Electronic Supplementary Information

The absolute asymmetric photoisomerization of a photochromic dithionite complex in chiral crystals

Hidetaka Nakai,* Mayu Hatake, Yousuke Miyano and Kiyoshi Isobe*

Department of Chemistry, Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Experimental Details

General: Solvents were purified by distillation before use. Sodium dithionite, Na₂S₂O₄, was purchased from Aldrich. All other chemicals were obtained from commercial sources and used as received unless otherwise noted. ¹H and ¹³C NMR spectra were recorded on a JEOL Lambda 400 FT-NMR spectrometer in CDCl₃. Chemical shifts were referenced to *protio* solvent impurities (¹H: δ 7.26, ¹³C: δ 77.0 (CDCl₃)). Infrared spectra were obtained with the KBr method on a Horiba FT-720 spectrometer. Absorption spectra in a microcrystalline powder film were measured by using a Leica DMLP polarizing microscope connected with a Hamamatsu PMA-11 photodetector. Circular dichroism (CD) spectra in acetonitrile were measured with a JASCO 820 spectropolarimeter. Elemental analyses were performed by the Advanced Science Research Centre at Kanazawa University on a Yanaco MT-5 CHN autocorder.

Synthesis: The propyl derivative ligand precursor, HCp^{Pro} ($Cp^{Pro} = \eta^5 - C_5Me_4n$ -Propyl), was synthesized according to the literature procedures.¹ The starting material, *trans*-[(RhCp^{Pro})₂(μ -CH₂)₂Cl₂], was synthesized by modifying the procedure for the corresponding Cp* analogue.²

[(RhCp^{Pro})₂(μ -CH₂)₂(μ -O₂SSO₂)] (1^{Pro}): A mixture of *trans*-[(RhCp^{Pro})₂(μ -CH₂)₂ Cl₂] (132 mg, 0.209 mmol) and Na₂S₂O₄ (55 mg, 0.316 mmol) in MeOH (20 mL) was stirred for 6 h under N₂ in the dark. The solvent was removed under reduced pressure to give a reddish brown solid. The crude product was dissolved in 20 mL of CH₂Cl₂ and the insoluble solid was filtered off. Removal of the solvent afforded 1^{Pro} as a brown solid. This solid was washed with ethyl acetate and Et₂O. Yield 95 mg, 66%. Single crystals suitable for X-ray diffraction analysis were obtained by diffusion of ethyl acetate into a solution of 1^{Pro} in CH₂Cl₂ at room temperature in the dark.

¹H NMR (400 MHz, CDCl₃): δ 9.46 (2H, s, µ-CH₂), 8.57 (2H, s, µ-CH₂), 2.22 (4H, t, C₅Me₄CH₂CH₂CH₃), 1.86 (24H, s, C₅Me₄Pr), 1.52-1.40 (4H, m, C₅Me₄CH₂CH₂CH₂CH₃), 0.96 (6H, t, C₅Me₄CH₂CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 173.7 (µ-CH₂), 107.2 (C₅Me₄Pr), 104.4 (C₅Me₄Pr), 104.0 (C₅Me₄Pr), 26.6 (C₅Me₄CH₂CH₂CH₃), 22.8 (C₅Me₄CH₂CH₂CH₃), 14.1 (C₅Me₄CH₂CH₂CH₃), 9.60 (C₅Me₄Pr), 9.58 (C₅Me₄Pr). Anal. Calc. for C₂₆H₄₂O₄Rh₂S₂: C, 45.35; H, 6.15. Found: C, 45.13; H, 6.21%.

[(RhCp^{Pro})₂(μ -CH₂)₂(μ -O₂SOSO)] (2^{Pro}): The red-brown crystals of 1^{Pro} were irradiated with xenon light (Asahi Spectra, MAX 301 (385-745 nm) for 3 h at room temperature. The orange-brown crystals of 2^{Pro} were obtained quantitatively.

¹H NMR (400 MHz, CDCl₃): δ 9.51 (1H, s, μ-CH₂), 9.04 (1H, s, μ-CH₂), 8.62 (1H, s, μ-CH₂), 8.14 (1H, s, μ-CH₂), 2.32-2.18 (2H, m, C₅Me₄CH₂CH₂CH₃), 2.15-2.04 (2H, m, C₅Me₄CH₂CH₂CH₃), 1.85 (3H, s, C₅*Me*₄CH₂CH₂CH₃), 1.84 (9H, s, C₅*Me*₄CH₂CH₂CH₂CH₃), 1.76 (9H, s, C₅*Me*₄CH₂CH₂CH₃), 1.75 (3H, s, C₅*Me*₄CH₂CH₂CH₃), 1.51-1.40 (4H, m, C₅Me₄CH₂CH₂CH₃), 0.97 (3H, t, C₅Me₄CH₂CH₂CH₃), 0.96 (3H, t, C₅Me₄CH₂CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 178.2 (μ-CH₂), 168.7 (μ-CH₂), 108.1 (C_5 Me₄Pr), 107.8 (C_5 Me₄Pr), 105.2 (C_5 Me₄Pr), 105.1 (C_5 Me₄Pr), 104.9 (C_5 Me₄CH₂CH₂CH₃), 22.6 (C_5 Me₄CH₂CH₂CH₃), 14.2 (C_5 Me₄CH₂CH₂CH₃), 9.69 (C_5 Me₄Pr), 9.44 (C_5 Me₄Pr), 9.37 (C_5 Me₄Pr), 9.31 (C_5 Me₄Pr). Anal. Calc. for C₂₆H₄₂O₄Rh₂S₂: C, 45.35; H, 6.15. Found: C, 45.06; H, 6.14\%.

Fig. S1 The μ -CH₂ signals in ¹H NMR spectra of $\mathbf{1}^{Pro}$ (blue) and $\mathbf{2}^{Pro}$ (red).

Fig. S2 IR spectra (KBr) of 1^{Pro} (blue) and 2^{Pro} (red).

X-ray crystallography: All measurements were made on a Rigaku/MSC Mercury CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71070$ Å). Data were collected and processed using CrystalClear³ software (Rigaku). The data were corrected for Lorentz and polarization effects. Empirical absorption corrections were applied. The structures were solved by a direct method: SIR-92⁴ and expanded using a Fourier technique. All calculations were performed using the CrystalStructure^{5,6} crystallographic software package except for refinement, which was performed using SHELXL-97. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated idealized positions. Crystallographic data have been deposited with the Cambridge Crystallographic Data Center (CCDC). CCDC reference numbers: 718200 ((P)- 1^{Pro}), 718201 ((M)- 1^{Pro}), 718202 ((P)- 2^{Pro}) and 718203 ((M)- 2^{Pro}).

Fig. S3 2-fold helical arrangements formed in a clockwise direction between the molecules along the b axis in the crystal of (P)- 1^{Pro} . Blue: Rhodium, Red: Oxygen, Green: O2.

Fig. S4 2-fold helical arrangements formed in an unticlockwise direction between the molecules along the b axis in the crystal of $(M)-1^{Pro}$. Blue: Rhodium, Red: Oxygen, Green: O4.

Fig. S5 Reaction cavities of the dithionite ligand of (a) $(M)-1^{Pro}$ and (b) $(M)-2^{Pro}$. The *n*-propyl moiety, which shows a flipping motion, is indicated in red.

The values of % for stereoisomers $2a^{Pro}-2d^{Pro}$ were calculated from the simultaneous equations based on the occupancy of the oxygen atoms determined by X-ray diffraction analysis. In the case of (P)- 2^{Pro} , the equations were as follows:

0.9809 (occupancy of
$$O_1$$
) = $2a^{Pro} + 2b^{Pro} + 2c^{Pro} + 1^{Pro}$
0.2875 (occupancy of O_2) = $2a^{Pro} + 2c^{Pro} + 2d^{Pro} + 1^{Pro}$
0.7674 (occupancy of O_3) = $2a^{Pro} + 2b^{Pro} + 2c^{Pro} + 1^{Pro}$
0.9914 (occupancy of O_4) = $2a^{Pro} + 2b^{Pro} + 2c^{Pro} + 1^{Pro}$
0.2577 (occupancy of O_5) = $2a^{Pro} + 2d^{Pro}$
0.7151 (occupancy of O_6) = $2b^{Pro} + 2c^{Pro}$

 $2a^{Pro} = 0.2326, 2b^{Pro} = 0.7125, 2c^{Pro} = 0.0086, 2d^{Pro} = 0.0191, 1^{Pro} = 0.0272.$

Fig. S6 Circular dichroism (CD) spectra of (P)- $\mathbf{1}^{Pro}$, (M)- $\mathbf{1}^{Pro}$, (P)- $\mathbf{2}^{Pro}$ and (M)- $\mathbf{2}^{Pro}$ in acetonitrile.

References

- A.G. Davies, J. P. Goddard, E. Lusztyk, J. Lusztyk J. Chem. Soc., Perkin Trans. 2. 1982, 737.
- K. Isobe, S. Okeya, N. J. Meanwell, A. J. Smith, H. Adams, P. M. Maitlis, J. Chem. Soc., Dalton Trans. 1984, 1215.
- 3. CrystalClear 1.3.5: Rigaku Corporation, The Woodlands, TX, 1999.
- 4. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori, M. Camalli, *J. Apll. Cryst.* **1994**, *27*, 435.
- 5. *CrystalStructure 3.8*: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC, The Woodlands, TX, **2006**.
- D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS Issue 10*: Chemical Crystallography Laboratory, Oxford UK, 1996.