

Fig.S1. Powder XRD patterns: COK-11 as-synthesised (a), leached (b), calcined at 573 K (c), calcined at 898 K (d), calcined at 898 K and stored 3 years at room temperature (e), calcined at 1273 K (f) and calcined at 898 K and hydrothermally treated for 24 h at 373 K (g). Signals originating from CTAB crystals are marked with an *.

Different models used to calculate the pore wall thickness of COK-11 and other mesoporous materials

In order to calculate the pore wall thickness of mesoporous materials several models have been used. While these models applied on the same sample yield slightly different values, results obtained by the same model can be used to compare different samples.

Generally the pore wall thickness (W_P) is calculated using the relation of the lattice constant (LP) obtained by X-ray diffraction to the pore diameter D_p .

 $W_p = LP - D_p$

(1)

The pore diameter (D_P) can be calculated using different approaches.

Models A and B:

From N₂-physisorption different parameters can be obtained:

The BJH model will calculate a pore diameter. Pore diameters derived using BJH on the adsorption (Model A) or desorption (Model B) branch are different, both can be used.

Models C and D:

The BET surface area, the external surface area, the total pore volume and the mesopore volume can also be obtained using N_2 -fysisorption measurements.

For cylindrical pores the pore diameter (Model C) can then be calculated using the following formula:

$D_P = \frac{4V_P}{4}$	(2)
With $A_P = A_{BET} - A_{External}$	(3)

Where D_p is the mesopore diameter and V_p the mesopore volume. A_{BET} , $A_{External}$, and A_p are the BET surface area, the external surface area (calculated using t-plot method) and the mesopore surface area, respectively.

It can be shown mathematically that the same formula Eq. 2 is also valid for regular hexagonal pores (Model D). In this case D_p is equal to the diameter of the biggest cylinder that fits inside the hexagonal pore.

The pore wall thickness W_p is calculated using Eq. 1

Models E and F:

Another way to calculate the pore wall thickness takes into account the pore wall density¹. In literature two different values are used for the pore wall density. A wall density (ρ_W) of 2.2 g/cc –typical of amorphous silica- is assumed by some authors. A more generally accepted value is a pore wall density of 1.6 g/cc (**Model E**).

$$D_p = \left(\frac{8}{3^{1/2}\pi}\right)^{1/2} LP\left(\frac{\rho_W V_p}{1 + \rho_W V_p}\right)^{1/2} \tag{4}$$

A good estimation of the true pore wall density can be obtained from argon picnometry. Taking into account the mass of the sample and assuming all mesopores are filled, the wall density (ρ_W) can be calculated though Eqs. 5-7. Using this measured density and formula (4) the pore wall thickness can be calculated (**Model F**).

$$P_1^*(V_1 - V_S) = P_2^*(V_1 + V_2 - V_S)$$
(5)

$$V_{S} = V_{1} + \frac{V_{2} * P_{2}}{P_{2} - P_{1}}$$
(6)

$$\rho_{W} = \frac{M_{S}}{V_{S}}$$
(7)

Where V_1 is the sample holder volume, V_2 a known volume and V_S the volume taken by the sample, P_1 and P_2 are the initial and final argon pressure respectively.

Model G:

A more direct way to estimate the pore wall thickness is though HRTEM measurement. From the calibration of the microscope or from the known spacing of the mesopores the wall thickness can be measured on the TEM pictures (**Model G**). However, the result obtained this way has to be treated with caution as the apparent wall thickness changes with variation of the focus. Close to zero defocus the wall thickness can be measured.

Important to note is that none of the mentioned models provide a reliable way to calculate the true pore wall thickness. It is generally accepted that the BJH model underestimates the true pore diameter for mesoporous materials having pores below 4 nm. Consequently the obtained pore wall thicknesses are overestimated.

Also the BET surface area is known to be not completely accurate for mesoporous materials. The BET model is in principle only valid for flat surfaces, the curvature of COK-11 and other mesoporous materials like MCM-41 disturb the multilayer formation during the N_2 -fysisorption measurement. Since the BET model is based on this multilayer formation, the BET method is known to be not completely accurate.

The mesopore volume can be easily obtained from N_2 -fysisorption measurements. Care should be taken to exclude the measured pore volume originating from interparticle voids. The t-plot method can be used to obtain the true mesopore volume. When the mesopore is determined extra care should be taken for mesopore materials containing micropores. Depending on the method used to measure the pore wall density, the micropore volume should be included or excluded when Eq. 4 is applied to calculate the pore wall thickness.

When using picnometry to calculate the density of a material, the diameter of the probe should be small compared to the pore that is to be probed. The probe molecule also should not be chemisorped on the probed material. Argon picnometry at room temperature should give a reliable density of the pore walls.

Caution is advised when TEM micrographs are used to measure a pore wall thickness. Variation in focusing dept shows differently appearing wall thicknesses. Therefore only simulation of a defocusing series and comparison with measurements at different focus depths can give fully accurate results. The smallest error is obtained at zero defocus, where usually the obtained contrast is very low.

We have used all of these strategies to estimate the wall thickness of COK-11 (Table S1). A wall thickness of 0.8 nm is obtained according to HRTEM for COK-11 (Model G). Models A-D lead to thicker walls, while wall thickness obtained from the Model E and Model F are similar to Model G.

Model	А	В	C (and D*)	Е	F	G
Method	BJH _{ADS}	BJH _{DES}	D _P =V _P /A _P	Wall density (from literature)	Wall density (from argon sorption)	HRTEM
Mesopore surface area (A _P) (BET surface area- external surface area) (m ² /g)			1049	947 (994*)	933 (980*)	
mesopore volume (V _P) (Corrected using t-plot method) (CC/g)			0.912	0.912	0.912	
pore wall density (ρ_W) (g/CC)	044 (0.34*)	0.66 (0.49*)	1.03 (1.25*)	1.6	1.72**	
XRD lattice constant (LT) (nm)	4.76	4.76	4.76	4.76	4.76	4.76
Mesopore diameter (D _P) (nm)	2.67	3.06	3.4	3.86 nm	3.91	
Wall thickness (ρ_W) (nm)	2.09	1.70	1.29 (1.29*)	0.91 (1.09*)	0.85 (1.04*)	0.8

Table S1: Pore wall thickness of COK-11 obtained using the different models is listed. Values in **bold** are measured values, values in *italic* are calculated using the above formulae.

* Values calculated using a hexagonal pore model; **According to argon picnometry.

The most popular model for the estimating of a pore wall thicknesses is model E assuming a wall density of 1.6 g/cc (Table S2 and S3). Some articles do not specify whether the total pore volume or the actual mesopore volume is reported. The pore diameter calculated using Eq. 4 will be overestimate and the wall thickness underestimated. In the modeling of COK-11 (Table S1) the actual mesopore volume was used. The walls of COK-11 are indeed unusually thin in view of its outstanding stability.

		• •	Ω^4/Ω^3 motio	z	Calcination at 1273 K			
Ref.		Modification of synthesis recipe/additive		pore wall thickness ^a (nm)		Stability		
	sample type		synthesised material		ckness ^a duration (nm) (h)	XRD	Loss of BET Surface Area (%)	
Mair	ntaining pH cons	stant						
2	MCM-41	small amines	>1/1	1.07	na	Excellent stability until 1373K ^e		
Alter	rnative silica so	urce						
3	Si-MCM-41	TEOS	na	na	6	Almost total amorphisation		
3	Si-MCM-41	Fumed silica	na	1.31 ^b	6	Structural damage		
4	MCM-41	Fumed silica	1.4/1	0.98	4	Almost total amorphisation	90	
5	MCM-41	Fumed silica	1.5/1	1.0°	6	Strong structural damage	97	
6	Si-MCM-41	Silica gel	na	na	12^{f}		65	
7	MCM-41	Polymeric ethyl silicate	na	0.9 ^d	6^g	Strong structural damage		
8	MCM-41	71% Cab-O-Sil 29% soluble silicate	na	1.0	$\mathcal{3}^{g}$		22	
Recr	rystallisation							
4	MCM-41		3.4/1	1.2	4	Structural damage		
5	MCM-41		3.5-4.5/1	1.14 ^c	6	Limited structural damage	70	
Redi	uction of CTAB t	o Silica molar ratio				-		
9	MCM-41	low CTAB to silica ratio	na	1.02 ^d	1	Structural damage and strong unit cell contraction	58	
Prol	onged synthesis	time						
4	MCM-41		4.5/1	1.57	4	Structural damage		
4	MCM-41		4.5/1	1.57	4	Structural damage		
5	MCM-41	recrystallisation and long synthesis time	3.5-4.5/1	1.52 ^c	6	Limited structural damage	35	
Post	synthesis hydro	thermal restructuring						
3	Si-MCM-41	-	na	1.36 ^b	6	Structural damage		

Table S2. Literature data on approaches to improve thermal stability of hexagonally ordered mesoporous materials

na, not available; ^a pore wall thickness of calcined material calculated using a geometrical model E assuming a pore wall density of 1.6 gcm³; ^b pore wall thickness from article recalculated assuming a wall density of 1.6 g/cm³ instead of 2.2g/cm³; ^c pore wall thickness calculated using the total pore volume; ^e no figure in article to prove the stability; ^f calcination at 1073 K; ^g calcination at 1123 K

Table S3 Literature data on approaches to improve hydrothermal stability of hexagonally ordered mesoporous materials

	•	Modification of synthesis recipe/additive	$0^{4}/0^{3}$	pore wall thickness ^a (nm)	Treatment in boiling water					
Ref.			Q/Q ratio		Concentration. of mesoporous material (g/L)		Stability			
	Sample type		in as synthesised material			duration (h)	XRD	Loss of BET Surface Area (%)		
Stand	Standard Synthesis									
10	Si-MCM-41		na	0.74 ^b		24		>80		
10	Si-MCM-41		na	0.74 ^b		168	Total amorphisation	>90		
Salt a	addition									
2	MCM-41	Na ₂ O	<1/1	1.05	50	24 ^e	Total amorphisation	65		
11	MCM-41	pH adjustment/acetic acid & NaCl	na	na	1	12	Limited structural damage			
11	MCM-41	pH adjustment/acetic acid & Na4EDTA	>>1/1	na	1	12	Limited structural damage			
Main	ntaining constan	nt Ph								
2	MCM-41	small amines	>1/1	1.07	50	24 ^e	Limited structural damage	24		
2	MCM-41	small amines & aluminium	na	1.24	50	72 ^e	Limited structural damage			
11	MCM-41	acetic acid & Na ₂ O	~1/1	na	1	12	Total amorphisation			
11	MCM-41	acetic acid & Na ₂ O	~1/1	na	1	1	30% reduction of intensity			
12	Si-MCM-41	NH ₄ OH	~1/1	na	na	$12^{\rm f}$	Strong structural damage	35		
13	MCM-41	sulphuric acid & no alkali cations	~1/1	0.95 ^b	10	96	Strong structural damage	35		
13	MCM-41	sulphuric acid & TPA	>>1/1	0.93 ^b	10	96	Limited structural damage	0		
Alter	native silica sol	urce					C C			
3	Si-MCM-41	Fumed silica	na	1.31 ^d	na	6	Structural damage			
4	MCM-41	Fumed silica	1.4/1	0.98	1	24	Almost total amorphisation	80		
14	MCM-41	Fumed silica	na	na	1	16	Total amorphisation	65		
15	MCM-41	Fumed silica	1.5/1	1.00°	1	24	-	75		
16	MAS-5	Aluminosilicate zeolite precursors	na	0.78 ^b	na	300	Structural damage			
17	Beta/MCM- 41	Beta aluninosilicate nanocluster pH adjustment	>>1	1.4^g	na	260/336	Limited structural damage	2		
6	Si-MCM-41	Silica gel	na	na	50	2		40		

Table S3 (continued)

			Q^4/Q^3 ratio	11			Treatment in boiling water	
Ref.	Sample type	Modification of synthesis recipe/additive	in as synthesised material	pore wall thickness ^c (nm)	Concentration. of mesoporous material (g/L)	duration (h)	XRD	Loss of BET Surface Area (%)
Alter	native silica sol	urce (continued)						
18	ZSM-5/ MCM-41	ZSM-5 and fumed silica/ pH adjustment	na	na	10	120	Limited structural damage	
19	Beta/MCM- 41	Beta zeolite	na	na	na	24	Limited structural damage	
Recr	ystallisation							
4	MCM-41	Recrystallisation	3.4/1	1.2	1	24	Structural damage	Modest decrease
15 Prole	MCM-41 onged synthesis	Recrystallisation	3.5-4.5/1	1.14 ^c	1	24		17
4	MCM-41		4.5/1	1.57	1	24	Structural damage	Modest decrease
Addition of hetero elements								
10	Si-Al- MCM-41	Aluminium	na	0.89 ^b		168	Structural damage	25
14	CAH5	Post synthesis aluminium grafting	na	1.29 ^b	1	150	Structural damage	
14	CAP10	Post synthesis aluminium grafting	na	1.06 ^b	1	150	Structural damage	
Post	synthesis hydro	thermal restructuring						
3	Si-MCM-41		na	1.36 ^d	na	6	Limited structural damage	

na not available; ^a pore wall thickness of the calcined materials calculated using a geometrical model E assuming a pore wall density of 1.6 gcm-³; ^b pore wall thickness calculated using the total pore volume at $P/P^\circ=0.99$; ^d pore wall thickness from article recalculated assuming a wall density of 1.6 g/cm³ in stead of 2.2g/cm³; ^e hydrothermal stability test at 353 K; ^f stability in water at room temperature; ^g estimation of xrd lattice constant and mesopore volume from figure.

References

- 1 M. Kruk, M. Jaroniec, A. Sayari, J. Phys. Chem. B, 1997, 101, 583.
- 2 W. Lin, Q. Cai, W. Pang, Y. Yue, B. Zou, *Microporous and Mesoporous mater.*, 1999, 33, 187.
- 3 L. Chen, T. Horiuchi, T. Mori, K. Maeda, J. Phys. Chem. B, 1999, 103, 1216.
- 4 R. Mokaya, J. Phys. Chem. B, 1999, 103, 10204.
- 5 R. Mokaya, J. Mater. Chem., 2002, 12, 3027.
- 6 X.Liu, H. Sun, Y.Yang, J. Colloid Interface. Sci., 2008, 319, 377.
- 7 T.R. Gaydhankar, V. Samuel, R.K. Jha, R. Kumar, P.N. Joshi, Mater. Res. Bull., 2007, 42, 1473.
- 8 P.B. Amama, S. Lim, D. Ciuparu, L. Pfefferle, G.L. Haller, Microporous and mesoporous mater., 2005, 81, 191.
- 9 J. Yu, J.-L. Shi, L.-Z. Wang, M.-L. Ruan, D.-S. Yan, *Materials Letters*, 2001, 48, 112.
- 10 S.-C. Shen, S. Kawi, J. phys. Chem. B, 1999, 103, 8870.
- 11 R. Ryoo, S. Jun, J. Phys. Chem. B, 1997, 101, 317.
- 12 X.S. Zhao, F. Audsley, G.Q. Lu, J. Phys. Chem. B, 1998, 102, 4143.
- 13 D. Das, C.-M. Tsai, S. Cheng, Chem. Commun., 1999, 473.
- 14 R. Mokaya, Angew. Chem., Int. Ed. Engl., 1999, 38, 2930.
- 15 R. Mokaya, Chem. Commun., 2001, 933.
- 16 Z. Zhang, Y. Han, F.-S. Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Z. Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao, Y. Wei, J. Am. Chem. Soc., 2001, 123, 5014.
- 17 H. Xu, J. Guan, S. Wu, Q. Kan, J. Colloid. Interface Sci., 2009, 329, 346.
- 18 S. Habib, F. Launay, S. Laforge, J.-D. Comparot, A.-C. Faust, Y Millot, T. Onfroy, V. Montouillout, P. Magnoux, J.-L. Paillaud, A. Gédéon, Appl. Catal. A, 2008, 344, 61.
- 19 H. Zhang, Y. Li, powder Technology, 2008, 183, 73.