Supporting Information For

Gold-catalyzed reaction of enynols by a dimerization-fragmentation process: An expeditious assembly of enyne molecular architecture

Yong-Qiang Zhang, Zhi-Hua Chen, Yong-Qiang Tu,* Chun-An Fan, Fu-Min Zhang, Ai-Xia Wang, and Dao-Yi Yuan

State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

(E-mail: tuyq@lzu.edu.cn)

Table of Contents

General Information	S 1
General Procedure for Homocoupling Reaction of Enynols 1	S2
Experimental Procedure for Tandem Reaction of 1m and 1n	S2
Experimental Procedure for Base-Promoted Thermocyclization of 2a	S2
Experimental Procedure for Heterocoupling Reaction of 10 with 1a	S2
Spectroscopic Data for Substrates and Products	S3-S12
Copies of ¹ H and ¹³ C NMR	S13-S75
MALDI-TOF MS Spectrum of Product 2ao	S76
X-Ray Ellipsoid Plots of Compound 3m	S77
X-Ray Data of Compound 3m	S78-S96

General Information

The materials for preparation of substrates **1a-1o**, as well as AuCl were used as purchased, and the solvent CH₃CN was dried and freshly distilled over P₂O₅ before use. All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F254 plates. The silica gel (200-300 meshes) is used for column chromatography, and the distillation range of petroleun is $60-90^{\circ}$ C. ¹H and ¹³C NMR spectra were recorded on the 300 MHz or 400 MHz instruments, and spectral data are reported in *ppm* relative to tetramethylsilane (TMS) as internal standard. MS (EI) were measured on spectrometer by direct inleet at 70 ev, and signals were given in *m/z* with relative intensity (%) in brackets. MS (ESI) were measured on Bruker Esquire6000 mass spectrometer. HRMS data were measured with ESI or EI techniques. MALDI-TOF MS were conducted on a Bruker BIFLEX III time-of-flight (TOF) mass spectrometer (Bruker Daltonics, Billerica, MA, USA). Fluorescence spectra measurements performed on a Hitachi F-4500 spectrofluorimeter.

General Procedure for Homocoupling Reaction of Enynols 1:

To a solution of 1,3,5-triaryls-enynols **1** (0.5 mmol) in 2 mL CH₃CN was added 5 mmol% AuCl under Ar atmosphere. The mixture was stirred at room temperature for 5 min until the starting material disappeared completely by inspection of TLC. The solvent was removed *in vacu*o and the residue was purified by flash chromatography on Et₃N-treated silica gel (petroleum/ethyl acetate = 25/1) to furnish the expected products as amorphous solids.

Experimental Procedure for Tandem Reaction of 1m:

To a solution of 1,5-diphenyl-3-(α - thienyl) pent-2-en-4-yn-1-ol **1m** (158 mg, 0.5 mmol) in 2 mL CH₃CN was added AuCl(6 mg, 0.025 mmol) under Ar atmosphere. The mixture was stirred at room temperature for about 16 hours until the coupling product disappeared completely by inspection of TLC. The solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (petroleum/ethyl acetate = 30/1) to furnish product **3m** as an amorphous solid in 64% yield.

Experimental Procedure for Tandem Reaction of 1n:

To a solution of 1,5-di(β - thienyl)-3-(α - thienyl) pent-2-en-4-yn-1-ol **1n** (164mg, 0.5 mmol) in 2 mL CH₃CN was added AuCl(6 mg, 0.025 mmol) under Ar atmosphere. The mixture was stirred at room temperature for about 4 hours. The solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (petroleum/dichloromethane = 5/1) to furnish product **3n** as an amorphous solid in 40% yield.

Experimental Procedure for Base-Promoted Thermocyclization of 2a:

To a solution of dienyne **2a** (496 mg, 1mmol) in 10 mL DME was added KOH (90 mg, 1.6 mmol) under Ar atmosphere. The mixture was stirred at reflux temperature for about 20 min until the starting material disappeared completely by inspection of TLC. The reaction mixture was diluted by addition of 10 mL Et₂O followed by addition of 10 mL water. The organic layer was seperated and the aqueous phase was re-extracted with Et₂O (2×20 mL). The combined extracts was washed with water and brine, dried over Na₂SO₄, concentrated under reduced pressure, and purified by chromatography on silica gel eluting with petroleum to yield the product **4a** in 62% yield.

Experimental Procedure for Heterocoupling Reaction of 10 with 1a:

To a mixture of **1o** (135.5 mg, 0.25 mmol, 1.0 eq) and **1a** (620 mg, 2.0 mmol, 8.0 eq) in 8 mL CH₃CN was added AuCl (26 mg, 0.11 mmol, 0.45 eq) under Ar atmosphere. The mixture was stirred at room temperature for 5 min until substrate **1o** disappeared completely by inspection of TLC. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (petroleum/ethyl acetate = 25/1) on Et₃N-treated silica gel to furnish the product **2ao** as an amorphous solid in 74% yield based on **1o**.

Spectroscopic Data for Substrates and Products

¹H NMR (300 MHz, CDCl₃): δ 7.74-7.72 (m, 2H), 7.60-7.58 (m, 4H), 7.44-7.31 (m, 9H), 6.62 (d, *J* = 8.4 Hz, 1H), 6.14 (d, *J* = 8.4 Hz, 1H), 2.52 (brs, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 142.5, 138.2, 137.0, 131.6, 128.7, 128.6, 128.4, 128.39, 128.3, 127.7, 126.3, 125.9, 124.1, 122.8, 96.5, 85.9, 73.0 ppm; MS (EI) *m/z* (%): 310 (M⁺, 8), 281 (8), 233 (12), 205 (63), 105 (100), 77 (71).

¹H NMR (400 MHz, CDCl₃): δ 7.80-7.78 (m, 4H), 7.56-7.54 (m, 2H), 7.47-7.40 (m, 10H), 7.39-7.32 (m, 2H), 7.31-7.25 (m, 3H), 7.21-7.17 (m, 4H), 6.74 (d, *J* = 9.6 Hz, 2H), 5.92 (t, *J* = 9.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 137.9, 137.2, 131.7, 128.8, 128.4, 128.2, 127.9, 127.6, 126.7, 126.3, 124.6, 123.1, 95.9, 86.7, 48.6 ppm; MS (EI) *m/z* (%): 496 (M⁺, 57), 417 (29), 215 (90), 191 (100), 165 (46), 105 (80); HRMS (EI): calculated for C₃₉H₂₈ [M]⁺: 496.2186; found: 496.2191.

¹H NMR (300 MHz, CDCl₃): δ 7.59-7.57 (m, 4H), 7.43-7.33 (m, 5H), 7.31-7.25 (m, 4H), 6.90-6.88 (m, 1H), 6.62 (dd, J = 8.7 Hz, J = 1.2 Hz, 1H), 6.12 (d, J = 8.7 Hz, 1H), 3.84 (s, 3H), 2.56 (brs, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 159.6, 142.5, 138.5, 138.46, 138.4, 131.5, 129.3, 128.6, 128.5, 128.4, 127.6, 125.9, 124.0, 122.8, 118.7, 113.8, 112.0, 96.4, 85.8, 72.9, 55.2 ppm; MS (EI) *m/z* (%): 340 (M⁺, 5), 311 (3), 263 (4), 221 (42), 105 (74), 77 (100).

¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 8.0 Hz, 2H), 7.47-7.27 (m, 15H), 7.21-7.18 (m, 4H), 6.93-6.90 (m, 2H), 6.75 (d, J = 9.6 Hz, 2H), 5.92 (t, J = 9.6 Hz, 1H), 3.88 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 142.5, 139.4, 137.3, 131.7, 129.3, 128.8, 128.1, 127.6, 126.7, 124.5, 123.1, 118.7, 113.4, 112.2, 95.9, 86.6, 55.2, 48.5 ppm; MS (EI) *m/z* (%): 556 (M⁺,78), 465 (23), 273 (92), 165 (54), 149 (90), 44 (100); HRMS (ESI): calculated for C₄₁H₃₃O₂ [M+H]⁺: 557.2475; found: 557.2475.

¹H NMR (300 MHz, CDCl₃): δ 7.66-7.64 (m, 2H), 7.59-7.57 (m, 4H), 7.42-7.34 (m, 6H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.51 (d, *J* = 9.0 Hz, 1H), 6.11(d, *J* = 8.7 Hz, 1H), 3.83(s, 3H), 2.55(brs, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 159.7, 142.7, 136.3, 131.6, 129.5, 128.6, 128.5, 128.4, 127.6, 127.5, 125.9, 123.6, 122.8, 113.7, 96.3, 86.1, 73.0, 55.2 ppm; MS (EI) *m/z* (%): 340 (M⁺, 27), 311 (10), 263 (17), 221 (88), 105 (86), 77 (100).

¹H NMR (400 MHz, CDCl₃): δ 7.72-7.69 (m, 4H), 7.53-7.37 (m, 8H), 7.29-7.25 (m, 3H), 7.19-7.15 (m, 4H), 6.95-6.93 (m, 4H), 6.61 (d, J = 9.6 Hz, 2H), 5.86 (t, J = 9.6 Hz, 1H), 3.84 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 143.0, 135.6, 131.7, 130.6, 128.7, 128.1, 127.6, 127.5, 126.5, 123.8, 123.2, 113.7, 95.6, 87.0, 55.3, 48.5 ppm; MS (EI) *m/z* (%) 556 (M⁺, 17), 209 (15), 149 (64), 131 (35), 111 (42), 44 (100); HRMS (ESI): calculated for C₄₁H₃₃O₂ [M+H]⁺: 557.2475; found: 557.2478.

¹H NMR (300 MHz, CDCl₃): δ 7.59-7.53 (m, 4H), 7.41-7.26 (m, 6H), 6.94 (s, 2H), 6.54 (d, J = 8.7 Hz, 1H), 6.10 (d, J = 8.7 Hz, 1H), 3.89 (s, 6H), 3.88 (s, 3H), 2.73 (brs, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 153.0, 142.6, 138.3, 137.8, 132.7, 131.4, 128.7, 128.5, 128.4, 127.6, 125.8, 123.8, 122.7, 103.6, 96.5, 85.9, 72.9, 60.8, 56.0 ppm; MS (EI) *m/z* (%): 400 (M⁺,16), 295 (32), 281 (40), 105 (100), 91 (29), 77 (80).

¹H NMR (400 MHz, CDCl₃): δ 7.53-7.38 (m, 8H), 7.30-7.17 (m, 7H), 6.99 (s, 4H), 6.64 (d, J = 10 Hz, 2H), 5.85 (t, J = 9.6 Hz, 1H), 3.92 (s, 12H), 3.88 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 153.1, 142.5, 138.2, 136.6, 133.6, 131.6, 128.8, 128.3, 128.2, 127.6, 126.7, 124.5, 123.0, 103.8, 96.0, 86.6, 60.8, 56.2, 48.6 ppm; MS (EI) m/z (%): 676 (M⁺, 2), 564 (80), 527 (23), 438 (45), 339 (28), 44 (100); HRMS (ESI): calculated for C₄₅H₄₁O₆ [M+H]⁺: 677.2898; found: 677.2909.

¹H NMR (400 MHz, CDCl₃): δ 7.73-7.70 (m, 2H), 7.59-7.51 (m, 4H), 7.42-7.32 (m, 6H), 6.92(dd, *J* = 6.8 Hz, J = 2.0 Hz, 2H), 6.58(d, *J* = 8.4 Hz, 1H), 6.12 (d, *J* = 8.8 Hz, 1H), 3.84 (s, 3H), 2.56 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 142.7, 137.6, 137.2, 133.1, 128.5, 128.4, 128.2, 127.6, 126.3, 125.9, 124.4, 114.9, 114.1, 96.7, 84.7, 73.0, 55.3 ppm; MS(EI) *m/z* (%) 340 (M⁺,42), 235 (100), 221 (95), 203 (45), 105 (29),77 (20).

¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.0 Hz, 2H), 7.49-7.23 (m, 15H), 6.66-6.62 (m, 6H), 5.85 (t, J = 9.6 Hz, 1H), 3.75 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 142.9, 138.2, 136.6, 133.2, 128.7, 128.4, 127.8, 127.6, 126.6, 126.3, 124.7, 115.4, 113.8, 95.8, 85.5, 55.2, 48.5 ppm; MS (EI) *m/z* (%): 556 (M⁺,6), 391 (97), 315 (77), 203 (94), 105 (100), 91 (64); HRMS (ESI): calculated for C₄₁H₃₃O₂ [M+H]⁺: 557.2475; found: 557.2468.

¹H NMR (300 MHz, CDCl₃): δ 7.98 (d, J = 12.3 Hz, 2H), 7.76-7.57 (m, 9H), 7.41-7.14 (m, 6H), 6.69 (d, J = 8.1 Hz, 1H), 6.29 (d, J = 8.7 Hz, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 2.55 (brs, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 158.7, 158.0, 138.3, 138.1, 137.5, 135.5, 134.6, 134.4, 131.7, 129.8, 129.7, 129.14, 129.1, 128.7, 128.6, 127.6, 127.3, 126.7, 125.3, 125.1, 124.7, 119.9, 119.2, 118.0, 106.1, 105.9, 97.7, 86.0, 73.5, 55.6, 55.5 ppm; MS (EI) *m/z* (%) 470 (M⁺,10), 271 (52), 239 (40), 185 (100), 115 (80), 57 (73).

¹H NMR (300 MHz, CDCl₃): δ 7.85-7.66 (m, 9H), 7.43-7.13 (m, 15H), 6.93-6.77 (m, 6H), 6.11 (t, *J* = 9.6 Hz, 1H), 3.91 (s, 3H), 3.87 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 158.0, 157.4, 138.0, 137.9, 136.9, 133.9, 133.4, 131.2, 129.3, 129.2, 129.1, 129.0, 128.4, 128.2, 127.9, 127.3, 126.9, 126.5, 126.4, 125.6, 124.7, 118.9, 117.9, 105.5, 105.4, 96.5, 86.4, 55.3, 55.2, 48.5 ppm; MS (ESI), *m/z*: 737.4 [M+H]⁺.

¹H NMR (300 MHz, CDCl₃): δ 7.69-7.65 (m, 2H), 7.60-7.57 (m, 4H), 7.43-7.32 (m, 6H), 7.06 (t, *J* = 8.7 Hz, 2H), 6.54 (d, *J* = 9.0 Hz, 1H), 6.10 (d, *J* = 8.7 Hz, 1H), 2.57 (brs, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 164.4, 161.1, 142.5, 138.0, 133.2, 133.1, 131.6, 128.8, 128.6, 128.5, 128.1, 128.0, 127.7, 125.9, 123.1, 122.7, 115.4, 115.1, 96.7, 85.7, 73.0 ppm; MS (EI) *m/z* (%): 328 (M⁺,5), 299 (5), 251 (8), 223 (31), 105 (100), 77 (70).

¹H NMR (400 MHz, CDCl₃): δ 7.76-7.69 (m, 4H), 7.50-7.37 (m, 8H), 7.32-7.25 (m, 3H), 7.18-7.15 (m, 4H), 7.09-7.05 (m, 4H), 6.62 (dd, J = 9.4 Hz, J = 3.4 Hz, 2H), 5.82 (t, J = 10.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 161.4, 142.5, 136.9, 134.0, 131.7, 128.9, 128.3, 128.2, 128.0, 127.9, 127.6, 126.8, 126.3, 123.6, 123.0, 115.4, 115.2, 96.2, 86.4, 48.7 ppm; MS (EI) *m/z* (%): 532 (M⁺,5),496 (100), 394 (71), 317 (64), 215 (44), 44 (39); HRMS (EI): calculated for C₃₉H₂₆F₂ [M]⁺: 532.1997; found: 532.1998.

¹H NMR (300 MHz, CDCl₃): δ 7.63-7.57 (m, 6H), 7.45-7.31 (m, 8H), 6.59 (d, *J* = 9.0 Hz, 1H), 6.11 (d, *J* = 8.7 Hz, 1H), 2.81 (brs, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 142.3, 138.5, 135.4, 134.0, 131.6, 128.8, 128.6, 128.5, 128.4, 127.8, 127.5, 125.9, 122.9, 122.5, 96.8, 85.4, 73.0 ppm; MS (EI) *m/z* (%): 344 (M⁺,6), 315 (3), 267 (7), 225 (35), 105 (100), 77 (62).

¹H NMR (300 MHz, CDCl₃): δ 7.66 (d, J = 8.7 Hz, 4H), 7.48-7.14 (m, 19H), 6.66 (d, J = 9.9 Hz, 2H), 5.82 (t, J = 9.3 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 142.2, 137.2, 136.3, 133.7, 131.7, 128.9, 128.5, 128.4, 128.2, 127.5, 127.2, 126.8, 123.6, 122.8, 96.3, 86.1, 48.7 ppm; MS (EI) m/z (%): 564 (M⁺, 4), 379 (22), 165 (24), 130 (78), 57 (70), 44 (100); HRMS (EI): calculated for C₃₉H₂₆Cl₂ [M]⁺: 564.1406; found: 564.1402.

¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.61-7.48 (m, 6H), 7.41-7.29 (m, 3H), 6.92-6.90 (m, 2H), 6.61 (d, *J* = 8.4 Hz, 1H), 6.08 (d, *J* = 8.4 Hz, 1H), 3.84 (s, 3H), 2.42 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 142.4, 140.8, 139.4, 133.2, 130.3, 128.7, 127.9, 126.7, 125.9, 125.4, 123.4, 122.7, 114.6, 114.2, 97.4, 84.0, 73.1, 55.3 ppm; MS (EI) *m/z* (%): 408 (M⁺,57), 303 (56), 289 (100), 235 (26), 105 (67), 77 (24).

¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 8.0 Hz, 4H), 7.60 (d, J = 8.4 Hz, 4H), 7.46-7.28 (m, 9H), 6.71-6.66 (m, 6H), 5.83 (t, J = 9.6 Hz, 1H), 3.78 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 141.6, 138.0, 133.2, 130.0, 128.9, 127.6, 126.9, 126.6, 125.3, 124.0, 114.9, 113.9, 96.8, 84.7, 55.2, 48.8 ppm; MS (EI) *m/z* (%): 692 (M⁺, 2), 527 (2), 239 (8), 176 (40), 149 (65), 43 (100); HRMS (ESI): calculated for C₄₃H₃₁O₂ F₆ [M+H]⁺: 693.2223; found: 693.2227.

¹H NMR (400 MHz, CDCl₃): δ 7.66-7.60 (m, 6H), 7.56-7.51 (m, 2H), 7.41-7.29 (m, 3H), 6.92-6.89 (m, 2H), 6.54 (d, *J* = 8.8 Hz, 1H), 6.23 (d, *J* = 8.8 Hz, 1H), 3.81 (s, 3H), 2.40 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 142.6, 137.4, 131.8, 131.7, 129.2, 128.7, 127.8, 127.5, 126.7, 126.4, 125.9, 125.4, 123.3, 113.9, 94.7, 88.4, 73.1, 55.3 ppm; MS (EI) *m/z* (%): 408 (M⁺, 52), 303 (42), 289 (100), 235 (40), 105 (72), 77 (32).

¹H NMR (300 MHz, CDCl₃): δ 7.81(d, J = 7.5 Hz, 4H), 7.61 (d, J = 9.0 Hz, 4H), 7.47-7.27 (m, 9H), 6.72-6.66 (m, 6H), 5.84 (t, J = 9.5 Hz, 1H), 3.78 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 159.7, 142.5, 136.3, 131.7, 129.9, 128.9, 127.5, 127.4, 126.8, 125.0, 123.5, 113.9, 94.0, 89.3, 55.3, 48.7 ppm; MS *m/z* (%): 692 (M⁺, 2), 540 (7), 420 (11), 201 (30), 130 (68), 43 (100); HRMS (EI): calculated for C₄₃H₃₀O₂F₆ [M]⁺: 692.2145; found: 692.2140.

¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.8 Hz, 4H), 6.94 (d, J = 8.4 Hz, 4H), 6.69 (d, J = 8.4 Hz, 1H), 6.11 (d, J = 8.4 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 2.08 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 159.1, 140.7, 139.7, 134.6, 133.0, 127.2, 126.5, 126.46, 125.2, 125.14, 125.10, 122.5, 114.5, 114.1, 113.9, 97.3, 84.0, 72.6, 55.1, 55.0 ppm; MS (EI) *m/z* (%): 438 (M⁺, 41), 330 (26), 289 (60), 135 (100), 121 (26), 71 (16).

¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.0 Hz, 4H), 7.60 (d, J = 8.4 Hz, 4H), 7.37-7.31 (m, 6H), 6.90 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 9.2 Hz, 6H), 5.78 (t, J = 9.4 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 158.6, 141.6, 138.3, 134.2, 133.2, 130.0, 129.6, 128.5, 126.6, 125.3, 123.7, 114.9, 114.4, 113.9, 96.7, 84.7, 55.3, 55.2, 47.9 ppm; MS (EI) m/z (%) 722 (M⁺, 0.4), 692 (9), 560 (5), 176 (28), 149 (31), 44 (100); HRMS (ESI): calculated for C₄₄H₃₃O₃ F₆ [M+H]⁺: 723.2328; found: 723.2325.

¹H NMR (400 MHz, CDCl₃): δ 7.72-7.63 (m, 10H), 7.42-7.36 (m, 3H), 6.58 (d, J = 8.8 Hz, 1H), 6.15 (d, J = 9.2 Hz, 1H), 2.60 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.1, 138.2, 136.4, 131.9, 128.8, 128.6, 126.3, 126.2, 125.6, 125.5, 125.2, 124.7, 95.3, 87.9, 72.5 ppm.

¹H NMR (300 MHz, CDCl₃): δ 7.65-7.58 (m, 4H), 7.51-7.40 (m, 6H), 7.38-7.24 (m, 2H), 7.05-7.03 (m, 1H), 6.55 (d, *J* = 9.0 Hz, 1H), 6.08 (d, *J* = 8.7 Hz, 1H), 2.62 (brs, 1H) ppm; ¹³CNMR(75 MHz, CDCl₃): δ 142.3, 141.9, 135.9, 131.6, 128.8, 128.6, 128.4, 127.7, 127.4, 125.9, 125.7, 125.3, 122.4, 118.4, 95.6, 84.8, 72.7 ppm; MS (EI) *m/z* (%): 316 (M⁺,8), 287 (16), 211 (35), 105 (91), 77 (100), 51 (39).

¹H NMR (300 MHz, CDCl₃): δ 7.39-7.26 (m, 12H), 7.24-7.07 (m, 5H), 6.98-6.96 (m,1H), 6.64 (d, J = 0.6 Hz, 1H), 6.57-6.54 (m, 1H), 6.26 (dd, J = 3.6 Hz, J = 1.2 Hz, 1H), 5.00(d, J = 2.1 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 147.6, 142.2, 140.6, 139.2, 138.0, 137.8, 137.7, 137.3, 131.7, 131.5, 129.9, 128.6, 128.4, 128.2, 127.3, 126.9, 126.8, 126.6, 126.55, 125.9, 124.5, 123.8, 122.9, 113.3, 98.2, 85.0, 54.6 ppm; MS (EI) m/z (%): 506 (M⁺, 100), 429 (31), 395 (14), 325 (22), 71 (28), 57 (38); HRMS (EI): calculated for C₃₅H₂₂S₂ [M]⁺: 506.1157; found: 506.1151.

¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 2.0 Hz, 1H), 7.35-7.33 (m, 4H), 7.27-7.20 (m, 3H), 7.02 (t, J = 4.4 Hz, 1H), 6.49 (d, J = 8.8 Hz, 1H), 6.06 (d, J = 8.8 Hz, 1H), 2.27 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 141.8, 135.1, 129.7, 129.4, 127.4, 126.3, 125.9, 125.8, 125.7, 125.4, 121.4, 121.0, 118.7, 91.0, 84.1, 69.7 ppm; MS (EI) m/z (%): 328 (M⁺, 4), 299 (23), 217 (35), 159 (51), 111 (80), 44 (100).

¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 2Hz, 1H), 7.38 (d, J = 5.2Hz, 1H), 7.31-7.29 (m, 1H), 7.25-7.22 (m, 3H), 7.11-7.08 (m, 2H), 7.05-7.02 (m, 2H), 6.92 (s, 1H), 6.85-6.84 (m, 1H), 6.70-6.68 (m, 1H), 6.60 (d, J = 2.4Hz, 1H), 6.40 (d, J = 2.8 Hz, 1H), 5.11 (d, J = 2.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 140.5, 139.6, 138.0, 137.8, 137.6, 137.5, 137.4, 129.9, 129.4, 129.1, 127.4, 126.8, 126.4, 126.0, 125.4, 125.2, 124.5, 124.2, 124.1, 124.06, 122.4, 122.0, 113.3, 93.5, 84.4, 49.7ppm; MS (EI) *m/z* (%): 524 (M⁺, 3), 354 (17), 309 (38), 159 (25), 149(100), 111 (63), 83 (83); HRMS (APCI): calculated for C₂₉H₁₆S₅ [M+H]⁺: 524.9928; found: 524.9935.

¹H NMR (300 MHz, CDCl₃): δ 7.79-7.76 (m, 4H), 7.54-7.43 (m, 7H), 7.36-7.34 (m, 6H), 7.24-7.19 (m, 8H), 6.91-6.88 (m, 2H), 6.18 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 208.7, 141.9, 140.4, 140.2, 137.3, 133.8, 132.0, 129.3, 128.8, 128.5, 128.3,

128.0, 127.7, 127.6, 127.2, 127.1, 126.9, 126.7, 126.69, 126.6, 109.8, 97.2 ppm; MS (EI) m/z (%): 496 (M⁺,56), 417 (15), 341 (44), 239 (12), 178 (31), 77 (100); HRMS (EI): calculated for C₃₉H₂₈ [M]⁺: 496.2186; found: 496.2183.

¹H NMR (300 MHz, CDCl₃): δ 7.74-7.70 (m, 4H), 7.63-7.32 (m, 20H), 6.67 (d, J = 8.7 Hz, 2H), 6.14 (d, J = 8.1 Hz, 2H), 2.93 (brs, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 142.8, 139.2, 137.2, 132.8, 132.0, 129.0, 128.8, 128.7, 128.1, 126.7, 126.3, 124.3, 123.4, 96.4, 88.4, 73.4 ppm; MS (EI) *m/z* (%): 542 (M⁺,3), 423 (6), 262 (40), 183 (43), 105 (94), 44(100).

¹H NMR (400 MHz, CDCl₃): *δ* 7.73-7.70 (m, 8H), 7.48 (d, J = 7.6 Hz, 4H), 7.40-7.20 (m, 23H), 7.11-7.05 (m, 9H), 6.68 (t, J = 9.6 Hz, 4H), 5.84 (t, J = 9.6 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): *δ* 142.5, 137.9, 137.7, 137.6, 136.9, 131.6, 131.4, 128.8, 128.44, 128.42, 128.4, 128.2, 128.02, 128.0, 127.6, 126.8, 126.3, 126.29, 124.7, 124.5, 122.9, 122.8, 95.9, 95.5, 88.5, 86.6, 48.6 ppm; MALDI-TOF MS, *m/z*: 915.7 [M+H]⁺; 937.6 [M+Na]⁺.

¹H NMR (300 MHz, CDCl₃): δ 7.64-7.62 (d, 7H), 7.41-7.36 (t, 8H), 7.31-7.24 (m, 13H), 7.22-7.15 (m, 2H), 6.64 (d, *J* = 9.0 Hz, 2H), 6.07 (d, *J* = 9.3 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 141.3, 137.1, 136.9, 131.6, 128.6, 128.3, 128.2, 128.1, 128.06, 127.6, 126.7, 126.5, 126.3, 125.4, 122.9, 96.5, 86.1, 77.6 ppm; MS (ESI), *m/z*: 603.0 [M+H]⁺.

S13

I.

S14

٦

S19

S26

S35

S39

S46

i.

.

S60

0.000

Table 1. Crystal data and structure refinement for **3m**.

Identification code	y2488
Empirical formula	C35 H22 S2
Formula weight	506.65
Temperature	153(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 10.4462(3) A alpha = 72.464(1) deg. b = 11.3402(3) A beta = 70.535(1) deg. c = 12.9205(4) A gamma = 66.002(1) deg.
Volume	1293.72(6) A^3
Z, Calculated density	2, 1.301 Mg/m^3
Z, Calculated density Absorption coefficient	2, 1.301 Mg/m ³ 0.229 mm ⁻¹

Crystal size	0.39 x 0.28 x 0.16 mm
Theta range for data collection	3.09 to 27.48 deg.
Limiting indices	-13<=h<=12, -14<=k<=14, -16<=l<=16
Reflections collected / unique	12796 / 5890 [R(int) = 0.0196]
Completeness to theta $= 27.48$	99.2 %
Absorption correction	Empirical
Max. and min. transmission	0.9643 and 0.9161
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5890 / 0 / 335
Goodness-of-fit on F ²	0.996
Final R indices [I>2sigma(I)]	R1 = 0.0373, $wR2 = 0.1018$
R indices (all data)	R1 = 0.0524, $wR2 = 0.1275$
Extinction coefficient	0.0061(17)

Largest diff. peak and hole 0.360 and -0.410 e.A^-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for y2488.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	У	Z	U(eq)
S(1)	5415(1)	4017(1)	8828(1)	31(1)
S(2)	6536(1)	-3251(1)	7643(1)	35(1)
C(1)	6296(2)	-634(2)	7116(1)	22(1)
C(2)	5446(2)	-83(2)	6399(1)	25(1)
C(3)	4692(2)	1378(2)	6351(1)	23(1)
C(4)	5246(2)	1598(2)	7196(1)	21(1)
C(5)	4989(2)	2771(2)	7472(1)	22(1)
C(6)	5643(2)	2699(2)	8291(1)	22(1)
C(7)	6540(2)	1508(2)	8799(1)	22(1)
C(8)	6829(2)	315(2)	8482(1)	20(1)
C(9)	6181(2)	386(2)	7675(1)	21(1)
C(10)	7019(2)	1715(2)	9635(2)	28(1)
C(11)	6495(2)	2993(2)	9728(2)	34(1)

C(12)	7254(2)	-2018(2)	7261(1)	23(1)
C(13)	8749(2)	-2525(2)	7089(1)	26(1)
C(14)	9267(2)	-3925(2)	7279(2)	34(1)
C(15)	8198(2)	-4446(2)	7576(2)	38(1)
C(16)	3059(2)	1778(2)	6588(1)	23(1)
C(17)	2268(2)	1416(2)	7660(2)	31(1)
C(18)	789(2)	1693(2)	7857(2)	39(1)
C(19)	95(2)	2321(2)	6999(2)	42(1)
C(20)	873(2)	2698(2)	5944(2)	43(1)
C(21)	2349(2)	2427(2)	5739(2)	33(1)
C(22)	4166(2)	4039(2)	6952(2)	24(1)
C(23)	3603(2)	5164(2)	6558(2)	26(1)
C(24)	2958(2)	6534(2)	6126(2)	24(1)
C(25)	2398(2)	6949(2)	5183(2)	27(1)
C(26)	1792(2)	8285(2)	4781(2)	31(1)
C(27)	1741(2)	9203(2)	5306(2)	31(1)
C(28)	2297(2)	8804(2)	6239(2)	31(1)
C(29)	2914(2)	7473(2)	6645(2)	29(1)
C(30)	7793(2)	-933(2)	9022(1)	21(1)
C(31)	9247(2)	-1117(2)	8855(2)	28(1)
C(32)	10156(2)	-2296(2)	9334(2)	36(1)
C(33)	9625(2)	-3282(2)	10000(2)	35(1)
C(34)	8178(2)	-3102(2)	10179(2)	33(1)
C(35)	7267(2)	-1933(2)	9693(1)	26(1)

S(1)-C(11)	1.723(2)
S(1)-C(6)	1.7312(16)
S(1)-S(2)#1	3.4948(6)
S(2)-C(15)	1.708(2)
S(2)-C(12)	1.7182(17)
C(1)-C(2)	1.336(2)
C(1)-C(12)	1.473(2)
C(1)-C(9)	1.485(2)
C(2)-C(3)	1.509(2)
C(2)-H(2)	0.9500
C(3)-C(4)	1.513(2)
C(3)-C(16)	1.522(2)
C(3)-H(3)	1.0000
C(4)-C(5)	1.379(2)
C(4)-C(9)	1.423(2)
C(5)-C(6)	1.406(2)
C(5)-C(22)	1.433(2)
C(6)-C(7)	1.406(2)
C(7)-C(8)	1.418(2)
C(7)-C(10)	1.442(2)
C(8)-C(9)	1.388(2)
C(8)-C(30)	1.490(2)
C(10)-C(11)	1.353(3)

Table 3. Bond lengths [A] and angles [deg] for y2488.

C(10)-H(10)	0.9500
C(11)-H(11)	0.9500
C(12)-C(13)	1.390(2)
C(13)-C(14)	1.424(2)
C(13)-H(13)	0.9500
C(14)-C(15)	1.363(3)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
C(16)-C(21)	1.381(2)
C(16)-C(17)	1.393(3)
C(17)-C(18)	1.394(3)
C(17)-H(17)	0.9500
C(18)-C(19)	1.379(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.376(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.390(3)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
C(22)-C(23)	1.196(2)
C(23)-C(24)	1.434(2)
C(24)-C(25)	1.397(2)
C(24)-C(29)	1.398(2)
C(25)-C(26)	1.389(2)
C(25)-H(25)	0.9500
C(26)-C(27)	1.379(3)

C(26)-H(26)	0.9500
C(27)-C(28)	1.385(3)
C(27)-H(27)	0.9500
C(28)-C(29)	1.388(2)
C(28)-H(28)	0.9500
C(29)-H(29)	0.9500
C(30)-C(35)	1.392(2)
C(30)-C(31)	1.396(2)
C(31)-C(32)	1.390(3)
C(31)-H(31)	0.9500
C(32)-C(33)	1.381(3)
C(32)-H(32)	0.9500
C(33)-C(34)	1.387(3)
C(33)-H(33)	0.9500
C(34)-C(35)	1.389(2)
C(34)-H(34)	0.9500
C(35)-H(35)	0.9500
C(11) $S(1)$ $C(2)$	00.07(8)
C(11)-S(1)-C(6)	90.97(8)
C(11)-S(1)-S(2)#1	106.29(7)
C(6)-S(1)-S(2)#1	132.06(6)
C(15)-S(2)-C(12)	92.30(9)
C(2)-C(1)-C(12)	124.46(15)
C(2)-C(1)-C(9)	109.14(14)
C(12)-C(1)-C(9)	126.29(15)
C(1)-C(2)-C(3)	112.78(15)

C(1)-C(2)-H(2)	123.6
C(3)-C(2)-H(2)	123.6
C(2)-C(3)-C(4)	101.17(13)
C(2)-C(3)-C(16)	112.52(14)
C(4)-C(3)-C(16)	115.62(13)
C(2)-C(3)-H(3)	109.1
C(4)-C(3)-H(3)	109.1
C(16)-C(3)-H(3)	109.1
C(5)-C(4)-C(9)	121.64(16)
C(5)-C(4)-C(3)	128.11(15)
C(9)-C(4)-C(3)	110.19(14)
C(4)-C(5)-C(6)	116.51(15)
C(4)-C(5)-C(22)	124.69(16)
C(6)-C(5)-C(22)	118.74(15)
C(5)-C(6)-C(7)	122.87(15)
C(5)-C(6)-S(1)	125.24(12)
C(7)-C(6)-S(1)	111.86(13)
C(6)-C(7)-C(8)	119.94(15)
C(6)-C(7)-C(10)	111.10(15)
C(8)-C(7)-C(10)	128.94(15)
C(9)-C(8)-C(7)	117.22(14)
C(9)-C(8)-C(30)	123.70(14)
C(7)-C(8)-C(30)	119.07(14)
C(8)-C(9)-C(4)	121.75(14)
C(8)-C(9)-C(1)	131.56(14)
C(4)-C(9)-C(1)	106.66(14)

C(11)-C(10)-C(7)	112.32(16)
C(11)-C(10)-H(10)	123.8
C(7)-C(10)-H(10)	123.8
C(10)-C(11)-S(1)	113.75(15)
C(10)-C(11)-H(11)	123.1
S(1)-C(11)-H(11)	123.1
C(13)-C(12)-C(1)	129.01(15)
C(13)-C(12)-S(2)	111.35(12)
C(1)-C(12)-S(2)	119.59(12)
C(12)-C(13)-C(14)	111.34(16)
C(12)-C(13)-H(13)	124.3
C(14)-C(13)-H(13)	124.3
C(15)-C(14)-C(13)	113.35(17)
C(15)-C(14)-H(14)	123.3
C(13)-C(14)-H(14)	123.3
C(14)-C(15)-S(2)	111.66(14)
C(14)-C(15)-H(15)	124.2
S(2)-C(15)-H(15)	124.2
C(21)-C(16)-C(17)	118.88(17)
C(21)-C(16)-C(3)	121.01(16)
C(17)-C(16)-C(3)	119.99(15)
C(16)-C(17)-C(18)	119.95(18)
C(16)-C(17)-H(17)	120.0
C(18)-C(17)-H(17)	120.0
C(19)-C(18)-C(17)	120.68(19)
C(19)-C(18)-H(18)	119.7

C(17)-C(18)-H(18)	119.7
C(20)-C(19)-C(18)	119.29(19)
C(20)-C(19)-H(19)	120.4
C(18)-C(19)-H(19)	120.4
C(19)-C(20)-C(21)	120.5(2)
C(19)-C(20)-H(20)	119.8
C(21)-C(20)-H(20)	119.8
C(16)-C(21)-C(20)	120.69(19)
C(16)-C(21)-H(21)	119.7
C(20)-C(21)-H(21)	119.7
C(23)-C(22)-C(5)	170.49(19)
C(22)-C(23)-C(24)	176.7(2)
C(25)-C(24)-C(29)	119.38(15)
C(25)-C(24)-C(23)	121.28(16)
C(29)-C(24)-C(23)	119.33(16)
C(26)-C(25)-C(24)	119.76(17)
C(26)-C(25)-H(25)	120.1
C(24)-C(25)-H(25)	120.1
C(27)-C(26)-C(25)	120.42(17)
C(27)-C(26)-H(26)	119.8
C(25)-C(26)-H(26)	119.8
C(26)-C(27)-C(28)	120.39(16)
C(26)-C(27)-H(27)	119.8
C(28)-C(27)-H(27)	119.8
C(27)-C(28)-C(29)	119.80(17)
C(27)-C(28)-H(28)	120.1

C(29)-C(28)-H(28)	120.1
C(28)-C(29)-C(24)	120.24(17)
C(28)-C(29)-H(29)	119.9
C(24)-C(29)-H(29)	119.9
C(35)-C(30)-C(31)	119.01(15)
C(35)-C(30)-C(8)	120.85(15)
C(31)-C(30)-C(8)	120.14(15)
C(32)-C(31)-C(30)	120.14(17)
C(32)-C(31)-H(31)	119.9
C(30)-C(31)-H(31)	119.9
C(33)-C(32)-C(31)	120.48(18)
C(33)-C(32)-H(32)	119.8
C(31)-C(32)-H(32)	119.8
C(32)-C(33)-C(34)	119.71(17)
C(32)-C(33)-H(33)	120.1
C(34)-C(33)-H(33)	120.1
C(33)-C(34)-C(35)	120.16(18)
C(33)-C(34)-H(34)	119.9
C(35)-C(34)-H(34)	119.9
C(34)-C(35)-C(30)	120.49(17)
C(34)-C(35)-H(35)	119.8
C(30)-C(35)-H(35)	119.8

Symmetry transformations used to generate equivalent atoms: #1 x,y+1,z

Table 4. Anisotropic displacement parameters (A² x 10³) for y2488. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U	23	U13	U12
G (1)	20(1)	10/1)	46(1)	0(1)	12(1)	((1)	
S(1)	30(1)	18(1)	46(1)	-9(1)	-13(1)	-6(1)	
S(2)	31(1)	20(1)	50(1)	-6(1)	-7(1)	-8(1)	
C(1)	24(1)	17(1)	22(1)	-2(1)	-4(1)	-7(1)	
C(2)	27(1)	21(1)	24(1)	-6(1)	-6(1)	-5(1)	
C(3)	24(1)	20(1)	21(1)	-2(1)	-5(1)	-5(1)	
C(4)	21(1)	17(1)	23(1)	-1(1)	-4(1)	-7(1)	
C(5)	20(1)	16(1)	26(1)	-2(1)	-3(1)	-5(1)	
C(6)	19(1)	15(1)	29(1)	-2(1)	-3(1)	-6(1)	
C(7)	18(1)	19(1)	26(1)	-3(1)	-2(1)	-7(1)	
C(8)	18(1)	16(1)	21(1)	-1(1)	-3(1)	-6(1)	
C(9)	19(1)	15(1)	24(1)	0(1)	-3(1)	-5(1)	
C(10)	25(1)	27(1)	32(1)	-7(1)	-10(1)	-6(1)	
C(11)	32(1)	30(1)	46(1)	-14(1)	-15(1)	-7(1)	
C(12)	27(1)	16(1)	24(1)	-3(1)	-5(1)	-7(1)	
C(13)	29(1)	19(1)	24(1)	-4(1)	-4(1)	-5(1)	
C(14)	28(1)	26(1)	37(1)	-6(1)	-7(1)	0(1)	
C(15)	38(1)	16(1)	50(1)	-6(1)	-6(1)	-4(1)	

C(16)	25(1)	19(1)	26(1)	-8(1)	-8(1)	-4(1)
C(17)	33(1)	36(1)	28(1)	-9(1)	-5(1)	-16(1)
C(18)	35(1)	48(1)	42(1)	-24(1)	3(1)	-22(1)
C(19)	25(1)	44(1)	63(1)	-31(1)	-9(1)	-6(1)
C(20)	36(1)	39(1)	53(1)	-15(1)	-22(1)	1(1)
C(21)	34(1)	31(1)	30(1)	-7(1)	-11(1)	-4(1)
C(22)	23(1)	19(1)	28(1)	-2(1)	-6(1)	-6(1)
C(23)	26(1)	20(1)	31(1)	-2(1)	-6(1)	-7(1)
C(24)	21(1)	16(1)	30(1)	0(1)	-5(1)	-4(1)
C(25)	25(1)	24(1)	31(1)	-2(1)	-7(1)	-8(1)
C(26)	24(1)	29(1)	32(1)	4(1)	-10(1)	-7(1)
C(27)	21(1)	18(1)	41(1)	4(1)	-5(1)	-3(1)
C(28)	31(1)	19(1)	39(1)	-7(1)	-5(1)	-7(1)
C(29)	30(1)	24(1)	30(1)	-4(1)	-8(1)	-7(1)
C(30)	22(1)	17(1)	21(1)	-4(1)	-6(1)	-4(1)
C(31)	26(1)	25(1)	35(1)	-5(1)	-9(1)	-8(1)
C(32)	26(1)	34(1)	47(1)	-12(1)	-17(1)	-1(1)
C(33)	42(1)	23(1)	33(1)	-6(1)	-19(1)	4(1)
C(34)	43(1)	21(1)	27(1)	1(1)	-6(1)	-6(1)
C(35)	26(1)	21(1)	25(1)	-1(1)	-3(1)	-7(1)

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for y2488.

	Х	у	Z	U(eq)
	5220	550	50.65	20
H(2)	5329	-559	5965	30
H(3)	5057	1857	5592	28
H(10)	7632	1031	10071	33
H(11)	6703	3298	10241	40
H(13)	9347	-2005	6873	31
H(14)	10260	-4444	7206	41
H(15)	8358	-5362	7727	46
H(17)	2737	980	8256	37
H(18)	253	1448	8590	46
H(19)	-910	2491	7134	50
H(20)	399	3146	5352	51
H(21)	2874	2692	5007	39
H(25)	2431	6321	4819	33
H(26)	1411	8568	4140	37
H(27)	1321	10114	5026	37
H(28)	2257	9440	6599	37
H(29)	3309	7198	7278	35

H(31)	9616	-436	8412	34
H(32)	11150	-2423	9202	43
H(33)	10248	-4081	10334	42
H(34)	7810	-3780	10635	40
H(35)	6277	-1816	9818	31

Table 6.Torsion angles [deg] for y2488.

C(12)-C(1)-C(2)-C(3)	-174.50(15)
C(9)-C(1)-C(2)-C(3)	2.0(2)
C(1)-C(2)-C(3)-C(4)	-0.59(19)
C(1)-C(2)-C(3)-C(16)	-124.57(16)
C(2)-C(3)-C(4)-C(5)	176.15(16)
C(16)-C(3)-C(4)-C(5)	-62.0(2)
C(2)-C(3)-C(4)-C(9)	-1.09(17)
C(16)-C(3)-C(4)-C(9)	120.76(15)
C(9)-C(4)-C(5)-C(6)	-2.9(2)
C(3)-C(4)-C(5)-C(6)	-179.88(15)
C(9)-C(4)-C(5)-C(22)	174.20(15)
C(3)-C(4)-C(5)-C(22)	-2.8(3)
C(4)-C(5)-C(6)-C(7)	1.2(2)
C(22)-C(5)-C(6)-C(7)	-176.08(15)
C(4)-C(5)-C(6)-S(1)	-176.70(12)
C(22)-C(5)-C(6)-S(1)	6.0(2)

C(11)-S(1)-C(6)-C(5)	177.75(16)
S(2)#1-S(1)-C(6)-C(5)	-69.11(16)
C(11)-S(1)-C(6)-C(7)	-0.37(13)
S(2)#1-S(1)-C(6)-C(7)	112.78(12)
C(5)-C(6)-C(7)-C(8)	0.6(2)
S(1)-C(6)-C(7)-C(8)	178.76(12)
C(5)-C(6)-C(7)-C(10)	-177.85(15)
S(1)-C(6)-C(7)-C(10)	0.32(18)
C(6)-C(7)-C(8)-C(9)	-0.7(2)
C(10)-C(7)-C(8)-C(9)	177.43(16)
C(6)-C(7)-C(8)-C(30)	179.45(14)
C(10)-C(7)-C(8)-C(30)	-2.4(3)
C(7)-C(8)-C(9)-C(4)	-1.0(2)
C(30)-C(8)-C(9)-C(4)	178.86(15)
C(7)-C(8)-C(9)-C(1)	176.67(16)
C(30)-C(8)-C(9)-C(1)	-3.5(3)
C(5)-C(4)-C(9)-C(8)	2.9(2)
C(3)-C(4)-C(9)-C(8)	-179.63(14)
C(5)-C(4)-C(9)-C(1)	-175.24(14)
C(3)-C(4)-C(9)-C(1)	2.21(18)
C(2)-C(1)-C(9)-C(8)	179.50(17)
C(12)-C(1)-C(9)-C(8)	-4.1(3)
C(2)-C(1)-C(9)-C(4)	-2.58(18)
C(12)-C(1)-C(9)-C(4)	173.80(15)
C(6)-C(7)-C(10)-C(11)	-0.1(2)
C(8)-C(7)-C(10)-C(11)	-178.34(17)

C(7)-C(10)-C(11)-S(1)	-0.2(2)
C(6)-S(1)-C(11)-C(10)	0.34(16)
S(2)#1-S(1)-C(11)-C(10)	-134.33(14)
C(2)-C(1)-C(12)-C(13)	118.6(2)
C(9)-C(1)-C(12)-C(13)	-57.2(3)
C(2)-C(1)-C(12)-S(2)	-58.5(2)
C(9)-C(1)-C(12)-S(2)	125.62(16)
C(15)-S(2)-C(12)-C(13)	-0.15(15)
C(15)-S(2)-C(12)-C(1)	177.49(15)
C(1)-C(12)-C(13)-C(14)	-177.46(17)
S(2)-C(12)-C(13)-C(14)	-0.10(19)
C(12)-C(13)-C(14)-C(15)	0.4(2)
C(13)-C(14)-C(15)-S(2)	-0.5(2)
C(12)-S(2)-C(15)-C(14)	0.37(18)
C(2)-C(3)-C(16)-C(21)	-106.42(18)
C(4)-C(3)-C(16)-C(21)	138.02(17)
C(2)-C(3)-C(16)-C(17)	69.5(2)
C(4)-C(3)-C(16)-C(17)	-46.1(2)
C(21)-C(16)-C(17)-C(18)	0.9(3)
C(3)-C(16)-C(17)-C(18)	-175.05(16)
C(16)-C(17)-C(18)-C(19)	0.3(3)
C(17)-C(18)-C(19)-C(20)	-1.4(3)
C(18)-C(19)-C(20)-C(21)	1.3(3)
C(17)-C(16)-C(21)-C(20)	-1.0(3)
C(3)-C(16)-C(21)-C(20)	174.92(17)
C(19)-C(20)-C(21)-C(16)	-0.1(3)

C(4)-C(5)-C(22)-C(23)	-151.9(11)
C(6)-C(5)-C(22)-C(23)	25.1(12)
C(5)-C(22)-C(23)-C(24)	-22(4)
C(22)-C(23)-C(24)-C(25)	169(3)
C(22)-C(23)-C(24)-C(29)	-10(4)
C(29)-C(24)-C(25)-C(26)	-0.7(3)
C(23)-C(24)-C(25)-C(26)	-179.41(16)
C(24)-C(25)-C(26)-C(27)	0.0(3)
C(25)-C(26)-C(27)-C(28)	0.3(3)
C(26)-C(27)-C(28)-C(29)	0.2(3)
C(27)-C(28)-C(29)-C(24)	-0.9(3)
C(25)-C(24)-C(29)-C(28)	1.1(3)
C(23)-C(24)-C(29)-C(28)	179.87(17)
C(9)-C(8)-C(30)-C(35)	-64.4(2)
C(7)-C(8)-C(30)-C(35)	115.41(17)
C(9)-C(8)-C(30)-C(31)	115.08(18)
C(7)-C(8)-C(30)-C(31)	-65.1(2)
C(35)-C(30)-C(31)-C(32)	1.3(3)
C(8)-C(30)-C(31)-C(32)	-178.22(16)
C(30)-C(31)-C(32)-C(33)	-1.5(3)
C(31)-C(32)-C(33)-C(34)	0.9(3)
C(32)-C(33)-C(34)-C(35)	-0.2(3)
C(33)-C(34)-C(35)-C(30)	0.0(3)
C(31)-C(30)-C(35)-C(34)	-0.6(3)
C(8)-C(30)-C(35)-C(34)	178.94(16)

Symmetry transformations used to generate equivalent atoms: #1 x,y+1,z

Table 7. Hydrogen bonds for y2488 [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)