Electronic Supporting Information

Perfectly Double Roles of CF₃ Group in Activating Substrates and Stabilizing Adducts: Chiral Brønsted Acid-Catalyzed Direct Arylation of Simple Trifluoromethyl Ketones

Jing Nie,^a Guang-Wu Zhang,^a Lian Wang,^a Aiping Fu,^c Yan Zheng,^a Jun-An Ma^{* a, b}

^a Department of Chemistry, Tianjin University, Tianjin 300072, China. ^b State Key Laboratory of Elemento-Organic Chemistry, Tianjin 300071, China.^c Instituted for Computational Science and Engineering, Qingdao University, Shandong, Qingdao 266071, China

General information

NMR were recorded on Varian Mercury Plus 500 and 400 instruments at 500 MHz or 400 MHz (¹H NMR), 125 MHz (¹³C NMR), as well as 376 MHz (¹⁹F NMR). Chemical shifts were reported in ppm down field from internal Me₄Si and external CF₃COOH, respectively. MS were recorded on a VG-7070E or HP 5988A spectrometer using the EI method. HPLC analyses were carried out on a Hewlett Packard Model HP 1200 instrument.

Experimental section

Unless otherwise noted, all commercially available compounds and solvents were used as provided without further purification. All trifluoroacetophenone substrares were prepared by previous method.¹ The chiral phosphoric acids² and N-triflyl phosphoramides³ were synthesized according to the literatures.

Theoretical study

Calculations were performed using the Gaussian 03 Program.⁴ Geometries were optimized by the B3LYP⁵ method with the 6-31G** basis set. Population analyses were performed by the natural bond orbital method at the same level.

Figure SI. The 3D structures of acetophenone and trifluoroacetophenone. Bond lengths are in Å and NPA charges are also listed with underline and in italic type.

from the F-substitute: (i) the C1-O bond length decreases (ii) the charges on the carbon and oxygen atoms in the carbonyl group are changed from 0.57 (C) and -0.55 (O), to 0.47 (C) and -0.55 (O), respectively. (iii) the energy of the LUMO ($\pi^*_{C=O}$) is lowered from -1.48 *eV to -2.25 eV*, which might indicate that trifluoroacetophenone can be more reactive than acetophenone.

Brønsted Acid-catalyzed diarylation of acetophenone:

To a flame-dried reaction tube was added indole (30.4 mg, 0.26 mmol), acetophenone (37.0 mg, 0.31 mmol), chiral phosphoric acid (9.7 mg, 0.013 mmol), and solvent (CH₂Cl₂, 0.3 mL). After the solution was stirred for 168 h at room temperature (25° C), the crude product was purified directly by flash column chromatography with ethyl acetate/petroleum ether (1:10 to 1:5) to afford the bisindole product (42.3 mg, 96.8% yield). (Notes: no any product was observed at 0 °C for 168 h).

Brønsted Acid-catalyzed arylation of 1-(1H-indole-3-yl)-1phenylethanol:

To a flame-dried reaction tube was added indole (20.0 mg, 0.17 mmol), 1-(1H-indole-3-yl)-1-phenylethanol ⁶ (40.3 mg, 0.17 mmol), chiral phosphoric acid **1** or N-triflyl phosphoramide (0.0085 mmol), and solvent (CH₂Cl₂, 0.3mL). After the solution was stirred for 10 min, the reaction was complete. The crude product was purified directly by flash column chromatography with ethyl acetate/petroleum ether (1:10 to 1:5) to afford the bisindole product in quantitative yield (57.1 mg).

3-(1-(1H-indole-3-yl)-1-phenylyl)-1H-indole mp: 82-84 °C; ¹H NMR (500 MHz, CDCl₃) δ [ppm] 7.90 (br, 2H), 7.41 (d, *J* = 7.5 Hz,

2H), 7.34 (dd, J = 8.0, 5.5 Hz, 4H), 7.26 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.0 Hz, 1H), 7.14 (t, J = 7.5 Hz, 2H), 6.94 (t, J = 7.5 Hz, 2H), 6.65 (d, J = 2.5 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 148.3, 137.3, 128.3, 128.0, 126.7, 126.1, 124.9, 123.6, 122.3, 121.7, 119.1, 111.4, 44.0, 29.0; **IR** (KBr) v (cm⁻¹) 3412, 3053, 2918, 2849, 1597, 1456, 1415, 1338, 1245, 1100, 1011, 909, 741, 701 cm⁻¹; **MS** (**ESI**) m/z 335.6 [M-H]⁻ (100%).

Screening of catalysts for the model reaction

^a The reaction employed a molar ratio of 2:3 = 1:1.2 (equiv), with a concentration of 2 being 0.56 M. ^b Isolated yield. ^c Enantiometric excess was determined by chiral HPLC analysis

16

12

240

1k

11

General Procedure for the Catalytic Asymmetric Arylation Reaction of Indoles with Trifluoromethyl ketones

To a flame-dried reaction tube was added indole (0.17 mmol), trifluoroacetophenone (0.21 mmol), chiral phosphoric acid **1** (0.0085 mmol), and solvent (CH_2Cl_2 , 0.3mL). After the solution was stirred for the stated time, the crude product was purified directly by flash column chromatography with ethyl acetate/petroleum ether (1:10 to 1:5) to afford the desired product.

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-phenylethanol

> 99% yield, mp: 82-84 °C; $[\alpha]_D^{20} = +78.2$ (c 1.0, CH₂Cl₂); 92% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 80/20, 0.8 mL/min, 254 nm; t (major) = 8.149 min, t (minor) = 10.826 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.1 (s, 3F); ¹H NMR (500 MHz, CDCl₃) δ [ppm] 8.26 (br, 1H), 7.61-7.59 (m, 2H), 7.49-7.48 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.37-7.34 (m, 3H), 7.20-7.15 (m, 2H), 6.97-6.94 (m, 1H), 2.86 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 137.9, 136.5, 128.8, 128.2, 127.9 (d, ³*J*_{C-F} = 0.9 Hz), 125.6 (q, ¹*J*_{C-F} = 284.6 Hz), 125.4, 123.5 (q, ³*J*_{C-F} = 3.0 Hz), 123.0, 121.2, 120.5, 114.3, 111.5, 77.3 (q, ²*J*_{C-F} = 29.5 Hz); **IR** (KBr) v (cm⁻¹) 3535, 3503, 3402, 1544, 1461, 1449, 1273, 1164, 1042, 937, 752 cm⁻¹; **MS** (**ESI**) m/z 290.05 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(5-methoxy-1H-indole-3-yl)-1-phenylethanol > 99% yield, mp: 120-121 °C; $[\alpha]_D^{20} = +14.5$ (c 1.0, CH₂Cl₂); 92% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 80/20, 0.8 mL/min, 254 nm; t (major) = 8.990 min, t (minor) = 10.963 min]; ¹⁹**F** NMR (376 MHz, CDCl₃) δ [ppm] -77.2 (s, 3F); ¹**H** NMR (500MHz, CDCl₃) δ [ppm] 8.16 (br, 1H), 7.61-7.59 (m, 2H), 7.45-7.44 (m, 1H), 7.36-7.34 (m, 3H), 7.26 (d, *J* = 9.0 Hz, 1H), 6.82 (dd, *J* = 6.5, 2.5 Hz, 1H), 6.52 (d, *J* = 2.5 Hz, 1H), 3.57 (s, 3H), 2.84 (s, 1H); ¹³**C** NMR (125 MHz, CDCl₃) δ [ppm] 154.2, 137.9, 131.5, 128.7, 128.2, 127.9 (d, ³*J*_{C-F} = 0.9 Hz), 126.0, 125.6 (q, ¹*J*_{C-F} = 284.6 Hz), 124.0 (q, ³*J*_{C-F} = 2.9 Hz), 114.0, 113.3, 112.1, 102.7, 77.2 (q, ²*J*_{C-F} = 28.3 Hz), 55.8; **IR** (KBr) v (cm⁻¹) 3429, 2962, 1589, 1488, 1455, 1299, 1212, 1172, 921, 808, 724, 477 cm⁻¹; **MS** (**ESI**) m/z 320.04 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(5-fluoro-1H-indole-3-yl)-1-phenylethanol > 99% yield, mp: 90-91 °C; $[\alpha]_D^{20} = +45.2$ (c 1.0, CH₂Cl₂); 92% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 98/2, 1.0 mL/min, 254 nm; t (minor) = 94.915 min, t (major) = 102.483 min]; ¹⁹**F NMR** (376 MHz, CDCl₃) δ [ppm] -77.2 (s, 3F), -123.3 ~ -123.4 (m, 1F); ¹**H NMR** (500MHz, CDCl₃) δ [ppm] 8.30 (br, 1H), 7.58-7.56 (m, 2H), 7.51-7.50 (m, 1H), 7.37-7.35 (m, 3H), 7.31-7.28 (m, 1H), 6.94-6.90 (m, 1H), 6.81 (dd, J =7.5, 2.5 Hz, 1H), 2.86 (s, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ [ppm] 157.9 (d, ¹ $J_{C-F} =$ 234.4 Hz), 137.5, 133.0, 128.9, 128.3, 127.7 (d, ³ $J_{C-F} =$ 1.0 Hz), 125.9 (q, ³ $J_{C-F} =$ 10.5 Hz), 125.5 (q, ¹ $J_{C-F} =$ 284.5 Hz), 125.0 (q, ³ $J_{C-F} =$ 3.0 Hz), 114.6 (d, ⁴ $J_{C-F} =$ 4.8 Hz), 112.2 (d, ³ $J_{C-F} =$ 9.6 Hz), 111.6 (d, ² $J_{C-F} =$ 26.5 Hz), 106.2 (d, ² $J_{C-F} =$ 24.4 Hz), 77.1 (q, ² $J_{C-F} =$ 29.4 Hz); **IR** (KBr) v (cm⁻¹) 3465, 2924, 1584, 1486, 1167, 1028, 804, 719 cm⁻¹; **MS (ESI)** m/z 308.06 [M-H]⁻ (100%).

1-(5-chloro-1H-indole-3-yl)-2,2,2-trifluoro-1-phenylethanol

> 99% yield, mp: 104-106 °C; $[\alpha]_D^{20} = -7.8$ (c 1.0, CH₂Cl₂); 90% ee, [Daicel Chiralcel AD-H, Hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; t (major) = 49.317 min, t (minor) = 55.342 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -75.3 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.35 (br, 1H), 7.58-7.57 (m, 2H), 7.46 (s, 1H), 7.38-7.36 (m, 3H), 7.28 (d, *J* = 8.5 Hz, 1H), 7.18-7.17 (m, 1H), 7.13-7.11 (m, 1H), 2.96 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] 140.5, 135.1, 134.8, 128.9, 128.5, 127.9 (q, ³*J*_C. F = 1.9 Hz), 127.8, 126.2 (q, ¹*J*_{C-F} = 284.5 Hz), 121.5, 121.1 (q, ³*J*_{C-F} = 1.4 Hz), 120.1, 110.3, 109.9, 78.9 (q, ²*J*_{C-F} = 30.0 Hz); **IR** (KBr) v (cm⁻¹) 3478, 3404, 1464, 1290, 1182, 1054, 812, 701 cm⁻¹; **MS** (**ESI**) m/z 324.10 [M-H]⁻ (100%), 359.78.

1-(5-bromo-1H-indole-3-yl)-2,2,2-trifluoro-1-phenylethanol

> 52% yield, mp: 108-110 °C; $[\alpha]_D^{20} = -12.8$ (c 1.0, CH₂Cl₂); 92% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 98/2, 1.0 mL/min, 254 nm; t (major) = 118.983 min, t (minor) = 136.938 min]; ¹⁹**F** NMR (376 MHz, CDCl₃) δ [ppm] -77.2 (s, 3F); ¹**H** NMR (500MHz, CDCl₃) δ [ppm] 8.33 (br, 1H), 7.57-7.55 (m, 2H), 7.46 (s, 1H), 7.37-7.34 (m, 4H), 7.26 (s, 2H), 2.87 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 137.4, 135.1, 129.0, 128.3, 127.7 (d, ³J_{C-F} = 0.9 Hz), 127.2, 126.0, 125.5 (q, ¹J_{C-F} = 284.6 Hz), 124.5 (q, ³J_{C-F} = 2.9 Hz), 123.8, 114.2, 113.8, 112.9, 77.4 (q, ²J_{C-F} = 30.0 Hz); **IR** (KBr) v (cm⁻¹) 3482, 3379, 3067, 2924, 1467, 1288, 1180, 1046, 809, 727 cm⁻¹; **MS** (**ESI**) m/z 738.47 [2M-H]⁻ (100%), 370.12 [M-H]⁻ (82%).

Methyl 3-(2,2,2-trifluoro-1-hydroxy-1-phenylethyl)-1H-indole-5-carboxylate 93% yield, mp: 173-175 °C; $[\alpha]_D^{20} = +23.2$ (c 1.0, CH₂Cl₂); 90% ee, [Daicel Chiralcel

AD-H, Hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t (major) = 21.241 min, t (minor) = 32.922 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.1 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.47 (br, 1H), 7.97 (s, 1H), 7.88 (dd, J = 7.0, 2.0 Hz, 1H), 7.60-7.58 (m, 2H), 7.51 (s, 1H), 7.39 (d, J = 9.0 Hz, 1H), 7.37-7.35 (m, 3H), 3.82 (s, 3H), 2.94 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] 168.2, 139.2, 137.8, 128.9, 128.6, 128.3, 127.7, 125.6 (q, ¹J_{C-F} = 284.6 Hz), 125.1, 124.9 (q, ³J_{C-F} = 2.8 Hz), 124.2, 122.4, 115.6, 111.3, 77.2 (q, ³J_{C-F} = 30.0 Hz); **IR** (KBr) v (cm⁻¹) 3526, 3354, 1699, 1620, 1435, 1279, 1182, 1157, 1044, 749 cm⁻¹; **MS** (**ESI**) m/z 348.23 [M-H]⁻ (100%).

1-(6-chloro-1H-indole-3-yl)-2,2,2-trifluoro-1-phenylethanol 96% yield, mp: 110-111 °C; $[\alpha]_D{}^{20} = +55.4$ (c 1.0, CH₂Cl₂); ee 92 %, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 98/2, 1.0 mL/min, 254 nm; t (minor) = 83.007 min, t (major) = 86.323 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.3 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.28 (br, 1H), 7.56-7.54 (m, 2H), 7.47-7.46 (m, 1H), 7.38-7.34(m, 4H), 7.04 (d, *J* = 8.5 Hz, 1H), 6.92-6.90 (m, 1H), 2.85 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 137.6, 136.9, 129.0, 128.9, 128.3, 127.8 (d, ³*J*_{C-F} = 1.0 Hz), 125.5 (q, ¹*J*_{C-F} = 284.6 Hz), 124.1, 124.0 (q, ³*J*_{C-F} = 3.0 Hz), 122.1, 121.3, 114.6, 111.4, 77.1 (q, ²*J*_{C-F} = 30.0 Hz); **IR** (KBr) v (cm⁻¹) 3504, 3391, 3134, 2923, 1543, 1451, 1269, 1168, 1040, 886, 730 cm⁻¹; **MS** (**ESI**) m/z 324.14 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(7-methyl-1H-indole-3-yl)-1-phenylethanol

8

> 99% yield, mp: 89-90 °C; $[\alpha]_D^{20} = +75.5$ (c 1.0, CH₂Cl₂); 95% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 80/20, 0.8 mL/min, 254 nm; t (major) = 6.335 min, t (minor) = 10.299 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.1 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.20 (br, 1H), 7.62-7.61 (m, 2H), 7.47 (s, 1H), 7.37-7.36 (m, 3H), 7.01 (t, *J* = 8.0 Hz, 2H), 6.90 (t, *J* = 8.0 Hz, 1H), 2.92 (s, 1H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 138.0, 136.1, 128.7, 128.2, 127.9 (d, ³*J*_{C-F} = 0.9 Hz), 125.6 (q, ¹*J*_{C-F} = 284.6 Hz), 124.9, 123.5, 123.2 (q, ³*J*_{C-F} = 3.0 Hz), 120.7, 118.9, 114.8, 77.3 (q, ²*J*_{C-F} = 29.5 Hz), 16.8; **IR** (KBr) v (cm⁻¹) 3419, 3059, 2924, 1618, 1547, 1496, 1271, 1159, 1045, 885, 753, 725, 518 cm⁻¹; **MS** (**ESI**) m/z 304.24 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(7-ethyl-1H-indole-3-yl)-1-phenylethanol

> 99% yield, mp: 80-81 °C; $[\alpha]_D^{20} = +89.2$ (c 1.0, CH₂Cl₂); 98% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t (major) = 8.493 min, t (minor) = 14.094 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.1 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.23 (br, 1H), 7.61-7.59 (m, 2H), 7.49-7.48 (m, 1H), 7.35-7.34 (m, 3H), 7.01 (t, J = 7.5 Hz, 2H), 6.91 (t, J = 7.5 Hz, 1H), 2.90-2.86 (m, 3H), 1.38 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 138.0, 135.4, 128.7, 128.2, 127.9, 126.9, 125.6 (q, ¹ $J_{C-F} = 284.6$ Hz), 125.1, 123.1 (q, ³ $J_{C-F} = 2.9$ Hz), 121.5, 120.8, 118.9, 114.7, 77.3 (q, ² $J_{C-F} = 29.3$ Hz), 24.1, 14.0; **IR** (KBr) v (cm⁻¹) 3425, 3060, 2967, 1547, 1495, 1455, 1270, 1157, 1036, 884, 725 cm⁻¹; **MS (ESI)** m/z 318.31 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-(4-methoxyphenyl)ethanol >99% yield, mp: 49-50 °C; $[\alpha]_D^{20} = +46.6$ (c 1.0, CH₂Cl₂); 87% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm; t (major) = 20.341 min, t (minor) = 25.808 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.3 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.26 (br, 1H), 7.50-7.46 (m, 3H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.20-7.17 (m, 2H), 6.96 (t, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 9.0 Hz, 2H), 3.81 (s, 3H), 2.83 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 159.8, 136.5, 130.1, 129.2, 125.7 (q, ¹*J*_{C-F} = 284.4 Hz), 125.5, 123.5 (q, ³*J*_{C-F} = 3.0 Hz), 122.9, 121.3, 120.4, 114.3, 113.5, 111.5, 77.0 (q, ²*J*_{C-F} = 29.5 Hz), 55.4; **IR** (KBr) v (cm⁻¹) 3416, 2919, 2851, 1611, 1513, 1459, 1253, 1159, 1038, 829, 745, 593 cm⁻¹; **MS** (**ESI**) m/z 320.4 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-p-tolylethanol

> 99% yield, mp: 102-103 °C; $[\alpha]_D^{20} = +56.8$ (c 1.0, CH₂Cl₂); 91% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t (major) = 11.763 min, t (minor) = 14.055 min]; ¹⁹**F NMR** (376 MHz, CDCl₃) δ [ppm] -77.3 (s, 3F); ¹**H NMR** (400MHz, CDCl₃) δ [ppm] 8.27 (br, 1H), 7.48-7.46 (m, 3H), 7.38 (d, J = 8.4 Hz, 1H), 7.19-7.14 (m, 4H), 6.96 (t, J = 7.2 Hz, 1H), 2.88 (s, 1H), 2.35 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ [ppm] 138.5, 136.5, 135.0, 128.9, 127.7 (d, ³*J*_{C-F} = 0.9 Hz), 125.6 (q, ¹*J*_{C-F} = 284.5 Hz), 125.5, 123.4 (q, ³*J*_{C-F} = 3.0 Hz), 122.9, 121.3, 120.5, 114.4, 111.4, 77.2 (q, ²*J*_{C-F} = 29.2 Hz), 21.4; **IR** (KBr) v (cm⁻¹) 3587, 3415, 3142, 2924, 1547, 1456, 1279, 1152, 1038, 922, 812, 749, 588 cm⁻¹; **MS** (**ESI**) m/z 304.4 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-o-tolylethanol

81% yield, mp: 136-139 °C; $[\alpha]_D^{20} = +26.6$ ° (c 1.0, CH₂Cl₂); 86% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t (major) = 9.837 min, t (minor) = 11.713 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -76.0 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.26 (br, 1H), 7.73 (d, *J* = 7.5 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.35-7.34 (m, 1H), 7.29-7.26 (m, 1H), 7.25-7.22 (m, 1H), 7.19-7.16 (m, 1H), 7.14-7.09 (m, 2H), 6.96-6.93 (m, 1H), 2.77 (s, 1H), 2.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 138.7, 136.4, 135.6, 133.0, 129.0, 128.8 (d, ³*J*_{C-F} = 1.0 Hz), 126.0 (q, ¹*J*_{C-F} = 285.1 Hz), 125.7, 125.6, 123.6 (q, ³*J*_{C-F} = 2.4 Hz), 122.9, 120.9, 120.5, 114.9, 111.4, 78.2 (q, ²*J*_{C-F} = 29.3 Hz), 21.8; **IR** (KBr) v (cm⁻¹) 3502, 3415, 3141, 2926, 1548, 1459, 1271, 1171, 1022, 922, 748, 585 cm⁻¹; **MS (ESI)** m/z 304.4 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-(3,5-dimethylphenyl)ethanol

> 99% yield, mp: 158-159 °C; $[\alpha]_D{}^{20} = +55.7$ (c 1.0, CH₂Cl₂); 85% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm; t (major) = 11.068 min, t (minor) = 12.268 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.1 (s, 3F); ¹H NMR (400MHz, CDCl₃) δ [ppm] 8.25 (br, 1H), 7.44-7.43 (m, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.24-7.16 (m, 4H), 6.99-6.96 (m, 2H), 2.86 (s, 1H), 2.29 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 137.7, 137.6, 136.5, 130.5, 125.7 (q, ⁻¹*J*_{C-F} = 284.5 Hz), 125.5, 123.4 (q, ³*J*_{C-F} = 2.9 Hz), 121.4, 120.5, 114.5, 111.4, 77.3 (q, ²*J*_{C-F} = 29.3 Hz). 30.0, 21.7; **IR** (KBr) v (cm⁻¹) 3526, 3342, 2923, 2856, 1539, 1461, 1245, 1180, 1042,

847, 758 cm⁻¹; **MS (ESI)** m/z 318.4 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-biphenylethanol

> 99% yield, mp: 177-178 °C; $[\alpha]_D^{20} = +23.5$ (c 1.0, CH₂Cl₂); 90% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t (major) = 17.174 min, t (minor) = 20.818 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.1 (s, 3F); ¹H NMR (400MHz, CDCl₃) δ [ppm] 8.27 (br, 1H), 7.67-7.57 (m, 6H), 7.50-7.34 (m, 5H), 7.26-7.18 (m, 2H), 6.98 (t, *J* = 8.0 Hz, 1H), 2.93 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 141.4, 140.7, 136.9, 136.5, 129.0, 128.3, 127.7, 127.4, 126.9, 125.6 (q, ¹*J*_{C-F} = 284.6 Hz), 125.4, 123.5 (q, ³*J*_{C-F} = 2.9 Hz), 123.1, 121.3, 120.6, 114.2, 111.5, 77.2 (q, ²*J*_{C-F} = 29.5 Hz); **IR** (KBr) v (cm⁻¹) 3521, 3452, 1549, 1458, 1273, 1166, 1045, 832, 751 cm⁻¹; **MS (ESI)** m/z 366.4 [M-H]⁻ (100%).

(3, 5-bis (trifluoromethyl) phenyl) - 2, 2, 2-trifluoro - 1-(1H-indole - 3-yl) - 1-ethanol

> 99% yield, mp: 144-146 °C; $[\alpha]_D^{20} = +52.4$ (c 1.0, CH₂Cl₂); 90% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm; t (major) = 7.053 min, t (minor) = 7.828 min]; ¹⁹**F NMR** (376 MHz, CDCl₃) δ [ppm] -63.1 (s, 6F), -77.4 (s, 3F); ¹**H NMR** (400MHz, CDCl₃) δ [ppm] 8.43 (br, 1H), 8.07 (s, 2H), 7.89 (s, 1H), 7.55 (s, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.08-6.97 (m, 2H), 3.13 (s, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ [ppm] 140.8, 136.5, 131.7 (q, ²*J*_{C-F} = 33.3 Hz), 128.3, 124.9 (q, ¹*J*_{C-F} = 284.8 Hz), 124.6, 123.6 (q, ³*J*_{C-F} = 3.0 Hz), 123.5, 123.4 (q, ¹*J*_{C-F} = 271.3 Hz), 123.0 (q, ³*J*_{C-F} = 3.8 Hz), 121.0, 120.4, 112.4, 111.8, 76.8 (q, ²*J*_{C-F} = 29.9 Hz); **IR** (KBr) v (cm⁻¹) 3457, 3403, 3114, 2923, 1543, 1462, 1280,

1181, 1130, 887, 753 cm⁻¹; **MS (ESI)** m/z 426.3 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-3,4,5-trifluorophenylethanol

91% yield, mp: 134-135 °C; $[\alpha]_D^{20} = +53.3$ (c 1.0, CH₂Cl₂); 85% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm; t (major) = 9.997 min, t (minor) = 18.606 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.5 (s, 3F), -134.4 ~ -134.5 (m, 2F), -160.3 ~ -160.4 (m, 1F). ¹H NMR (400MHz, CDCl₃) δ [ppm] 8.36 (br, 1H), 7.49 (s, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.23 (q, *J* = 7.0 Hz, 3H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 3.00 (br, 1H). ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 151.0 (dq, *J*_{C-F} = 248.1, 6.1, 3.9 Hz), 140.0 (dt, *J*_{C-F} = 251.6, 15.0 Hz), 136.5, 134.3 (dt, *J*_{C-F} = 9.1, 4.6 Hz), 128.9, 128.5, 124.9 (q, ¹*J*_{C-F} = 285.1 Hz), 124.8, 123.5, 123.4 (q, ³*J*_{C-F} = 3.1 Hz), 122.2, 120.8 (d, ²*J*_{C-F} = 40.4 Hz), 120.2, 119.5, 111.8, 76.4 (q, ²*J*_{C-F} = 30.1 Hz); **IR** (KBr) v (cm⁻¹) 3525, 3452, 3071, 2925, 1623, 1532, 1493, 1443, 1421, 1362, 1340, 1270, 1210, 1171, 1110, 1035, 904, 858, 758, 717 cm⁻¹; **MS (ESI)** m/z 344.3 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(4-fluorophenyl)-1-(1H-indole-3-yl)ethanol

> 99% yield, mp: 130-131 °C; $[\alpha]_D^{20} = +83.5$ (c 1.0, CH₂Cl₂); 89% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 80/20, 0.8 mL/min, 254 nm; t (major) = 7.297 min, t (minor) = 11.306 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.6 (s, 3F), -114.2 ~ -114.3 (m, 1F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.29 (br, 1H), 7.57-7.54 (m, 2H),

7.49-7.48 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.21-7.18 (m, 1H), 7.12 (d, J = 8.0 Hz, 1H), 7.04-6.95 (m, 3H), 2.86 (s, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ [ppm] 163.1(d, ¹ $J_{\text{C-F}} = 245.9$ Hz), 136.5, 133.7 (d, ⁴ $J_{\text{C-F}} = 3.1$ Hz), 129.9 (d, ³ $J_{\text{C-F}} = 8.4$ Hz), 125.4 (q, ¹ $J_{\text{C-F}} = 284.4$ Hz), 125.2, 123.4 (q, ³ $J_{\text{C-F}} = 3.1$ Hz), 123.1, 121.1, 120.6, 115.1 (d, ² $J_{\text{C-F}} = 21.5$ Hz), 114.0, 111.6, 76.9 (q, ² $J_{\text{C-F}} = 29.8$ Hz); **IR** (KBr) v (cm⁻¹) 3544, 3482, 3409, 3326, 1509, 1459, 1276, 1189, 830, 746 cm⁻¹; **MS** (**ESI**) m/z 308.51 [M-H]⁻ (100%).

1-(4-chlorophenyl)-2,2,2-trifluoro-1-(1H-indole-3-yl)ethanol

> 99% yield, mp: 112-113 °C; $[\alpha]_D^{20} = +52.6$ (c 1.0, CH₂Cl₂); 99% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 80/20, 0.8 mL/min, 254 nm; t (major) = 6.531 min, t (minor) = 9.856 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.3 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.34 (br, 1H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.46 (s, 1H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 3.09 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 136.6, 136.5, 134.9, 129.5, 128.5, 125.4 (q, ¹*J*_{C-F} = 284.6 Hz), 125.2, 123.5 (q, ³*J*_{C-F} = 2.9 Hz), 123.2, 121.0, 120.7, 113.6, 111.7, 77.0 (q, ²*J*_{C-F} = 30.0 Hz); **IR** (KBr) v (cm⁻¹) 3412, 3059, 2925, 1544, 1492, 1272, 1161, 820, 741 cm⁻¹; **MS** (**ESI**) m/z 324.08 [M-H]⁻ (100%).

1-(4-bromophenyl)-2,2,2-trifluoro-1-(1H-indole-3-yl)ethanol

> 99% yield; $[\alpha]_D{}^{20} = +45.7$ (c 1.0, CH₂Cl₂); 87% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t (major) = 11.324 min, t (minor) = 17.834 min]; ¹⁹**F NMR** (376 MHz, CDCl₃) δ [ppm] -77.3 (s, 3F); ¹**H NMR** (500MHz, CDCl₃) δ [ppm] 8.32 (br, 1H), 7.47 (s, 5H), 7.39 (d, J = 8.5 Hz, 1H), 7.20 (t, J = 8.0Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 8.0 Hz, 1H), 2.98 (s, 1H); ¹³**C NMR** (150 MHz, CDCl₃) δ [ppm] 137.0, 136.5, 131.4, 129.8, 125.3 (q, ¹ $_{JC-F} = 284.6$ Hz), 125.2, 123.4 (q, ³ $_{JC-F} = 3.0$ Hz), 123.2, 121.0, 120.7, 113.6, 111.6, 77.0 (q, ² $_{JC-F} =$ 29.8 Hz); **IR** (KBr) v (cm⁻¹) 3407, 3063, 2922, 1542, 1488, 1268, 1164, 1011, 924, 817, 746 cm⁻¹; **MS (ESI)** m/z 368.3 [M-H]⁻ (100%).

2,2,2-trifluoro-1-(1H-indole-3-yl)-1-(thiophene-2-yl)ethanol

84% yield; $[\alpha]_D^{20} = + 44.2$ (c1.0, CH₂Cl₂); 86% ee, [Daicel Chiralcel AD-H, Hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; t (minor) = 56.598 min, t (major) = 58.990 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.9 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.29 (br, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.41-7.36 (m, 3H), 7.21 (t, J = 7.5 Hz, 1H), 7.11 (s, 1H), 7.06 (t, J = 7.5 Hz, 1H), 7.00-6.98 (m, 1H), 3.14 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] 142.3, 136.5, 127.6 (q, ³ $J_{C-F} = 1.3$ Hz), 127.0, 126.9, 125.5, 125.2 (q, ¹ $J_{C-F} = 284.4$ Hz), 123.8 (q, ³ $J_{C-F} = 2.6$ Hz), 123.0, 121.2, 120.7, 76.3 (q, ² $J_{C-F} = 31.3$ Hz); **IR** (KBr) v (cm⁻¹) 3421, 3063, 2925, 1619, 1544, 1459, 1423, 1275, 1156, 1089, 1027, 900, 836, 747, 714, 631 cm⁻¹; MS (ESI) m/z 296.4 [M-H]⁻ (100%).

1,1,1-trifluoro-2-(1H-indole-3-yl)-3-phenylpropan-2-ol

86% yield; $[α]_D^{20} = +55.3$ (c 1.0, CH₂Cl₂); 76% ee, [Daicel Chiralcel AD-H, Hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t (major) = 16.491 min, t (minor) = 18.895 min]; ¹⁹**F NMR** (376 MHz, CDCl₃) δ [ppm] -78.9 (s, 3F); ¹**H NMR** (500MHz, CDCl₃) δ [ppm] 8.18 (br, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.0 Hz, 1H), 7.21-7.15 (m, 5H), 6.99 (d, *J* = 7.0 Hz, 2H), 3.51 (dd, *J* = 13.5, 97.5 Hz, 2H), 2.54 (s, 1H); ¹³**C NMR** (150 MHz, CDCl₃) δ [ppm] 136.9, 133.9, 131.0, 128.5, 127.5, 126.5, 126.1 (q, ¹*J*_{C-F} = 284.3 Hz), 125.4, 124.3, 122.6, 122.1, 121.3 (d, ³*J*_{C-F} = 2.0 Hz), 120.6, 119.8, 111.8, 76.5 (q, ²*J*_{C-F} = 29.1 Hz); **IR** (KBr) v (cm⁻¹) 3417, 3061, 3032, 2924, 1546, 1496, 1458, 1424, 1339, 1272, 1166, 1105, 1017, 982, 948 cm⁻¹; **MS** (**ESI**) m/z 304.4 [M-H]⁻ (100%).

1-(5-ethyl-1H-prrol-2-yl)-2,2,2-trifluoro-1-phenylethanol

> 99% yield; mp: 55-57 °C; $[\alpha]_D^{20} = +44.2$ (c 1.0, CH₂Cl₂); 65% ee, [Daicel Chiralcel AD-H, Hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; t (minor) = 56.598 min, t (major) = 58.990 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.9 (s, 3F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.29 (br, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.41-7.36 (m, 3H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.11 (s, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 7.00-6.98 (m, 1H), 3.14 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] 142.3, 136.5, 127.6 (q, ³*J*_{C-F} = 1.3 Hz), 127.0, 126.9, 125.5, 125.2 (q, ¹*J*_{C-F} = 284.4 Hz), 123.8 (q, ³*J*_{C-F} = 2.6 Hz), 123.0,

121.2, 120.7, 76.3 (q, ${}^{2}J_{C-F} = 31.3 \text{ Hz}$); **IR** (KBr) v (cm⁻¹) 3421, 3063, 2925, 1619, 1544, 1459, 1423, 1275, 1156, 1089, 1027, 900, 836, 747, 714, 631 cm⁻¹; **MS** (**ESI**) m/z 296.4 [M-H]⁻ (100%)

2,2-difluoro-1-(1H-indole-3-yl)-1-phenylethanol

92% yield, mp: 96-98 °C; $[\alpha]_D^{20} = +54.1$ (c 1.0, CH₂Cl₂); 90% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 0.9 mL/min, 254 nm; t (major) = 21.961 min, t (minor) = 40.352 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -126.9 (dd, *J* = 273.0, 21.1 Hz, 2F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.25 (br, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.45 (s, 1H), 7.40-7.34 (m, 4H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.10 (t, *J* = 56.0 Hz, 1H), 2.76 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 139.6, 136.6, 128.4, 127.4, 125.8, 123.3, 122.8, 122.2, 121.3, 120.3, 119.8 (t, ¹*J*_{C-F} = 244.6 Hz), 119.5 (t, ³*J*_{C-F} = 5.0 Hz), 117.4, 114.9, 111.4, 76.4 (q, ²*J*_{C-F} = 21.8 Hz); **IR** (KBr) v (cm⁻¹) 3450, 3424, 3151, 3060, 1617, 1546, 1457, 1334, 1172, 1069, 1037, 906, 829, 750, 698, 683, 606 cm⁻¹; **MS** (**ESI**) m/z 272.2 [M-H]⁻ (100%).

2,2,3,3,3-pentafluoro-1-(1H-indole-3-yl)-1-phenylpropan-1-ol

78% yield, mp: 140-141 °C; $[\alpha]_D^{20} = +62.5$ (c 1.0, CH₂Cl₂); 97% ee, [Daicel Chiralcel OD-H, Hexane/*i*-PrOH = 90/10, 0.9 mL/min, 254 nm; t (major) = 11.769 min, t (minor) = 18.502 min]; ¹⁹F NMR (376 MHz, CDCl₃) δ [ppm] -77.1 (s, 3F), -118.2

(dd, J = 308.7, 273.7 Hz, 2F); ¹H NMR (500MHz, CDCl₃) δ [ppm] 8.25 (br, 1H), 7.65-7.64 (m, 2H), 7.54 (s, 1H), 7.37-7.34 (m, 4H), 7.19-7.15 (m, 2H), 6.94 (t, J = 8.0 Hz, 1H), 2.97 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ [ppm] 137.9, 136.3, 128.6, 128.1, 127.6, 125.3, 123.1 (q, ³ $J_{C-F} = 4.5$ Hz), 122.9, 121.1, 120.4, 115.0, 111.4, 77.2 (q, ² $J_{C-F} = 28.0$ Hz); **IR** (KBr) v (cm⁻¹) 3474, 3410, 3148, 3062, 1551, 1455, 1348, 1220, 1181, 1134, 1052, 1024, 911, 833, 728, 698 cm⁻¹; **MS** (**ESI**) m/z 340.2 [M-H]⁻ (100%).

Brønsted Acid-catalyzed diarylation of 2-fluoroacetophenone:

3-(2-fluoro-1-(1H-indole-3-yl)-1-phenylyl)-1H-indole

74% yield, mp: 72-74 °C; ¹**H NMR** (400 MHz, CDCl₃) δ [ppm] 8.03 (br, 2H), 7.47 (d, J = 6.8 Hz, 2H), 7.37 (d, J = 8.0, 2H), 7.32-7.26 (m, 3H), 7.21 (d, J = 8.4 Hz, 2H), 7.15 (t, J = 8.0 Hz, 2H), 6.95-6.90 (m, 4H), 5.51 (d, J = 48.0 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ [ppm] 143.4 (d, ³ $J_{C-F} = 1.5$ Hz), 137.0, 129.0 (d, ³ $J_{C-F} = 2.1$ Hz), 128.3, 126.9, 126.7, 125.1 (d, ³ $J_{C-F} = 3.5$ Hz), 122.0, 121.9, 119.5, 119.4 (d, ³ $J_{C-F} = 3.6$ Hz), 111.5, 88.2 (d, ¹ $J_{C-F} = 182.1$ Hz), 49.9 (d, ² $J_{C-F} = 18.6$ Hz) ; **IR** (KBr) v (cm⁻¹) 3412, 3053, 2918, 2849, 1597, 1456, 1415, 1338, 1245, 1100, 1011, 909, 741, 701 cm⁻¹; **MS** (**ESI**) m/z 353.16 [M-H]⁻ (100%).

References:

- a) X. Creary, J. Org. Chem. 1987, 52, 5026; b) J. M. Chong, E. K. Mar, J. Org. Chem. 1991, 56, 893.
- a) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, *Angew. Chem.* 2004, 116, 1592; b)
 D. Uraguchi, M. Terada, *J. Am. Chem. Soc.* 2004, 126, 5356; c) S. Hoffmann, A. Seayad, B. List, *Angew. Chem.* 2005, 117, 7590; d) R. I. Storer, D. E. Carrera, Y.

Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84.

- 3. Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.
- 4. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A.D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, I. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzales, C.; Pople, J. A. Gaussian03, Revision D.01; Gaussian, Inc.; Wallingford CT, 2004.
- 5. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. (b) Becke, A. D. J. Chem.
 Phys. 1993, 98, 5648-5652. (c) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (c)
 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
- 6. Somei, M.; Kobayashi, T. Heterocycles, 1992, 34, 1295.

25

37

6.0

5.0

4.0

1

7.0

9.0

ppm (f1)

8.0

-10

t

3.0

42

150 140 130 120 110 100 90 80 70 ppm (f1)

57

58

Sample Info : 254nm,0D-H,i-PrOH:Hexane=20:80,0.8mL/min

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Type	Width [min]	A1 mAU	rea *s	Hei [mAU	yht]	Area %
1	7.786	vv	0.2428	1810.	39587	114.4	44141	50.1359
2	10.322	vv	0.3470	1800.	57776	80.0	01328	49.8641
Total	ls :			3610.	97363	194.4	45468	

Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area [min] mAU *s [mAU] # [min] ÷ ----| 8.149 VB 659.35413 95.8072 1 0.3006 1.17232e4 2 10.826 BB 0.4322 513.03882 18.95854 4.1928 Totals : 1.22363e4 678.31267

Sample Info : 254nm,OD-H,i-PrOH:Hexane=20:80,0.8mL/min

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Aı mAU	rea *s	Hei([mAU	ght]	Area %
1	9.037	MM	0.3555	3815.	95581	178.9	91862	49.7937
2	10.951	MM	0.4407	3847.	57178	145.8	51312	50.2063
Total	ls :			7663.	52759	324.4	43175	

Peak #	RetTime [min]	Type	Width [min]	A: mAU	rea *s	Hei [mAU	ght]	Area *
								I
1	8.990	vv	0.3335	9164	.09375	424.	37775	95.7187
2	10.963	VBA	0.4885	409	. 88623	12.	65743	4.2813
Total	ls :			9573	. 97998	437.	03518	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=2:98,1.0mL/min

Peak #	RetTime [min]	Туре	Width [min]	Ar mAU	:ea *s	Heig [mAU	iht]	Area %
		-						
1	94.915	BB	1.9876	158.	11581	9.3909	le-1	3.7600
2	102.483	BB	2.8178	4047.	04053	17.7	0761	96.2400
Total	s:			4205.	15634	18.6	4670	

Sample Info : 254nm,AD-H,i-PrOH:Hexane=5:95,1.0mL/min

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Hei [mAU	ght]	Area %	
1	48.937	BB	1.1865	3400.	.85571	43.	46859	49.8551	
2	54.058	BB	1.3614	3420.	62476	37.	90794	50.1449	
Total	ls :			6821.	48047	81.	37653		

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Heiq [mAU	yht]	Area *
							I	
1	49.317	BB	1.2895	7227	47314	83.7	73340	95.0381
2	55.342	BB	1.2746	377.	34332	4.2	28636	4.9619
Total	ls :			7604.	81647	88.0	01976	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=2:98,1.0mL/min

Peak #	RetTime [min]	Туре	Width [min]	Aı mAU	rea *s	Heiç [mAU	ght]	Area *
1	118.983	MM	4.2706	2289.	06714	8.9	93337	96.0350
2	136.938	MM	3.8482	94.	50867	4.0932	22e-1	3.9650
Total	ls :			2383.	57581	9.3	34269	

Sample Info : 254nm,AD-H,i-PrOH:Hexane=10:90,1.0mL/min

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area	Hei	ight	Area
#	[min]		[min]	mAU *s	[mAU	1	÷
1	21.423	BB	0.5898	4402.536	62 113.	40026	49.9024
2	32.779	BB	0.9184	4419.750	98 73.	50591	50.0976

8822.28760 186.90617

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Type	Width [min]	A: mAU	rea *s	Hei [mAU	ght]	Area %
1	21.241	BB	0.6188	7748.	64600	191.0	05151	94.8510
2	32.922	BB	0.8787	420.	. 63800	7.3	39954	5.1490
Total	ls :			8169.	. 28400	198.4	45105	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=2:98,1.0mL/min

Peak #	RetTime [min]	Type	Width [min]	Aı mAU	rea *s	Heiq [mAU	ght]	Area %
		-					I	
1	83.007	ММ Т	1.8259	177.	03844	1.6	51596	4.1160
2	86.323	MP	3.5138	4124.	16455	19.8	56188	95.8840
Total	ls :			4301.	20299	21.1	L7783	

```
Sample Info : 254nm,OD-H,i-PrOH:Hexane=20:80,0.8mL/min
```


Signal 1: VWD1 A, Wavelength=254 nm

315
185

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,1.OmL/min

Peak #	RetTime [min]	Туре	Width [min]	Ar mAU	ea *s	Hei [mAU	.ght]	Area %
1	8.493	vv	0.2847	2181.	36572	117.	64856	98.9767
2	14.094	BB	0.4881	22.	55185	6.971	.06e-1	1.0233
Total	s:			2203.	91757	118.	34567	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,0.8mL/min

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	\$
		-						
1	20.341	VB	0.7065	1.204	400e4	262.0	69604	93.6905
2	25.808	BB	0.8700	810.	81628	14.3	26214	6.3095
Totals :			1.285	508e4	276.3	95818		

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,1.OmL/min

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area *
1	11.763	MM	0.4927	2.91500e4	985.97650	95.4076
2	14.055	MM	0.4839	1403.12378	48.32924	4.5924
Totals :				3.05531e4	1034.30574	

```
Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,1.OmL/min
```


Peak #	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Hei [mAU	ght]	Area %
1	9.837	vv	0.3378	9033.	61523	411.	22504	93.0366
2	11.713	vv	0.4722	676.	13019	21.	47260	6.9634
Total	.s :			9709.	74542	432.	69764	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,0.8mL/min

Peak #	RetTime [min]	Туре	Width [min]	Aı mAU	rea *s	Hei [mAU	ght]	Area %
1	11.068	vv	0.3541	8253.	.09570	357.	09744	92.4921
2	12.268	vv	0.4390	669.	92804	22.	98512	7.5079
Total	ls :			8923.	.02374	380.	08257	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,1.OmL/min

Peak #	RetTime [min]	Type	Width [min]	Area mAU *s		Area mAU *s		Hei [mAU	ght]	Area %
							1			
1	17.174	MM	0.7481	1.66	279e4	370.4	46442	94.8972		
2	20.818	PM	0.7975	894.	. 11829	18.0	58536	5.1028		
Total	ls :			1.752	220e4	389.3	14977			
Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,0.8mL/min

Peak #	RetTime [min]	Туре	Width [min]	Aı mAU	rea *s	Hei [mAU	.ght l	Area %
1	7.053	vv	0.2291	5590.	82617	369.	19833	94.7892
2	7.828	vv	0.2724	307.	.34070	17.	21092	5.2108
Total	s:			5898.	. 16687	386.	40925	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,0.8mL/min

Peak #	RetTime [min]	Type	Width [min]	A1 mAU	rea *s	Hei [mAU	ght]	Area %
1	9.997	VBA	0.3081	1.338	320e4	663.0	61560	92.4960
2	18.606	VB	0.6296	1085.	64880	26.0	64857	7.5040
Total	s:			1.446	576e4	690.3	26417	

```
Sample Info : 254nm,OD-H,i-PrOH:Hexane=20:80,0.8mL/min
```


Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Hei [mAU	ght]	Area %
1	7.297	MM	0.2417	1.26	761e4	874.	12439	94.4796
2	11.306	MM	0.4731	740	.65753	26.	09104	5.5204
Total	ls :			1.34	167e4	900.	21543	

```
Sample Info : 254nm,0D-H,i-PrOH:Hexane=20:80,0.8mL/min
```


Peak #	RetTime [min]	Type	Width [min]	Ar mAU	ea *s	Hei [mAU	.ght]	Area %
1	6.513	VB	0.2273	1.589	72e4	1060.	72620	100.0000
Total	s:			1.589	72e4	1060.	72620	

```
Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,1.0mL/min
```


Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	11.324	vv	0.4574	4.84758e4	1630.94202	93.5435
2	17.834	VV	0.6970	3345.83838	71.17182	6.4565
Total	s:			5.18216e4	1702.11384	

Sample Info : 254nm,AD-H,i-PrOH:Hexane=5:95,1.0mL/min

Peak #	RetTime [min]	Type	Width [min]	Aı mAU	rea *s	Hei [mAU	ght]	Area %
							I	
1	56.598	ви	1.1263	3099.	. 97705	42.	13010	6.9096
2	58.990	VB	1.7081	4.176	55le4	348.	91254	93.0904
Total	s:			4.486	550e4	391.	04263	

```
Sample Info : 254nm, AD-H, i-PrOH: Hexane=10:90, 1.0mL/min
```


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	÷
1	16.539	вv	0.4045	3465.19019	129.86356	49.9032
2	18.903	vv	0.4619	3478.63452	113.66528	50.0968

Peak RetTime Type Width Area Height Area [min] mAU *s [mAU] # [min] ÷ --|----|----|-----|-----|-----|------------- | -1 1 16.491 BV 0.4023 3569.87231 134.74466 88.1126 2 18.895 VV 15.87487 11.8874 0.4588 481.61505 Totals : 4051.48737 150.61953

```
Sample Info : 254nm,OD-H,i-PrOH:Hexane=2:98,1.0mL/min
```


Totals :

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU	1	÷	
									I
1	8.409	VB	0.2646	2428.	48828	141.	30510	50.0127	
2	10.281	BV	0.3225	2427.	25659	116.	11211	49.9873	

4855.74487 257.41721

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	÷
1	8.363	VB	0.2967	4915.	94141	256.	15021	82.6345
2	10.106	MM	0.3635	1033.	07678	47.	36842	17.3655
Total	.s :			5949.	01819	303.	51863	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,0.9mL/min

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	\$	
1	22.323	PM	0.9632	1647.	94971	28.	51564	50.3624	
2	40.784	PM	1.7193	1624.	23352	15.	74555	49.6376	
Total	ls :			3272.	18323	44.	26118		

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	\$
1	21.961	MM	0.9755	1.460)63e4	249.3	55125	94.8738
2	40.352	MM	1.6338	789.	20020	8.0	05054	5.1262
Total	ls :			1.539	955e4	257.6	50179	

Sample Info : 254nm,OD-H,i-PrOH:Hexane=10:90,0.9mL/min

Peak	RetTime	Type	Width	Aı	Area		ght	Area	
#	[min]		[min]	mAU	*s	[mAU	1	÷	
1	11.769	BB	0.4463	4559.	21582	157.3	12010	98.0809	
2	18.502	BB	0.6862	89.	20952	1.5	93583	1.9191	
Total	ls :			4648.	42534	159.0	05593		