# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2009 data_global _journal_name_full Chem.Commun. _journal_coden_Cambridge 0182 _publ_contact_author_name 'Angeles Monge' _publ_contact_author_email AMONGE@ICMM.CSIC.ES _publ_section_title ; A new Scandium Metal Organic Framework built up from Octadecasil zeolitic cages as heterogeneous catalyst. ; loop_ _publ_author_name 'Angeles Monge' 'Felipe Gandara' 'Berta Gomez-Lor' 'Enrique Gutierrez-Puebla' 'Marta Iglesias' ; N.Snejko ; # Attachment 'compound11.cif' data_compound1 _database_code_depnum_ccdc_archive 'CCDC 706458' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C12 O12 Sc2' _chemical_formula_sum 'C12 O12 Sc2' _chemical_formula_weight 426.04 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Sc Sc 0.2519 0.3716 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Trigonal _symmetry_space_group_name_H-M R-3c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'y, x, -z+1/2' 'x-y, -y, -z+1/2' '-x, -x+y, -z+1/2' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' 'y+2/3, x+1/3, -z+5/6' 'x-y+2/3, -y+1/3, -z+5/6' '-x+2/3, -x+y+1/3, -z+5/6' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' 'y+1/3, x+2/3, -z+7/6' 'x-y+1/3, -y+2/3, -z+7/6' '-x+1/3, -x+y+2/3, -z+7/6' '-x, -y, -z' 'y, -x+y, -z' 'x-y, x, -z' '-y, -x, z-1/2' '-x+y, y, z-1/2' 'x, x-y, z-1/2' '-x+2/3, -y+1/3, -z+1/3' 'y+2/3, -x+y+1/3, -z+1/3' 'x-y+2/3, x+1/3, -z+1/3' '-y+2/3, -x+1/3, z-1/6' '-x+y+2/3, y+1/3, z-1/6' 'x+2/3, x-y+1/3, z-1/6' '-x+1/3, -y+2/3, -z+2/3' 'y+1/3, -x+y+2/3, -z+2/3' 'x-y+1/3, x+2/3, -z+2/3' '-y+1/3, -x+2/3, z+1/6' '-x+y+1/3, y+2/3, z+1/6' 'x+1/3, x-y+2/3, z+1/6' _cell_length_a 15.2431(11) _cell_length_b 15.2431(11) _cell_length_c 20.579(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 4141.0(6) _cell_formula_units_Z 12 _cell_measurement_temperature 296(2) _cell_measurement_reflns_used 6655 _cell_measurement_theta_min 2.51 _cell_measurement_theta_max 27.95 _exptl_crystal_description prismatic _exptl_crystal_colour colorless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.050 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 2520 _exptl_absorpt_coefficient_mu 1.057 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.7421 _exptl_absorpt_correction_T_max 0.9017 _exptl_absorpt_process_details SADABS _exptl_special_details ; ? ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'CCD area detector' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 10062 _diffrn_reflns_av_R_equivalents 0.0427 _diffrn_reflns_av_sigmaI/netI 0.0208 _diffrn_reflns_limit_h_min -19 _diffrn_reflns_limit_h_max 19 _diffrn_reflns_limit_k_min -18 _diffrn_reflns_limit_k_max 19 _diffrn_reflns_limit_l_min -26 _diffrn_reflns_limit_l_max 27 _diffrn_reflns_theta_min 2.51 _diffrn_reflns_theta_max 27.95 _reflns_number_total 1086 _reflns_number_gt 1001 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SMART' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0690P)^2^+14.6838P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1086 _refine_ls_number_parameters 80 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0466 _refine_ls_R_factor_gt 0.0425 _refine_ls_wR_factor_ref 0.1205 _refine_ls_wR_factor_gt 0.1178 _refine_ls_goodness_of_fit_ref 1.142 _refine_ls_restrained_S_all 1.142 _refine_ls_shift/su_max 0.014 _refine_ls_shift/su_mean 0.003 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Sc1 Sc 1.0000 0.0000 0.2500 0.0151(3) Uani 1 6 d S . . Sc2 Sc 1.05856(4) 0.3333 0.0833 0.0150(2) Uani 1 2 d S . . O2 O 0.90909(12) 0.21996(13) 0.10068(9) 0.0209(4) Uani 1 1 d . . . C2 C 0.86936(17) 0.12506(18) 0.10173(12) 0.0163(5) Uani 1 1 d . . . C1 C 0.88123(18) 0.05293(17) 0.14270(11) 0.0183(5) Uani 1 1 d . . . O3 O 1.03291(16) 0.29184(17) -0.01365(9) 0.0295(5) Uani 1 1 d . . . O4 O 1.20953(14) 0.44052(16) 0.06652(11) 0.0327(5) Uani 1 1 d . . . C4 C 0.80711(18) -0.03045(18) 0.10193(12) 0.0208(5) Uani 1 1 d . . . O1 O 0.93460(14) 0.06194(14) 0.19101(9) 0.0258(4) Uani 1 1 d . . . C3 C 0.79445(19) 0.04165(18) 0.06222(11) 0.0199(5) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sc1 0.0158(4) 0.0158(4) 0.0135(5) 0.000 0.000 0.00792(18) Sc2 0.0134(3) 0.0134(3) 0.0182(4) -0.0003(2) -0.00016(10) 0.00669(17) O2 0.0162(8) 0.0139(8) 0.0316(10) 0.0020(7) 0.0010(7) 0.0068(7) C2 0.0147(10) 0.0168(11) 0.0169(11) 0.0005(8) 0.0004(8) 0.0076(9) C1 0.0163(11) 0.0166(11) 0.0211(11) 0.0009(8) -0.0005(9) 0.0075(9) O3 0.0335(11) 0.0374(11) 0.0217(9) -0.0084(8) 0.0007(8) 0.0207(9) O4 0.0136(9) 0.0313(11) 0.0491(13) 0.0117(9) 0.0019(8) 0.0079(8) C4 0.0186(11) 0.0179(12) 0.0233(12) 0.0003(9) -0.0018(9) 0.0072(9) O1 0.0262(9) 0.0243(9) 0.0265(9) 0.0000(7) -0.0091(7) 0.0124(8) C3 0.0178(11) 0.0203(11) 0.0193(11) 0.0006(9) 0.0001(9) 0.0077(9) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sc1 O1 2.0737(18) 4_645 ? Sc1 O1 2.0737(18) 2_645 ? Sc1 O1 2.0737(18) 6_765 ? Sc1 O1 2.0737(18) 3_765 ? Sc1 O1 2.0737(18) . ? Sc1 O1 2.0737(18) 5 ? Sc2 O3 2.0709(19) 17_554 ? Sc2 O3 2.0710(19) . ? Sc2 O4 2.080(2) . ? Sc2 O4 2.080(2) 17_554 ? Sc2 O2 2.0899(17) 17_554 ? Sc2 O2 2.0899(17) . ? O2 C2 1.259(3) . ? C2 C3 1.459(3) . ? C2 C1 1.467(3) . ? C1 O1 1.248(3) . ? C1 C4 1.470(3) . ? O3 C3 1.253(3) 20_665 ? O4 C4 1.250(3) 16_644 ? C4 O4 1.250(3) 16_534 ? C4 C3 1.458(3) . ? C3 O3 1.253(3) 21_545 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O1 Sc1 O1 89.79(11) 4_645 2_645 ? O1 Sc1 O1 89.19(8) 4_645 6_765 ? O1 Sc1 O1 178.54(11) 2_645 6_765 ? O1 Sc1 O1 91.84(10) 4_645 3_765 ? O1 Sc1 O1 89.19(8) 2_645 3_765 ? O1 Sc1 O1 89.79(11) 6_765 3_765 ? O1 Sc1 O1 178.54(11) 4_645 . ? O1 Sc1 O1 89.19(8) 2_645 . ? O1 Sc1 O1 91.84(10) 6_765 . ? O1 Sc1 O1 89.19(8) 3_765 . ? O1 Sc1 O1 89.19(8) 4_645 5 ? O1 Sc1 O1 91.84(10) 2_645 5 ? O1 Sc1 O1 89.19(8) 6_765 5 ? O1 Sc1 O1 178.54(11) 3_765 5 ? O1 Sc1 O1 89.79(11) . 5 ? O3 Sc2 O3 175.86(12) 17_554 . ? O3 Sc2 O4 90.35(9) 17_554 . ? O3 Sc2 O4 92.60(9) . . ? O3 Sc2 O4 92.60(9) 17_554 17_554 ? O3 Sc2 O4 90.35(9) . 17_554 ? O4 Sc2 O4 88.92(12) . 17_554 ? O3 Sc2 O2 87.18(8) 17_554 17_554 ? O3 Sc2 O2 90.02(8) . 17_554 ? O4 Sc2 O2 88.13(7) . 17_554 ? O4 Sc2 O2 177.04(8) 17_554 17_554 ? O3 Sc2 O2 90.02(8) 17_554 . ? O3 Sc2 O2 87.18(8) . . ? O4 Sc2 O2 177.04(8) . . ? O4 Sc2 O2 88.13(7) 17_554 . ? O2 Sc2 O2 94.82(9) 17_554 . ? C2 O2 Sc2 130.73(15) . . ? O2 C2 C3 135.2(2) . . ? O2 C2 C1 134.6(2) . . ? C3 C2 C1 90.19(19) . . ? O1 C1 C2 133.9(2) . . ? O1 C1 C4 136.6(2) . . ? C2 C1 C4 89.45(19) . . ? C3 O3 Sc2 151.57(19) 20_665 . ? C4 O4 Sc2 155.75(19) 16_644 . ? O4 C4 C3 135.3(2) 16_534 . ? O4 C4 C1 134.4(2) 16_534 . ? C3 C4 C1 90.13(19) . . ? C1 O1 Sc1 148.39(17) . . ? O3 C3 C4 133.7(2) 21_545 . ? O3 C3 C2 136.1(2) 21_545 . ? C4 C3 C2 90.21(19) . . ? _diffrn_measured_fraction_theta_max 0.974 _diffrn_reflns_theta_full 27.95 _diffrn_measured_fraction_theta_full 0.974 _refine_diff_density_max 1.710 _refine_diff_density_min -0.691 _refine_diff_density_rms 0.107