors whiehtt@ 15-sensor space. The concentration
curves in these subsets have minimal overlap, and thus-8ea8or array works well distinguishing these
subsets. Also, looking at the confusion matrix in Table E¥esal other larger subsets would separate
well with these sensors.

The major errors in thel,D,G] array are localized in two subsets of sensors. First, sesiduset
[3,4, 6,7, 8, 9] is visualized in Figure 12. This set represents 12 of theo®&l errors for the,D,G]
array. Analyte4 was misclassified on 6 separate instances as one of the oihlgtes in this subset.
Additionally, there were 6 errors between analyte8, and9. Furthermore, another 11 of the 25 errors
occur between analytes in the subsktlfl, 12, 14], and are visualized in Figure 13.

Finally, all 15 analytes are plotted simultaneously in Fégi4. Because some of the analytes have
a very high response, it is hard to see the detail of the skparaf the less responsive analytes, but as
discussed, almost all of the errors are accounted for inuhseds of Figure 12 and Figure 13.

Table 12. Confusion matrix showing LOO classification errors for theghsor array B,D,G], using
classification method KNN (k=6) and classification schéime

Assigned Class

11234 |56 |7 |8| 9 10|11|12| 13|14\ 15
1/13(0}0}]0|2|0}]0|]0|0|]0}|]0|0O0]JO|O0]O
2103|000} 0|]O0O)J]O|lO}]0O0}|]0O0]|]0O0O)JO|O0]O
3, 0|/0|3|l0}]0|]0O0|0O0O|l0O0O}]0O0]O0O|JO|J]0O|O0O0]O0]O0
4, 0|0|2|2410|2|1|0}]212]0|0|J]0|0]0]O0
5 0|]0|0|0O|30|]0|0|l0O0O|]O0]O0O|JO|J]0O0O|O0]O0]O
% 6/ 0 0|0|J0O0O|O0O|30|]0|J]0O0O|l0O0O]0O0|]0O0]O0O]JO|O0]O
< 7/,0,0|]0|J]0O|lO0O}]0O0|30)J]0O|0O}]0}|]0O0]|]0O0)JO|O0]O
g g8 0o|0|0O0O|lO0O}|]O0O]O0O|1|2613|]0|J0|J]0|0]O0]O
s 9/0}]0]0)J]0|0]0|]0]|2|3]0]0]0]J]0O0O|0]O0
I: io,o0(0}0}j]0|,0|0O0O}]O0O]|]O|0|30]0|]0]J]0O0O|07]O0
i17,0(0}0}]0|,0|0O0O}]O0O]O|O0O0O]O0}|28{1]0127]0
2012} 0|]0,0|0]O0O]O|0O0O]0|]0O0}|25104]0O0
3,0(0}]0}]0,0|0}]O0]O0O|0}]0}]0]|0]30107]0O0
4, 0(2}0|]0,0|0|]O0]O0O|0]0|2]|]0]0|26]0
is,o00}0|0|jJO|O0O}]0O0|]O0O|J]O|O]O0O]0O0]|]0]O0]230

Total Errors: 25/468

Accuracy Rate (95% conf.): 94.40% 4 2.03%
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Figure 8: Visualization of analyteg, 2, 3 and4 with array B,D,G]. There is some overlap betwe8n
and4 at low concentrations, as is reported by the confusion matri

i

Figure 9: Visualization of analyte$, 6, 7 and8 with array B,D,G]. There is some overlap betwe&n
and8, as is reported by the confusion matrix.
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Figure 10: Visualization of analyte8, 10, 11 and12with array B,D,G]. There is some overlap between
11and12 as is reported by the confusion matrix.
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Figure 11: Visualization of analyte43, 14and15with array B,D,G]. There not much overlap between
these analytes, as is reported by the confusion matrix.
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Figure 12: Visualization of analyte8, 4, 6, 7, 8 and9 with array B,D,G]. According to the confusion
matrix, this is one of the most overlapping sets of analytébe KNN classifier classifiers some 6
samples of analyté as one of the other analytes. Also there are 6 other errongebat7, 8 and9. This
set represents 12 of of the 25 total errors of tBd),G] sensor array.
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Figure 13: Visualization of analyte®, 11, 12 and 14 with array B,D,G]. According to the confusion
matrix, this is also a very overlapping sets of analytessBht represents 11 of the 25 total errors of the

[B,D,G] sensor array.
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Figure 14: Visualization of all 15 analytes with arra3|D,G]. Because of the different scales of some
of the analytes, the separation can be hard to see at thiofedetail.
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Materials and Methods

Materials. Three—way junction sensors A, B, C, D, E, F, G, H, I, J, K were made and
HPLC purified by Integrated DNA Technologies, Inc (Coralville, 1A, USA) and were
used as received. DEPC-treated and nuclease-free water was purchased from Fisher
Scientific (Fair Lawn, NJ, USA) and used for all buffers. The sequences are as following:
A, 5 -fluorescein-ATC TCG GGA CGA CAG GAT TTT CCT CCA TGA AGT GGG
TCG TCC C. B, 5 -fluorescein-ATC TCG GGA CGA CAG GAT TTT CCT CAA TGA
AGT GGG TCG TCC C. C, 5 -fluorescein-ATC TCG GGA CGA CAG GAT TTT CCT
CCA TGA AGT GG(NDG TCG TCC C; Nl-nitroindole base. D, 5 -fluorescein-ATC
TCG GGA CGA C(NI)AG GAT TTT CCT CCA CGA AGT GG(NI)G TCG TCC C. E,
5 -fluorescein-ATC TCG GGA CGA C(NDAG GAT TTT CCT (NI)CCA TGA AGT
GG(NI)G TCG TCC C. F, 5 -fluorescein-ATC TCG GGA CGA CAG GAT TTT CCT
CCA CGA AGT G(NI)G TCG TCC C. G, 5 -fluorescein-ATC TCG GGA CGA CAG
GAT TTT CCT CAA TGA AGT GG(NI)G TCG TCC C. H, 5 -fluorescein-ATC TCG
GGA CGA C(NIAG GAT TTT CCT CAA TGA AGT GG(NI)G TCG TCC C. I, 5'-
fluorescein-ATC TCG GGA CGA C(NI)AG GAT TTT CCT (NI)CAA TGA AGT
GG(NI)G TCG TCC C. J, 5 -fluorescein-ATC TCG GGA CGA C(NNAG GAT TTT
CCT CAATGA AGT GGG TCG TCC C. K, 5 -fluorescein-ATC TCG GGA CGA CAG
GAT TTT CCT C(NIHA TGA AGT GGG TCG TCC C. Complementary quencher strand
as: 5-GTC GTC CCG AGA T-dabcyl. (-)-cocaine and (+)-cocaine were obtained
through the National Institute of Drug Abuse. All other alkaloids and steroids were
purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).

Instruments. The measurements were performed on a Perkin-Elmer Victor Il microplate
reader (Shelton, CT, USA) with a 485-nm excitation filter and a 535-nm emission filter.
384 well non-binding surface, flat bottom, black polystyrene assay plates (Corning, NY,
USA) were used.

Measurements. All measurements were performed in the binding buffer containing 20
mM Tris-HCI pH7.4, 140 mM NaCl, 5 mM KCI, 2 mM MgCl,. Mixture of sensors and
guencher strand was incubated 5 min at room temperature, then a series of standard
dilutions of all compounds (the stock solution of each compound was adjusted to pH7.4)
were added to the mixture solutions to a final concentrations of 50 nM sensors and 150
nM (for sensors A-E, G, K), 250nM (F, H), 500nM (for sensors I, J) quencher strand.
Measurements were performed after 30 min. The background fluorescence signal, Fo, for
each batch of measurements was taken as the average of 0.0 concentration fluorescence
readings (without analytes) for each of those measurements. Then, each fluorescence
measurement was normalized by dividing by the responding Fo for that analyte at that
concentration.
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2D plots with data (-fold increase) from two sensors.

a) sensors B and D separate well strychnine (1) and brucine (2), D has two NI groups; b)
sensors B and J distinguish (-)-cocaine (3) from (+)-cocaine (4); c) sensors D and E
separate vindoline (12) from vinblastine (10) and vincristine (11); d) separation of (-)-
cocaine (3) and vindoline (12) is based on weaker interactions with one particular
subtype of junctions.
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Response of 11 different sensors (A-K) to 12 alkaloids.

(1. strychnine: red bar; 2. brucine: olive green triangle; 3. (-) cocaine: plum circle; 4. (+)
cocaine: sky blue square; 5. cinchonine: dark green bar; 6. cinchonidine: pink circle; 7.
quinine: black square; 8. quinidine: green diamond; 9. methylergonovine: dark blue
square; 10. vinblastine: dark yellow diamond; 11. vincristine: teal triangle; 12. vindoline:
indigo diamond.)
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Response of 11 different sensors (A-K) to 3 steroids.
(13. deoxycholic acid: violet diamond; 14. deoxycorticosterone-21 glucoside: dark red
triangle; 15. dehydroisoandrosterone-3-sulfate: bright green circle.)
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