Supporting Information

Unexpected Nucleophilic Behaviour of Radicals Generated from α -Iodoketones

Corinne De Dobbeleer,^a Ji í Pospíšil,^a Freija De Vleeschouwer,^b Frank De Proft^b and István E. Markó^{a,*}

^aUniversité catholique de Louvain, Département de Chimie, Bâtiment Lavoisier, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium

^bEenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB),

Faculteit Wetenschappen, Pleinlaan 2, 1050 Brussels, Belgium

marko@chim.ucl.ac.be

Table of contents

Full notation of reference 14	2
General information	3
Table S-1: The reaction of α -iodoketone 4c with electron rich olefins	4
Table S-2: The addition of 4c to 5a. The reaction optimization (part I).	5
Table S-2: The addition of 4c to 5c. The reaction optimization (part II)	6
Table S-3: Activation barriers (DE ^{π} at 0K and DH ^{π} at 298.15 K) and reaction energies (DE ₁	_R at
0K and DE _R at 298.15 K) for the addition of the three different radicals to substituted alken	es R-
CH=CH ₂ . All values are in kcal/mol and were obtained at the B3LYP/6-31+G(d) //B3LYP	/6-
31+G(d) level of theory using the Gaussian03 program.	7
Synthesis of unknown α-iodoketones	8
General procedure for radical coupling reaction	13
I. Structural data for Table 3 : B3LYP/6-311+G(d,p) geometries	21
(Cartesian coordinates, all values in Å)	21
II. Structural data for Table S-3 : B3LYP/6-31+G(d) geometries	24
(Cartesian coordinates, all values in Å)	24
¹ H and ¹³ C-NMR spectras	48

Full notation of reference 14

Gaussian 03, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

General information

- All compounds (Acros, Aldrich and Fluka) were used as received. THF was distilled under argon from sodium benzophenone ketyl. Flash chromatography was performed on silica gel 60 (40-63 μm) (ROCC).
- ¹H and ¹³C-NMR spectra were recorded on a Varian Gemini-2000 (working frequency 300 MHz and 75 MHz, respectively), on a Bruker AC-250 (working frequency 250 MHz and 62.5 MHz, respectively), on a Brucker AC-300 Avance II (working frequency 300 MHz and 75 MHz, respectively) or on a Brucker AM-500 (working frequency 500 MHz and 125 MHz, respectively) at ambient temperature in CDCl₃ (Aldrich).
- Mass spectra were recorded on a Finigan TSQ 7000.
- All reactions were carried out under an atmosphere of argon in flame-dried apparatus with magnetic stirring, unless otherwise indicated.
- The identity of known products was confirmed by comparison with literature spectroscopic data. The structure determination of new compounds was made with a help of 2D-COSY, HSQC, HMBC, 2D-NOESY and NOEdiff experiments: 4a,b,¹ 4d,² 4e,³ 4k,⁴ 8,⁵ and 9⁶.
- The α -iodoketones **4a-d**,**h**,**i**,**l**¹ and **4f**³ were prepared according to published procedures.

	I	l OBu
4c	$ \longrightarrow \bigcup_{S-1}^{O} + \bigcup_{S-2}^{H} + \bigcup_{S-2}^{H}$	$ \begin{array}{c} 0 \\ 0 \\ \hline \hline 0 \\ \hline \hline 0 \\ \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline 0 \\ \hline \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline \hline \hline \hline 0 \\ \hline \hline$
Entry	Conditions	Product(s), (Yield(%)) ^a
1 ^b	<i>n</i> Bu ₃ SnH (1.0 equiv), AlBN (0.2 equiv), benzene, ∆, 2h	4c (<5%), S-1 (quant)
2	<i>n</i> Bu ₃ Snallyl (1.5 equiv), AIBN (0.2 equiv), benzene, Δ , 12h	4c (~50%), S-1 (<5%), S-2 (<5%)
3	<i>n</i> Bu ₃ Snallyl (1.5 equiv), hv, benzene, r.t., 48h	degradation
4 ^c	Sn(allyl) ₄ (2.0 equiv), AIBN (0.2 equiv), toluene, Δ , 24h	4c (41%), S-1 (<5%), S-2 (19%)
5	allyIMgCl (3.0 equiv), GaCl ₃ (3.0 equiv), Et ₃ B (0.5 equiv), H ₂ O/THF, r.t, 2h	4c (<5%), S-1 (91%), S-2 (<5%)
6	allylMgCl (3.0 equiv), Cp ₂ ZrCl ₂ (3.0 equiv), Et ₃ B (0.5 equiv), THF, r.t, 2h	4c (<5%), S-1 (60%), S-2 (<5%)
7	allylSiMe ₃ (2.0 equiv), Yb(OTf) ₃ (1.0 equiv), Et ₃ B (0.5 equiv), THF, r.t, 2h	4c (<5%), S-1 (95%), S-2 (<5%)
8	allyIOH (5.0 equiv), Et ₃ B (1.0 equiv), bezene, r.t, 2h	4c (<5%), S-1 (45%), S-3 (<5%)
9	allylOH (5.0 equiv), Et ₃ B (1.0 equiv), EtOH, r.t, 2h	4c (<5%), S-1 (80%), S-3 (<5%)
10	CH ₂ =CHOBu (10.0 equiv), AIBN (0.2 equiv), toluene, Δ , 3h	degradation
11	CH ₂ =CHOBu (10.0 equiv), hv, K ₂ CO ₃ (10.0 equiv), MeOH, r.t., 3h	degradation
12	<i>n</i> Bu ₃ SnH (1.0 equiv), AIBN (0.2 equiv), toluene/CH ₂ =CHOBn = 1:1, 90°C, 3h	degradation

Table S-1: The reaction of α -iodoketone 4c with electron rich olefins.

^a Refers to pure, isolated compounds. ^b Reference reaction. To prove that the radical is formed. ^c The reaction proved to be irreproducible. The best obtained result shown.

	+ CO ₂ Et 5a	AIBN (0.2 equiv)	CO ₂ Et
Entry	5a (equiv)	Bu ₆ Sn ₂ (equiv)	Yield(%) ^a
1	1.2	1.1	60
2	2.0	1.1	67
3	2.0	1.2	70
4	2.0	1.5	70
5	3.0	1.2	90
6	5.0	1.2	93
7	10.0	1.2	95

Table S-2: The addition of 4c to 5a. The reaction optimization (part I).

^a Refers to pure, isolated compounds.

	∫ + CO₂Et 5c	AIBN (0.2 equiv) benzene, 80°C	CO₂Et
Entry	5c (equiv)	Time (h)	Product(s) (Yield(%)) ^a
1	1.0	5	4c (62%), 6c (12%)
2	1.0	15	4c (51%), 6c (19%)
3	2.0	5	4c (48%), 6c (23%)
4	5.0	2	4c (10%), 6c (62%)
5	5.0	10	4c (<5%), 6c (82%)
6	10.0	2	4c (<5%), 6c (89%)

Table S-2: The addition of 4c to 5c. The reaction optimization (part II).

^a Refers to pure, isolated compounds.

Table S-3: Activation barriers (DE^{π} at 0K and DH^{π} at 298.15 K) and reaction energies (DE_R at 0K and DE_R at 298.15 K) for the addition of the three different radicals to substituted alkenes R-CH=CH₂. All values are in kcal/mol and were obtained at the B3LYP⁷/6-31+G(d)⁸ //B3LYP/6-31+G(d) level of theory using the Gaussian03 program.⁹

Radical		R=CH ₃	R=OCH ₃	R=COOCH ₃
0	DE^{π}	7.1	5.2	5.8
↓.	DH^{π}	6.7	5.3	5.6
H ₃ C CH ₂				
	DE_R	-11.8	-14.3	-28.3
	DE_R			
		-12.1	-14.4	-28.6
0	DE^{π}	9.9	7.5	7.4
	DH^{π}	9.5	7.8	7.2
$\langle \rangle$.				
\setminus /	DE _R	-7.6	-9.4	-12.8
	DE_R			
		-7.9	-9.4	-13.1
0	DE^{π}	13.4	10.7	10.8
	DH^{π}	13.0	11.0	10.6
$\overline{}$.				
	DE _R	-7.3	-8.7	-12.8
\searrow	DE _R	-7.6	-8.6	-13.1

Synthesis of unknown α -iodoketones

Synthesis of α-iodoketone 4c

A solution of sodium iodide (3.6 g, 0.024 mol, 1.25 equiv) in acetonitrile (30 mL) was added to neat cyclodecanone **S-5** (3.0 g, 0.020 mol, 1.0 equiv), chloro(trimethyl)silane (2.6 g, 0.024 mol, 1.25 equiv) and triethylamine (2.5 g, 0.024 mol, 1.25 equiv). The reaction mixture was stirred at rt under inert atmosphere for 17h. The organic layer was extracted with pentane (3x20 mL). The pentane layer was dried over MgSO₄ and evaporated under reduced pressure to give the desired product **S-6**¹⁰ as colorless liquid (4.25 g, *Z*: *E* 2:1, 99%).

¹H-NMR (300 MHz, CDCl₃) δ(ppm): 0.10 and 0.13 (2 s, 9H, H-11), 1.2-1.4 (m, 12H, H-4 to 8), 1.93 (t, 2H, *J*= 6 Hz, H-2), 2.03-2.11 and 2.11-2.19 (2 m, 2H, H-9), 4.49 (t, *J*= 8.4 Hz, H-10 *E*) and 4.57 (t, *J*= 7.6 Hz, H-10 *Z*) (1H). ¹³C-NMR (50 MHz, CDCl₃) δ(ppm): 0.5 (C-11), 21.0 (C-3), 21.05 (C-4), 24.9 (C-5), 25.6 (C-6), 26.4 (C-7), 26.7 (C-8), 27.4 (C-9 *Z*), 28.2 (C-9 *E*), 29.0 (C-2 *E*), 37.6 (C-2 *Z*), 107.1 (C-10 *E*), 110.8 (C-10 *Z*), 149.7 (C-1 *Z*), 151.16 (C-1 *E*).

A solution of S-6 (4.2 g, 18 mmol, 1.0 equiv) in CH_2Cl_2 (70 mL) was cooled to 0°C and Niodosuccinimide (4.1 g, 18 mmol, 1.0 equiv) was added. The reaction mixture was kept at this temperature for 30 min. The reaction mixture was diluted with CH_2Cl_2 (50 mL) and washed with a saturated aqueous solution of $Na_2S_2O_3$ (2x50 mL) and water (1 x 50 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. After purification by flash column chromatography (PE : EtOAc, 98:2, Rf=0.3), the desired product **4c** was obtained in 89 % yield (4.5 g) as a slightly yellow oil.

¹H-NMR (300 MHz, CDCl₃) δ(ppm): 1.20-2.20 (m, 13H, one of H-3 and H-4 to 9), 2.50-2.70 (m, 2H, one of H-2 and one of H-3), 2.90-3.00 (m, 1H, one of H-2), 4.90 (dd, *J*= 3.9Hz, *J*= 12Hz, 1H, H-10). ¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 23.6, 24.0, 24.6, 25.3, 25.4, 25.5, 29.2, 35.7, 37.0 (C-2 to C-10), 207.4 (C-1).

Synthesis of α-iodoketone 4e

A solution of S-7 (290 µL, 2.5 mmol, 1.0 equiv) in CH₂Cl₂ (13 mL) was cooled to 0°C and HN(TMS)₂ (1.04 mL, 5.0 mmol, 2.0 equiv) was added dropwise. After 5 minutes, TMSI (427 µL, 3.0 mmol, 1.2 equiv) was added dropwise. The resulting mixture was stirred at 0°C for 20 minutes and then for an additional 20 minutes at rt. The reaction mixture was again cooled to 0°C before the slow addition of a cold (0°C) solution of NaI (411 mg, 2.75 mmol, 1.1 equiv) and *m*CPBA (475 mg, 2.75 mmol, 1.1 equiv) in THF (16 mL). *This solution was prepared by portion-wise addition of NaI to a cold (0°C) solution of mCPBA in THF*. After 1.5h at 0°C, the mixture was extracted with Et₂O/H₂O = 2:1 (90 mL) and the resulting layers were washed with a saturated aqueous solution of Na₂S₂O₃ (30 mL), brine (30 mL), dried over Na₂SO₄ and the solvents were removed under reduced pressure. After purification by flash column chromatography (PE:Et₂O = 10:1), the desired α -iodoketone **4e** (493 mg, 88%)was obtained as a slightly yellow oil.

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 2.42 (s, 3H, H-1), 2.68 (ddd, 1H, J = 14.7, 7.4 and 1.1 Hz, one of H-4), 2.80 (ddd,1H, J = 14.7, 6.8, 1.0 Hz, one of H-4), 4.51 (t, 1H, J = 7.5 Hz, H-3), 5.09-5.19 (m, 2H, H-6), 5.68-5.75 (m, 1H, H-5); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 26.4, 31.2, 38.9, 118.6, 135.2, 202.2.

Synthesis of α-iodoketone 4i

Prepared according to the same protocol as α -iodoketone **4e**. After purification by flash column chromatography (P.E.:Et₂O = 20:1), the desired α -iodoketone **4i** (614 mg, 93%) was obtained as a slightly yellow oil.

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.42-1.96 (m, 6H, H-3 to H-5), 2.22 (ddd, 1H, *J* = 15.6, 6.0, 3.0 Hz, one of H-6), 2.39 (ddd, 1H, *J* = 15.2, 4.2, 2.2 Hz, one of H-6), 2.73 (dd,1H, *J* = 14.8, 7.0 Hz, one of H-7), 3.05 (dd, 1H, *J* = 14.8, 7.0 Hz, one of H-7), 5.13-5.27 (m, 2H, H-9), 5.79-5.91 (m, 1H, H-8); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 23.7, 26.6, 36.5, 41.9, 46.5, 56.4 (C-2), 119.3 (C-9), 135.2 (C-8), 205.1(C-1).

Synthesis of α-iodoketone 4k

Prepared according to the same protocol as α -iodoketone **4e**. After purification by flash column chromatography (PE:Et₂O = 30:1), the desired α -iodoketone **4k** (736 mg, 92%) was obtained as a slightly yellow oil.

¹H-NMR (500 MHz, CDCl₃) δ (ppm): 0.94 (s, 9H, H-11), 1.11-1.21 (m, 1H, H-4), 1.35-1.46 (m, 1H), 1.65 (dt, J = 13.5, 6.2 Hz, 1H), 2.01-2.11 (m, 1H), 2.23 (dt, J = 15.4, 3.2 Hz, 1H, one of H-3), 2.43 (ddd, J = 15.4, 4.2, 2.6 Hz, 1H, one of H-3), 2.76 (dd, J = 14.8, 7.0 Hz, 1H, one of H-7), 3.07 (dd, J = 14.8, 7.1 Hz, 1H, one of H-7), 3.45-3.58 (m, 1H), 5.18-5.26 (m, 2H, H-9), 5.87 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H, H-8) ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 27.8 (C-11), 28.1, 34.3 (C-10), 36.4, 43.1, 45.1, 47.0, 61.7 (C-2), 119.5 (C-9), 135.5 (C-8), 205.3 (C-1).

observed NOE effect

Synthesis of α-iodoketone 4g

HgO_{yellow} (210 mg, 0.97 mmol, 3 equiv) and iodine (240 mg, 0.95 mmol, 2.9 equiv) were added to a solution of $(3aS^*, 7aR^*)$ -7a-hydroxyperhydro-4-indenone **S-11**¹¹ (50 mg, 0.32 mmol, 1 equiv) in CCl₄ (5 mL). The reaction mixture was stirred at rt under irradiation (visible light) for 3 hours.

The solution was filtrated over Celite[®] and the filter cake was washed with CH_2Cl_2 (3 x 3 mL). The resulting solution was treated with a saturated aqueous solution of $Na_2S_2O_3$ (2 x 10 mL) and water (2 x 10 mL). The organic layer was separated, dried over MgSO₄ and the solvents were removed under reduced pressure. 6-Iodocyclononane-1,5-dione **4g** (85 mg, 93 %) was obtained as a yellow solid (mp = 65-70°C).

IR (film): 2954 cm⁻¹ (stretching C-H), 1700 (C=O), 1462, 1442, 1359, 1316, 1100, 732 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 1.72-1.85 (m, 1H, one of H-8), 1.89-2.00 (m, 1H, one of H-8), 2.09-2.28 (m, 3H, H-3 and one of H-7), 2.29-2.42 (m, 4H, one of H-4, H-9, one of H-7), 2.49 (ddd, *J* = 10.8 Hz, *J* = 6.0 Hz, *J* = 3.6Hz, 1H, one of H-4), 2.60-2.72 (m, 2H, H-2), 4.37 (dd, *J* = 12.3 Hz, *J* = 3.7 Hz, 1H, H-6). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 21.36, 24.46, 29.86 (C-6), 33.95, 34.20, 38.78, 41.60, 207.39 (C-5), 213.85 (C-1). MS (EI, 70 eV) m/z (relative intensity): (M⁺) 280 (12 %); (M⁺-I) 153 (77%); (153⁺-H2O) 135 (92 %); (164⁺-C₂H₄) 125 (43 %); 107 (90%); 97 (61%); 84 (42%); 55 (100%).

Synthesis of α -iodoketone 4h

 HgO_{yellow} (75 mg, 0.34 mmol, 3 equiv) and iodine (85 mg, 0.33 mmol, 2.9 equiv) were added to a solution of 4a-hydroxyperhydrobenzo[*a*]cyclohepten-1-one **S-12**¹¹ (21 mg, 0.11 mmol, 1 equiv) in CCl₄ (1.5 mL). The reaction mixture was stirred at rt under irradiation (visible light) for five hours.

The solution was filtrated over Celite[®] and the filter cake was washed with CH_2Cl_2 (3 x 4 mL). The resulting solution was treated with a saturated aqueous solution of $Na_2S_2O_3$ (2 x 10mL) and water (2 x 10mL). The organic layer was separated, dried over MgSO₄ and the solvents were removed under reduced pressure. 6-iodocycloundecane-1,5-dione **4h** (31 mg, 90%) were obtained as a yellow solid (mp = 79-80°C).

IR (film): 2938, 2875 and 2848 cm⁻¹ (stretching C-H), 1703 (C=O), 1460, 1436, 1367, 1189, 1087 cm⁻¹. ¹H-NMR (200 MHz, CDCl₃) δ (ppm): 1.08-1.52 (m, 4H), 1.70-2.42 (m, 8H), 2.55-2.69 (m, 2H), 2.77 (ddd, J = 17.3, 6.6, 4.9 Hz, 1H, one of H-2), 2.95 (ddd, J = 17.4, 8.2, 5.1 Hz, 1H, one of H-2), 4.28 (dd, J = 11.53.3 Hz, 1H, H-6). ¹³C-NMR (50 MHz, CDCl₃) δ (ppm): 18.30, 22.97, 26.18, 26.88, 30.61 (C-6), 33.84, 34.30, 40.17, 41.63, 207.19 (C-5), 213.46 (C-1). MS (EI, 70 eV) m/z (relative intensity): (M⁺) 308 (6 %); (M⁺-H⁻) 307 (6 %); (M⁺-H₂) 306 (20 %); (M⁺-I) 181 (100 %); (181⁺-H₂O) 163 (40 %); 97 (35%); 55 (80%).

Synthesis of α-iodoketone 41

HgO_{yellow} (268 mg, 1.23 mmol, 3 equiv) and iodine (304 mg, 1.19 mmol, 2.9 equiv) were added to a solution of 4a-hydroxy-5-methyloctahydro-1(*2H*)-naphtone **S-12**¹¹ (75 mg, 0.41 mmol, 1 equiv) in CCl₄ (1.5 mL). The reaction mixture was stirred at rt under irradiation (visible light) for 5 hours.

The solution was filtrated over celite[®] and the filter cake was washed with CH_2Cl_2 (3 x 5 mL). The resulting solution was treated with a saturated aqueous solution of $Na_2S_2O_3$ (2 x 10 mL) and water (2 x 10 mL). The organic layer was separated, dried over MgSO₄ and the solvents were removed under reduced pressure. *cis*-6-iodo-10-methylcyclodecane-1,5-dione **4I** (119 mg, 94%) was obtained as a yellow solid (mp = 83-84°C).

IR (film): 3008, 2969, 2940 and 2887 cm⁻¹ (stretching C-H), 1702 (C=O), 1466, 1375, 1194, 1083, 905, 740 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 1.00 (d, *J*= 6.7 Hz, 3H, H-11), 1.10-1.21 (m, 1H, one of H-8), 1.40-1.54 (m, 1H, one of H-9), 1.63-1.81 (m, 2H, one of H-8 and one of H-9), 1.87-2.01 (m, 1H, one of H-3), 2.04-2.22 (m, 3H, one of H-3 and H-7), 2.39 (ddd, *J* = 17.6, 5.6 Hz, *J* = 4.0 Hz, 1H, one of H-4), 2.55-2.70 (m, 3H, one of H-2, one of H-4 and H-10), 2.98 (ddd, *J* = 15.0, 10.2 Hz, *J* = 4.0 Hz, 1H, one of H-2), 4.31 (dd, *J* = 11.7, 4.0 Hz, 1H, H-6). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 16.27 (C-11), 19.26 (C-3), 24.99 (C-8), 31.42 (C-9), 31.64 (C-6), 33.68 (C-2), 35.47 (C-7), 39.79 (C-4), 46.85 (C-10), 207.09 (C-5), 215.39 (C-1). MS (EI, 70 eV) m/z (relative intensity): (M⁺) 308 (46 %), (M⁺-I) 181 (93 %), 139 (45%), 111 (50%), 97 (52%), 55 (95%), 42 (100%).

General procedure for radical coupling reaction

Method A: A solution of α -iodoketone 4 (0.2 mmol, 1.0 equiv), ethyl 2-(bromomethyl)acrylate 5a (116 mg, 80 µL, 0.6 mmol, 3.0 equiv), nBu_6Sn_2 (139 mg, 120 µL, 0.24 mmol, 1.2 equiv) and AIBN (7 mg, 0.04 mmol, 0.2 equiv) in benzene (1 mL) refluxed for 2.5h. The resulting solution was evaporated under reduced pressure and the residue was purified by flash column chromatography.

Method B: A solution of α -iodoketone **4a** (42 mg, 0.2 mmol, 1.0 equiv), ethyl 2-(tributyltinmethyl)acrylate **5b** (121 mg, 0.3 mmol, 1.5 equiv), and AIBN (7 mg, 0.04 mmol, 0.2 equiv) in benzene (1 mL) refluxed for 4h. The resulting solution was evaporated under reduced pressure and the residue was purified by flash column chromatography.

Method C: A solution of α -iodoketone **4** (0.2 mmol, 1.0 equiv), ethyl 2-(ethylsulfonemethyl)acrylate **5c** (413 mg, 0.3 mmol, 10.0 equiv), and AIBN (7 mg, 0.04 mmol, 0.2 equiv) in benzene (1 mL) refluxed for 2h. The resulting solution was evaporated under reduced pressure and the residue was purified by flash column chromatography.

Adduct 6a¹²

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 9:1 \rightarrow 4:1) to give 35.3 mg (90%) of **6a**.

Method B: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 9:1 \rightarrow 4:1, Rf = 0.25) to give 36.1 mg (92%) of **6a**.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fractions; P.E : Et₂O = 5:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 37.7 mg (96%) of **6a** and 224 mg (5.4 equiv.) of **5c**.

¹H-NMR (500 MHz, CDCl₃) δ (ppm): 1.30 (t, *J* = 7.1 Hz, 3H, H-1), 1.47-1.55 (m, 1H), 1.73-1.82 (m, 1H), 1.97-2.04 (m, 1H), 2.09-2.19 (m, 3H), 2.30-2.36 (m, 2H), 2.83 (ddd, *J* = 14.0, 4.2, 0.8 Hz, 1H, one of H-6), 4.21 (q, J = 7.1 Hz, 2H, H-2), 5.57 (s, 1H, one of H-5), 6.20 (s, 1H, one of H-5); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 14.1 (C-1), 20.4, 29.3, 32.0, 37.8 (C-10), 48.3 (C-7), 60.7 (C-2), 126.1 (C-5), 138.8 (C-4), 166.8 (C-3), 219.7 (C-11); MS (CI, CH₄-NO₂) m/z (relative intensity): [M+H]⁺ 197 (57 %); 151 (100%); 133 (12%); 123 (37%); 105 (24%); 95 (56%); 93 (9%); 79 (34%); 67 (36%); 55 (9%); 43 (9 %). *CAS* : 54312-35-5.

Adduct 6b¹²

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 9:1 \rightarrow 4:1) to give 35.6 mg (85%) of **6b**.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 5:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 38.7 mg (92%) of **6b** and 202 mg (4.9 equiv.) of **5c**.

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.25 (t, *J* = 7.1 Hz, 3H, H-1), 1.25-1.34 (partial overlap, m, 1H), 1.55-1.66 (m, 2H), 1.78-1.86 (m, 1H), 1.97-2.12 (m, 3H), 2.22-2.42 (m, 2H), 2.47-2.60 (m, 1H), 2.87 (dd, *J* = 13.8, 4.8 Hz, 1H, one of H-6), 4.15 (q, J = 7.2 Hz, 2H, H-2), 5.52 (d, *J* = 1.5 Hz, 1H, one of H-5), 6.15 (d, *J* = 1.5 Hz, 1H, one of H-5); ¹³C-NMR (62.5 MHz, CDCl₃) δ (ppm): 14.2 (C-1), 25.1, 28.1, 32.0, 33.6, 42.1 (C-11), 49.2 (C-7), 60.6 (C-2), 126.5 (C-5), 138.4 (C-4), 166.8 (C-3), 211.8 (C-11); MS (CI, CH₄-NO₂) m/z (relative intensity): [M+H]⁺ 211 (52 %); [M]⁺ 210 (8%); 193 (6 %); 182 (8 %); 166 (10 %); 165 (100 %); 164 (9 %); 136 (9 %).

Adduct 6c

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 50:1 \rightarrow 9:1) to give 37.3 mg (70%) of **6c** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 10:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 47.5 mg (89%) of **6c** and 241 mg (5.8 equiv) of **5c**.

IR: 2927, 2871, 1629, 1472, 1445, 1369, 1326, 1179, 1137, 1026, 950, 819, 737 cm⁻¹

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.28 (t, *J* = 7.2 Hz, 3H, H-1), 1.21-1.93 (m, 16H), 2.20-2.31 (m, 2H), 2.61 (ddd, *J* = 16.2, 9.0, 3.3 Hz, 1H), 2.99-3.10 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H, H-2), 5.48 (s, 1H, one of H-5), 6.12 (d, *J* = 1.5 Hz, 1H, one of H-5); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 14.1 (C-1), 23.0, 23.3, 23.5, 24.1. 24.7, 24.8, 25.1, 25.2, 42.3 (C-15), 50.3 (C-7), 60.7 (C-2), 126.9 (C-5), 138.0 (C-4), 166.7 (C-3), 214.7 (C-16)]; MS (CI, CH₄-NO₂) m/z (relative intensity): [M+H]⁺ 267 (100 %), 249 (23 %), 181 (17 %), 174 (13 %), 162 (8 %); HRMS (CI⁺): calculated mass for C₁₆H₂₇O₃ (267.1960, [M+H]⁺), found (267.1947).

Adduct 6d

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 50:1) to give 41.8 mg (71%) of 6d as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 20:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 51.9 mg (88%) of 6d and 215 mg (5.2 equiv) of 5c.

IR: 2932 and 2864 cm⁻¹ (stretching C-H), 1718 cm⁻¹ (C=O), 1628 cm⁻¹ (C=C-C=O), 1469, 1411, 1368, 1326, 1188, 1140, 1025, 946 cm⁻¹

¹H-NMR (250 MHz, CDCl₃) δ (ppm): 1.05-1.38 (m, 17H), 1.47-1.83 (m, 4H), 2.19-2.40 (m, 2H), 2.53-2.73 (m, 2H), 2.82-2.97 (m, 1H), 4.18 (q, *J* = 7.5 Hz, 2H, H-2), 5.52 (d, *J* = 1.2 Hz, 1H, one of H-5), 6.15 (d, *J* = 1.6 Hz, 1H, one of H-5); ¹³C-NMR (62.5 MHz, CDCl₃) δ (ppm): 14.1 (C-1), 21.9, 22.2, 23.7, 23.9

(2 C), 24.0, 25.6, 25.9, 29.1, 33.4, 38.2 (C-6 and C-8 to C-17), 49.6 (C-7), 60.7 (C-2), 126.6 (C-5), 138.3 (C-4), 166.8 (C-3), 213.7 (C-18); MS (APCI) m/z (relative intensity): (M⁺+1) 295 (100 %); 250 (16 %); 249 (95 %); HRMS (EI+) : calculated mass for C₁₈H₃₀O₃ (294.2195, [M]⁺), found (294.2193).

Adduct 6e

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 20:1 \rightarrow 10:1 \rightarrow 5:1) to give 33.6 mg (80%) of **6e** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 10:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 36.3 mg (86%) of **6e** and 210 mg (4.9 equiv) of **5c**.

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.31 (t, *J* = 7.3 Hz, 3H, H-1), 2.13 (s, 3H, H-9), 2.16-2.45 (m, 3H, H-10 and one of H6), 2.60 (dd, *J* = 14.0, 7.9 Hz, 1H, one of H-6), 2.88 (tt, *J* = 7.4, 6.4 Hz, 1H, H-7), 4.21 (q, *J* = 7.3 Hz, 2H, H-2), 5.02 (s, 1H, one of H-12), 5.07 (d, *J* = 7.0 Hz, 1H, one of H-12), 5.55 (s, 1H, one of H-5), 5.64-5.77 (m, 1H, H-11), 6.19 (d, *J* = 0.9 Hz, 1H, one of H-5); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 14.4 (C-1), 30.3 (C-9), 33.7 (C-6), 35.7 (C-10), 51.0 (C-7), 61.0 (C-2), 117.5 (C-12), 127.4 (C-5), 135.2 (C-11), 138.2 (C-4), 167.0 (C-3), 211.2 (C-8).

MS (APCI) m/z (relative intensity): (M⁺) 210 (42 %), 165 (9 %), 138 (14 %), 106 (11 %), 85 (100 %), 84 (17 %), 65 (32 %), 60 (33 %).

HRMS (ESI): calculated mass for $C_{12}H_{19}O_3$ (211.1334, $[M+H]^+$), found (211.1338).

Adduct 6f

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 20:1 \rightarrow 10:1 \rightarrow 5:1) to give 34.9 mg (83%) of **6f** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 10:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 38.2 mg (91%) of **6f** and 236 mg (5.8 equiv) of **5c**.

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.31 (t, *J* = 7.1 Hz, 3H, H-1), 2.30-2.37 (m, 2H, H-10), 2.50-2.54 (m, 2H, H-9), 2.57-2.67 (m, 4H, H-6 and H-7), 4.21 (q, *J* = 7.1 Hz, 2H, H-2), 4.97-5.06 (m, 2H, H-12), 5.58 (s, 1H, one of H-5), 5.74-5.87 (m, 1H, H-11), 6.17 (s, 1H, one of H-5); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 14.4 (C-1), 26.4 (C-10), 27.9 (C-6), 41.8 and 42.0 (C-7 and C-9), 60.9 (C-2), 115.5 (C-12), 125.8 (C-5), 137.3 (C-11), 139.7 (C-4), 167.0 (C-3), 209.2 (C-8); MS (APCI) m/z (relative intensity): (M⁺+1) 211 (100 %), 197 (26 %), 165 (77 %), 163 (42 %), 149 (52 %), 147 (29 %), 135 (33 %), 109 (32 %). HRMS (ESI): calculated mass for C₁₂H₁₉O₃ (211.1334, [M+H]⁺), found (211.1337).

Adduct 6g

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 9:1 \rightarrow 3:1) to give 37.2 mg (70%) of **6g** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 5:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 47.4 mg (89%) of **6g** and 253 mg (6.1 equiv) of **5c**.

IR: 2929 cm⁻¹ (stretching C-H), 1707 cm⁻¹ (C=O), 1630 cm⁻¹ (C=C-C=O), 1444, 1370, 1189, 1146, 1108, 1024, 908, 734, 649 cm⁻¹

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.31 (t, *J* = 7.2 Hz, 3H, H-1), 1.62-1.86 (m, 5H), 2.04-2.14 (m, 2H), 2.22-2.55 (m, 7H), 2.75-2.85 (m, 1H, H-7), 4.20 (q, *J* = 6.9 Hz, 2H, H-2), 5.49 (d, *J* = 1.2 Hz, 1H, one of H-5), 6.16 (d, *J* = 1.5 Hz, 1H, one of H-5); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 14.2 (C-1), 20.9, 21.2 (C-9 and C-13), 29.4, 34.4 (C-6 and C-8), 38.8, 43.4 (C-10, C-12 and-14), 51.2 (C-7), 60.9 (C-2), 127.0 (C-5), 137.9 (C-4), 166.6 (C-3), 214.8 (C-11), 216.3 (C-15); MS (ESI) m/z (relative intensity): (M⁺) 266 (100 %); 249 (23 %), 244 (8 %), 115 (29 %), 83 (9 %); HRMS (EI+) : calculated mass for C₁₅H₂₂O₄ (266.1518, [M]⁺), found (266.1506).

Adduct 6h

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 9:1 \rightarrow 3:1) to give 37.6 mg (67%) of **6h** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 5:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 50.7 mg (90%) of **6h** and 172 mg (4.2 equiv) of **5c**.

IR: 2935 cm⁻¹ (stretching C-H), 1708 cm⁻¹ (C=O), 1629 cm⁻¹ (C=C-C=O), 1463, 1369, 1255, 1182, 1025, 949, 872, 819, 727 cm⁻¹

¹H-NMR (250 MHz, CDCl₃) δ (ppm): 1.26 (t, *J* = 7.1 Hz, 3H, H-1), 1.18-1.32 (m, 3H), 1.44-1.56 (m, 2H), 1.62-1.75 (m, 2H), 1.80-1.94 (m, 2H), 2.06-2.88 (m, 10H), 4.16 (q, *J* = 7.1 Hz, 2H, H-2), 5.45 (d, *J* = 1.2 Hz, 1H, one of H-5), 6.10 (s, 1H, one of H-5); ¹³C-NMR (62.5 MHz, CDCl₃) δ (ppm): 14.1 (C-1), 17.3, 23.0, 24.3, 26.9, 29.3, 34.2, 38.6, 39.3, 42.2 (C-6, C-8 to C-12 and C-14 to C-16), 51.1 (C-7), 60.7 (C-2), 126.6 (C-5), 138.1 (C-4), 166.6 (C-3), 214.0, 215.2 (C-13 and C-17); MS (APCI) m/z (relative intensity): (M⁺) 294 (11 %); 277 (100 %); 259 (11 %); 249 (17 %); 248 (20 %); 239 (40 %); 225 (21 %); HRMS (CI+) : calculated mass for C₁₇H₂₆O₄ (294.1831, [M]⁺), found (294.1829)

Adduct 6i

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 20:1 \rightarrow 10:1 \rightarrow 5:1) to give 31.6 mg (63%) of **6i** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 10:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 39.7 mg (79%) of **6i** and 186 mg (4.5 equiv) of **5c**.

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.29 (t, *J* = 7.1 Hz, 3H, H-1), 1.66-1.85 (m, 6H, H-10 – H-12), 2.21-2.40 (m, 3H, H-9 and one of H-13), 2.50-2.61 (m, overlapped, 1H, one of H-13), 2.53 (d, *J* = 14.0 Hz, 1H, one of H-6), 2.85 (d, *J* = 14.0 Hz, 1H, one of H-6), 4.18 (q, *J* = 7.2 Hz, 2H, H-2), 5.01-5.08 (m, 2H, H-15), 5.56 (s, 1H, one of H-5), 5.56-5.72 (m, 1H, H-14), 6.24 (d, *J* = 1.5 Hz, 1H, one of H-5); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 14.4 (C-1), 21.0 (C-11), 26.9 (C-10), 36.2 (C-13), 36.5 (C-9), 39.4 (C-6), 39.7 (C-12), 52.0 (C-7), 61.1 (C-2), 118.4 (C-15), 128.7 (C-5), 134.0 (C-14), 137.4 (C-4), 167.9 (C-3), 213.9 (C-8); MS (APCI) m/z (relative intensity): [M⁺+H] 251 (100 %), 252 (11%), 206 (9%), 205 (66%), 187 (13%), 163 (7%), 159 (11%); HRMS (ESI): calculated mass for C₁₅H₂₃O₃ (251.1647, [M+H]⁺); found (251.1658).

Adduct 6j

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 20:1 \rightarrow 10:1 \rightarrow 5:1) to give 38.4 mg (72%) of **6j** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 10:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 48.5 mg (91%) of 6j and 214 mg (5.0 equiv) of 5c.

¹H-NMR (500 MHz, CDCl₃) δ (ppm): 0.87 (s, 9H, H-14), 1.28 (t, *J* = 7.1 Hz, 3H, H-1), 1.49 (td, *J* = 12.7, 4.5 Hz, 1H, H-11), 1.55-1.68 (m, 3H, H-7 and H-12), 1.77 (ddd, *J* = 12.4, 6.5, 3.4 Hz, 1H, one of H-10), 1.98 (dddd, *J* = 12.2, 5.9, 3.0, 2.9 Hz, 1H, one of H-10), 2.31 (dt, *J* = 12.4, 3.0 Hz, 1H, one of H-9), 2.41 (dd, *J* = 13.7, 7.5 Hz, 1H, one of H-6), 2.73 (dt, *J* = 12.8, 5.7 Hz, 1H, one of H-9), 2.76 (dd, *J* = 14.0, 7.7 Hz, 1H, one of H-6), 4.18 (q, *J* = 7.1 Hz, 2H, H-2), 5.57 (s, 1H, one of H-5), 6.20 (s, 1H, on e of H-5); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 14.3 (C-1), 26.6 (C-10), 27.5 (C-14), 31.1 (C-12), 32.6 (C-13), 33.7 (C-6), 38.7 (C-9), 41.5 (C-11), 48.1 (C-7), 61.0 (C-2), 126.9 (C-5), 138.3 (C-4), 166.8 (C-3), 213.3 (C-8); MS (APCI) m/z (relative intensity): (M⁺+1) 266 (100 %), 267 (10%), 237 (54%), 205 (45%), 153 (15%); HRMS (ESI): C₁₆H₂₆NaO₃ [M+Na⁺] calculated mass (289.1780); found mass (289.1783).

Adduct 6k

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 20:1 \rightarrow 10:1 \rightarrow 5:1) to give 9.8 mg (16%) of **6k** as a colorless oil.

Method C: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 10:1 \rightarrow CH₂Cl₂:MeOH = 100:1) to give 33.7 mg (55%) of **6k**.

¹H-NMR (500 MHz, CDCl₃) δ (ppm): 0.89 (s, 9H, H-14), 1.29 (t, J = 7.1 Hz, 3H, H-1), 1.47 (td, J = 12.5, 4.7 Hz, 1H, H-11), 1.59-2.02 (m, 4H, H-12 and H-10), 2.31-2.43 (m, 3H, H-9 and one of H-15), 2.42 (d, J = 13.9, 1H, one of H-6), 2.49-2.59 (m, 1H, one of H-15), 2.81 (dd, J = 14.0, 1H, one of H-6), 4.18 (q, J = 13.9, 1H, one of H-6), 2.49-2.59 (m, 1H, one of H-15), 2.81 (dd, J = 14.0, 1H, one of H-6), 4.18 (q, J = 14.0, 1H, on

7.1 Hz, 2H, H-2), 5.03-5.11 (m, 2H, H-17), 5.58 (s, 1H, one of H-5), 5.63-5.72 (m, 1H, H-16), 6.25 (s, 1H, one of H-5); ¹³C-NMR (125 MHz, CDCl₃) δ(ppm): 14.3 (C-1), 26.5 (C-10), 27.4 (C-14), 32.7 (C-13), 36.1 (C-12), 38.1 (C-6), 39.2 (C-9), 41.6 (C-11), 52.3 (C-7), 61.0 (C-2), 119.1 (C-17), 126.9 (C-5), 135.8 (C-16), 138.3 (C-4), 168.2 (C-3), 213.7 (C-8); MS (APCI) m/z (relative intensity): (M⁺+1) 307 (100 %), 267 (21%), 209 (51%), 153 (42%), 113 (21%), 96 (9%); HRMS (ESI): C₁₉H₃₀NaO₃ [M+Na⁺] calculated mass (329.2093); found mass (329.2099).

Adduct 61

Method A: The crude was purified by (ϕ 1.5 cm, 9 cm of SiO₂, 10 mL fracions; P.E : Et₂O = 100:0 \rightarrow 9:1 \rightarrow 3:1) to give 27.1 mg (46%) of *syn*-**6l** and 8.2 mg (14%) of *anti*-**6l**.

Syn-61

IR: 2958, 2931 and 2872 cm⁻¹ (stretching C-H), 1714 and 1695 cm⁻¹ (C=O), 1629 cm⁻¹ (C=C-C=O), 1465, 1370, 1272, 1202, 1095, 1026, 953, 861, 818, 736, 703 cm⁻¹

¹H-NMR (250 MHz, CDCl₃) δ (ppm): 0.92 (d, *J* = 6.7 Hz, 3H, H-17), 1.26 (t, *J* = 7.1 Hz, 3H, H-1), 1.17-1.47 (m, 6H, H-8, H-9 and H-10), 1.83-2.00 (m, 2H, H-14), 2.07-2.29 (m, 3H, one of each H-6, H-13 and H-15), 2.45-2.62 (m, 2H, one of H-6 and H-11), 2.67-2.94 (m, 3H, H-7 and one of each H-13 and H-15), 4.16 (q, *J* = 7.1 Hz, 2H, H-2), 5.47 (s, 1H, one of H-5), 6.10 (d, *J* = 1.6 Hz, 1H, one of H-5); ¹³C-NMR (62.5 MHz, CDCl₃) δ (ppm): 14.1 (C-1), 14.7 (C-17), 17.8 (C-14), 20.7 (C-9), 30.2 (C-8), 31.9 (C-10), 33.0 (C-6), 37.9 (C-13), 40.2 (C-15), 47.0 (C-11), 51.5 (C-7), 60.7 (C-2), 126.8 (C-5), 138.1 (C-4), 166.7 (C-3), 215.3 (C-16), 216.3 (C-12); MS (APCI) m/z (relative intensity): [M]⁺ 294 (7 %), 277 (15%), 259 (46%), 249 (100%), 231 (95%), 213 (58%), 203 (30%), 195 (16%), 185 (38%); HRMS (EI⁺) : calculated mass for C₁₇H₂₆O₄ (294.1831, [M]⁺); found mass (294.1828).

Anti-61

IR: 2960, 2934 and 2874 cm⁻¹ (stretching C-H), 1710 cm⁻¹ (C=O), 1629 cm⁻¹ (C=C-C=O), 1446, 1370, 1328, 1305, 1179, 1148, 1054, 915, 733 cm⁻¹

¹H-NMR (300 MHz, CDCl₃) δ (ppm): 0.80 (d, J = 7.2 Hz, 3H, H-17), 0.77-1.06 (m, 3H), 1.27 (t, J = 7.0 Hz, 3H, H-1), 1.13-1.39 (m, 3H), 1.70-1.79 (m, 2H), 1.81-1.96 (m, 1H), 1.96-2.13 (m, 1H), 2.47-2.60 (m, 2H), 2.62-2.75 (m, 2H), 4.14 (q, J = 7.0 Hz, 2H, H-2), 5.47 (s, 1H, one of H-5), 6.10 (d, J = 0.9 Hz, 1H,

one of H-5); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 14.0, 14.1 (C-1 and C-17), 16.9, 22.4, 24.7, 32.2, 35.5, 38.0, 39.4 (C-6, C-8 to C-10 and C-13 to C-15), 39.4 (C-11), 61.0 (C-7), 67.7 (C-2), 128.3 (C-5), 136.0 (C-4), 166.8 (C-3), 210.0 (C-12 and C-16); MS (APCI) m/z (relative intensity): [M]⁺ 294 (12 %); 277 (67 %); 259 (18 %); 249 (39 %); 231 (100 %); 213 (55 %); 203 (18 %); 195 (8 %); 185 (21 %). HRMS (EI⁺) : calculated mass C₁₇H₂₆O₄ (294.1831, [M]⁺); found mass (294.1841).

I. Structural data for Table 3 : B3LYP/6-311+G(d,p) geometries (Cartesian coordinates, all values in Å)

	Ĵ.		
H ₃ C	CH ₂		
С	-0.084943	0.118290	-0.000017
С	1.358019	-0.356523	-0.000005
Н	1.560589	-0.972275	0.881711
Н	1.560316	-0.973423	-0.880975
Н	2.025623	0.503855	-0.000637
С	-1.130682	-0.870639	0.000000
Н	-0.916907	-1.933385	-0.000014
Н	-2.161112	-0.537704	0.000037
0	-0.365359	1.320770	0.000001

E(UB3LYP) = -192.556539 a.u.

С	-1.387199	-0.719351	-0.195342
С	-1.377568	0.806767	0.102337
С	0.052881	1.193395	-0.025315
С	0.917142	0.040153	-0.000406
С	0.033407	-1.204363	0.152665
Н	-2.168226	-1.243976	0.356950
Н	-1.580203	-0.874686	-1.260239
Η	-1.730790	1.011153	1.126359
Η	-2.037746	1.380582	-0.556608
Н	0.430023	2.207362	-0.080643
Н	0.396340	-2.020096	-0.474520
Н	0.103220	-1.541040	1.193908
0	2.144426	0.047636	-0.063605

E (UB3LYP=-270.000097 a.u.

-4.946029	-0.916357	-0.079752
-3.412256	-0.983210	-0.146394
-2.744595	0.274568	0.296718
-3.403668	1.333813	1.007381
-4.893935	1.195561	1.303269
-5.407568	-0.248617	1.220107
-3.050779	-1.804575	0.495619
-3.070723	-1.249875	-1.154602
-5.323022	-0.341697	-0.934049
-5.362905	-1.923276	-0.169800
-5.080027	1.641742	2.283247
-5.423255	1.823052	0.574531
-5.034164	-0.823487	2.076755
-6.499044	-0.260501	1.290667
-1.681813	0.409676	0.118712
-2.779301	2.343951	1.360115
	$\begin{array}{r} -4.946029\\ -3.412256\\ -2.744595\\ -3.403668\\ -4.893935\\ -5.407568\\ -3.050779\\ -3.070723\\ -5.323022\\ -5.362905\\ -5.080027\\ -5.423255\\ -5.034164\\ -6.499044\\ -1.681813\\ -2.779301\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

E (UB3LYP) = -309.329556 a.u.

II. Structural data for Table S-3 : B3LYP/6-31+G(d) geometries (Cartesian coordinates, all values in Å)

H ₃ C	CH ₂		
С	0.065059	0.124266	-0.031240
С	-0.069478	0.090962	1.402885
Н	0.997180	-0.206284	-0.478131
0	0.869817	-0.312245	2.108435
С	-1.375662	0.561992	2.023578
Н	-1.543341	1.624615	1.805839
Н	-2.228420	0.007516	1.612672
Н	-1.339198	0.421039	3.105941
Η	-0.737403	0.470125	-0.677188

E(UB3LYP) = -192.506355 a.u.Zero Point Vibrational Energy = 0.070516 a.u. H(298.15K) = -192.429756 a.u.

С	-0.000257	-0.000305	-0.000048
С	-0.000624	0.001022	1.556898
С	1.445793	0.001201	1.919160
С	2.272490	-0.365222	0.795173
С	1.350329	-0.629619	-0.402834
Н	-0.863263	-0.529949	-0.414892
Н	-0.048380	1.034479	-0.359407
Н	-0.489377	-0.907257	1.953269
Н	-0.552899	0.846366	1.988786
Н	1.850077	0.198866	2.907681
Н	1.777791	-0.224239	-1.324987
Н	1.267091	-1.717853	-0.536581
0	3.504255	-0.473119	0.797870

E(UB3LYP) = -269.933906 a.u.Zero Point Vibrational Energy = 0.108190 a.u. H(298.15K) = -269.819311 a.u.

0	-0.022212	-0.238500	0.010104
С	-0.007226	-0.026671	1.237896
С	1.313524	0.031126	2.001850
С	-1.232644	0.185509	1.958896
С	1.153846	-0.147751	3.520162
Н	1.768669	1.010022	1.787290
Η	1.984458	-0.719330	1.568950
С	-1.309931	0.424723	3.432449
Η	-2.149272	0.125339	1.375306
С	0.050232	0.769038	4.064397
Н	2.107282	0.058535	4.021952
Η	0.902208	-1.194658	3.745903
Η	-2.054818	1.206059	3.645074
Η	-1.716736	-0.487226	3.907883
Н	-0.019642	0.690385	5.156038
Н	0.304069	1.814599	3.838317

E(UB3LYP) = -309.253997 a.u.Zero Point Vibrational Energy = 0.137634 a.u. H(298.15K) = -309.108979 a.u. Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

H₃C-CH=CH₂:

	0.007402	0.000111	0.000415
Н	-0.007402	0.029111	-0.002415
С	0.045052	-0.118451	1.075335
С	1.198545	-0.013765	1.742875
Η	-0.888112	-0.355560	1.580309
Η	1.196201	-0.171503	2.823017
С	2.531549	0.308965	1.127765
Η	3.257245	-0.494853	1.312852
Η	2.450355	0.452746	0.044475
Η	2.956583	1.223680	1.563331

E(RB3LYP) = -117.913924 a.u.Zero Point Vibrational Energy = 0.079826 a.u. H(298.15K) = -117.829064 a.u. Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

H₃CO-CH=CH₂:

Η	0.075194	0.082147	-0.016595
С	0.057937	-0.096343	1.054178
С	1.174586	-0.069372	1.786986
Н	-0.893745	-0.302170	1.530559
Н	1.169472	-0.247054	2.863487
0	2.401073	0.176974	1.244655
С	3.486732	0.210980	2.165192
Н	4.384560	0.405876	1.575767
Н	3.354879	1.014228	2.902811
Н	3.595074	-0.750971	2.684592

E(RB3LYP) = -193.121169 a.u.Zero Point Vibrational Energy = 0.084387 a.u. H(298.15K) = -193.031397 a.u.

H₃COOC-CH=CH₂:

Н	-0.007689	0.048490	0.002802
С	0.028725	-0.084099	1.079825
С	1.182569	-0.033980	1.755195
Η	-0.912154	-0.261000	1.594153
Η	1.220007	-0.166813	2.832811
С	2.514261	0.200333	1.144458
0	3.547939	0.236875	1.787950
0	2.468916	0.368744	-0.197242
С	3.733926	0.598436	-0.842956
Н	3.501080	0.705890	-1.902806
Н	4.199973	1.508320	-0.455166
Н	4.405290	-0.248651	-0.678256

E(RB+HF-LYP) = -306.481830 a.u. Zero Point Vibrational Energy = 0.095588 a.u. H(298.15K) = -306.378656 a.u.

<u>1. Addition of H₃C</u>. <u>CH₂ to H₃C-CH=CH₂</u>

(a) Transition state:

С	0.016370	0.012309	-0.070724
С	-0.024663	0.149983	1.376389
Н	0.996503	-0.011091	-0.535595
0	0.971311	-0.079219	2.073619
Н	-1.324992	-2.132404	0.268097
С	-0.398087	-2.180751	-0.299947
С	-0.443070	-2.439737	-1.645834
Н	0.497013	-2.401437	0.273759
Н	0.492584	-2.641932	-2.168254
С	-1.678328	-2.361770	-2.489025
Н	-1.826503	-3.289848	-3.058720
Н	-2.574417	-2.187909	-1.882664
Н	-1.606530	-1.552759	-3.231895
С	-1.339966	0.571380	2.020609
Н	-1.410718	1.667507	2.018747
Н	-2.211397	0.186801	1.477920
Н	-1.368827	0.231391	3.059172
Н	-0.802582	0.399708	-0.670928

E(UB3LYP) = -310.411324 a.u.Zero Point Vibrational Energy = 0.152741 a.u. H(298.15K) = -310.248100 a.u. Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

(b) Product:

С	-0.004133	-0.008072	0.001835
С	-0.010672	-0.016104	1.524343
Н	1.036952	-0.012253	-0.337867
0	0.810464	-0.665257	2.151577
Η	-1.757962	-1.295342	-0.176531
С	-0.725546	-1.281093	-0.556928
С	-0.733551	-1.338578	-2.049847
Η	-0.212766	-2.156609	-0.139575
Η	0.157361	-1.716242	-2.549401
С	-1.760970	-0.626502	-2.868021
Η	-1.813672	-1.025160	-3.888124
Н	-2.761269	-0.706479	-2.419190
Н	-1.548874	0.454907	-2.965517
С	-1.096685	0.782498	2.222044
Η	-0.919742	1.855761	2.067755
Η	-2.082466	0.559824	1.793782
Н	-1.097926	0.567856	3.293133
Н	-0.497506	0.891657	-0.385305

E(UB3LYP) = -310.444021 a.u.Zero Point Vibrational Energy = 0.155347 a.u. H(298.15K) = -310.278177 a.u.

2. Addition of H₃C CH₂ to H₃CO-CH=CH₂

(a) Transition state:

С	-0.069897	0.040717	-0.095364
С	-0.007874	0.178135	1.345132
Н	0.873695	0.025461	-0.630876
0	1.046282	-0.012979	1.969559
Н	-1.426637	-2.122583	0.262514
С	-0.499678	-2.194203	-0.297328
С	-0.544740	-2.479087	-1.632159
Н	0.400715	-2.435164	0.255393
Н	0.347078	-2.716099	-2.212167
0	-1.697481	-2.357486	-2.333853
С	-1.620682	-2.664031	-3.726515
Н	-2.618021	-2.491836	-4.133679
Н	-0.899680	-2.008339	-4.231285
Н	-1.338229	-3.713430	-3.878146
Н	-0.945564	0.381318	-0.640714
С	-1.284746	0.547973	2.092013
Н	-1.333150	1.639318	2.205506
Н	-2.190002	0.229847	1.562523
Н	-1.266858	0.109150	3.093745

E(UB3LYP) = -385.622089 a.u.Zero Point Vibrational Energy = 0.157694 a.u. H(298.15K) = -385.452732 a.u. Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

(b) Product:

С	-0.029202	-0.024947	-0.009138
С	0.000323	-0.005367	1.511208
Н	1.002931	0.003741	-0.373644
0	0.908831	-0.535868	2.130887
Н	-1.737182	-1.386906	-0.113639
С	-0.721037	-1.328936	-0.527727
С	-0.795215	-1.413411	-2.011795
Н	-0.162512	-2.192858	-0.149341
Н	0.079827	-1.685030	-2.606473
0	-1.670976	-0.542794	-2.596049
С	-1.717271	-0.580686	-4.019216
Н	-2.422051	0.192433	-4.331116
Н	-0.727063	-0.369454	-4.446203
Н	-2.064047	-1.561968	-4.367508
Н	-0.571907	0.842162	-0.402708
С	-1.161101	0.666901	2.220822
Н	-1.102095	1.753355	2.068450
Н	-2.121223	0.340948	1.801144
Н	-1.127987	0.452352	3.291482

E(UB3LYP) = -385.656725 a.u.Zero Point Vibrational Energy = 0.161349 a.u. H(298.15K) = -385.484094 a.u.

3. Addition of H₃C CH₂ to H₃COOC-CH=CH₂

(a) Transition state:

С	-0.107724	0.022851	-0.092111
С	-0.034823	0.188252	1.354092
Н	0.821771	0.070241	-0.649517
0	1.046021	0.102815	1.946725
Н	-1.135564	-2.288495	0.461151
С	-0.279568	-2.280612	-0.205450
С	-0.442063	-2.572648	-1.530726
Н	0.701827	-2.347637	0.253327
Н	0.412683	-2.706348	-2.187324
С	-1.741595	-2.692346	-2.213153
0	-1.861793	-2.993543	-3.389356
0	-2.799864	-2.434960	-1.402325
С	-4.098019	-2.567216	-2.009505
Н	-4.811527	-2.327506	-1.220463
Н	-4.199975	-1.872982	-2.847995
Н	-4.247830	-3.589054	-2.368330
С	-1.326087	0.466441	2.108677
Н	-1.605247	1.521240	1.982969
Н	-2.159130	-0.136387	1.728123
Н	-1.181146	0.271841	3.173953
Н	-1.025329	0.256460	-0.623917

E(UB3LYP) = -498.980977 a.u.Zero Point Vibrational Energy = 0.168166 a.u. H(298.15K) = -498.799562 a.u.

(b) Product:

С	-0.422221	0.067103	0.259037
С	-0.465819	-0.222418	1.756744
Н	0.629664	0.262202	0.001141
0	-0.717120	-1.332819	2.190114
Н	-2.056208	-1.201522	-0.393666
С	-0.991942	-1.077026	-0.603621
С	-0.765519	-0.848476	-2.057076
Н	-0.495504	-2.007011	-0.292782
Н	0.249085	-0.810856	-2.444365
С	-1.790908	-0.651397	-3.061628
0	-1.556408	-0.471824	-4.253592
0	-3.057312	-0.682211	-2.557760
С	-4.111335	-0.502500	-3.518099
Н	-5.037816	-0.560688	-2.946907
Н	-4.021157	0.469696	-4.009785
Н	-4.076303	-1.288545	-4.276876
С	-0.177074	0.948099	2.678090
Н	0.699863	1.512098	2.341547
Н	-1.028706	1.639724	2.662747
Н	-0.026541	0.591287	3.698230
Н	-0.949828	1.009285	0.061469

E(UB+HF-LYP) = -499.037799 a.u. Zero Point Vibrational Energy = 0.170671 a.u. H(298.15K) = -498.854069 a.u.

<u>4. Addition of to H₃C-CH=CH₂</u>

(a) Transition state:

С	-0.066965	0.253363	0.562118
С	0.196436	-0.693539	1.763413
С	1.685319	-0.605371	1.978009
С	2.328104	-0.197716	0.726138
С	1.228370	0.195038	-0.272106
Н	-0.958265	-0.032453	-0.005735
Н	-0.231382	1.274631	0.927578
Н	-0.079339	-1.728907	1.500960
Н	-0.392405	-0.434061	2.650743
Н	2.208062	-1.285675	2.643123
Η	1.480396	1.127087	-0.789384
Н	1.179511	-0.591749	-1.038843
0	3.536652	-0.165046	0.498353
Н	1.701923	1.890525	2.490542
С	2.147187	1.173270	3.178002
С	1.591829	1.016525	4.428209
Н	3.203531	0.974828	3.020629
Н	2.137114	0.430287	5.168878
С	0.240162	1.517689	4.835786
Н	0.309653	2.145693	5.735913
Н	-0.228674	2.113334	4.044522
Н	-0.440893	0.691807	5.091908

E(UB3LYP) = -387.834188 a.u.Zero Point Vibrational Energy = 0.190131 a.u. H(298.15K) = -387.633200 a.u.

(b) Product:

С	-0.114021	-0.307284	0.036780
С	-0.015849	-0.249713	1.581214
С	1.473036	0.032911	1.879764
С	2.216721	-0.550016	0.667261
С	1.202951	-0.972860	-0.396551
Н	-1.002355	-0.847922	-0.305777
Н	-0.174768	0.707700	-0.377120
Н	-0.303867	-1.222047	2.002786
Н	-0.680149	0.502628	2.019745
Н	1.825562	-0.484571	2.781437
Н	1.556401	-0.714521	-1.399878
Н	1.123004	-2.069905	-0.355785
0	3.425013	-0.641467	0.569834
Н	1.468021	2.095791	1.153872
С	1.818927	1.536243	2.035914
С	1.260614	2.152384	3.278388
Н	2.920946	1.623252	2.018138
Н	1.229226	1.542105	4.180495
С	1.093503	3.630882	3.409406
Н	0.487667	3.896436	4.283451
Н	2.063594	4.150239	3.522586
Н	0.616660	4.065669	2.519033

E(UB3LYP) = -387.863815 a.u.Zero Point Vibrational Energy = 0.191878 a.u. H(298.15K) = -387.660891 a.u.

5. Addition of to H₃CO-CH=CH₂

(a) Transition state:

С	-0.094864	0.224805	0.771281
С	0.327212	-0.692605	1.951052
С	1.829782	-0.600396	1.962049
С	2.308002	-0.204464	0.642047
С	1.089474	0.171116	-0.215473
Н	-1.043332	-0.086604	0.321392
Н	-0.234082	1.249135	1.138103
Н	0.016412	-1.733910	1.759433
Н	-0.137001	-0.399231	2.900398
Н	2.444452	-1.247627	2.579978
Н	1.265978	1.102411	-0.764878
Н	0.954876	-0.620542	-0.966853
0	3.480661	-0.163887	0.263709
Н	1.869298	1.930665	2.405570
С	2.387573	1.251976	3.075859
С	1.945953	1.142183	4.368424
Н	3.435291	1.067573	2.866893
Н	2.506856	0.618407	5.142218
0	0.704880	1.569891	4.717255
С	0.360837	1.433932	6.095658
Н	-0.669292	1.780491	6.191222
Н	0.426680	0.385234	6.413783
Н	1.015959	2.052489	6.722192

E(UB3LYP) = -463.045322 a.u.Zero Point Vibrational Energy = 0.194837 a.u. H(298.15K) = -462.838306 a.u.

(b) Product:

С	0.010508	-0.020758	-0.037068
С	-0.009257	0.035488	1.510271
С	1.477164	0.028539	1.926428
С	2.183617	-0.722379	0.787471
С	1.200796	-0.938337	-0.364204
Н	-0.936013	-0.379859	-0.454198
Н	0.184113	0.981948	-0.448637
Н	-0.506598	-0.862595	1.901924
Н	-0.551177	0.904271	1.893783
Н	1.653996	-0.513107	2.863453
Н	1.683849	-0.760584	-1.330535
Н	0.901661	-1.997383	-0.344239
0	3.349544	-1.068057	0.798907
Н	1.929905	2.036075	1.165608
С	2.121079	1.450640	2.074995
С	1.662420	2.229188	3.257098
Н	3.206533	1.307868	2.146540
Н	1.917297	1.915504	4.271875
0	0.477311	2.898336	3.116674
С	0.052301	3.630657	4.261961
Н	-0.913168	4.074191	4.010961
Н	-0.062961	2.965037	5.128862
Н	0.773361	4.422348	4.502889

E(UB3LYP) = -463.075438 a.u. Zero Point Vibrational Energy = 0.197905 a.u. H(298.15K) = -462.865643 a.u.

6. Addition of to H₃COOC-CH=CH₂

(a) Transition state:

С	-0.212616	-0.080218	0.875230
С	0.489688	-1.041332	1.870684
С	1.910042	-0.557827	1.906424
С	2.207276	0.177359	0.669726
С	0.896455	0.340733	-0.110706
Η	-1.069159	-0.548744	0.380723
Н	-0.585998	0.793737	1.420784
Н	0.472285	-2.076086	1.487213
Н	0.009808	-1.072050	2.855340
Н	2.698890	-1.098385	2.419934
Н	0.797934	1.358583	-0.502492
Н	0.942731	-0.332112	-0.979215
0	3.310592	0.582498	0.313408
Н	1.448080	1.872273	2.714450
С	2.083251	1.215540	3.299751
С	1.663450	0.789773	4.534745
Н	3.140775	1.227304	3.055623
Н	2.331671	0.250148	5.199780
С	0.307889	0.964556	5.073857
0	-0.039169	0.571399	6.176958
0	-0.529963	1.622728	4.228628
С	-1.858467	1.859063	4.726927
Н	-2.375454	2.394235	3.929605
Н	-2.360275	0.912534	4.946100
Н	-1.821814	2.464395	5.636755

E(UB3LYP) = -576.405676 a.u.Zero Point Vibrational Energy = 0.205580 a.u. H(298.15K) = -576.186453 a.u.

(b) Product:

С	-0.014802	-0.115921	-0.014865
С	-0.000910	-0.073864	1.532899
С	1.492119	0.002701	1.921360
С	2.228175	-0.648235	0.734903
С	1.225621	-0.949496	-0.377617
Н	-0.944864	-0.534917	-0.411784
Н	0.082863	0.898558	-0.422410
Н	-0.438281	-0.999891	1.928504
Н	-0.589092	0.757189	1.935521
Н	1.720463	-0.575792	2.825415
Н	1.660659	-0.748287	-1.361527
Н	1.003057	-2.026749	-0.336161
0	3.423234	-0.861086	0.696919
Н	1.804865	2.072574	1.258529
С	2.037046	1.447949	2.126553
С	1.520147	2.078104	3.371502
Н	3.134195	1.367344	2.186492
Н	1.679517	1.581380	4.325170
С	0.805474	3.335275	3.465248
0	0.411870	3.821290	4.521539
0	0.606782	3.938626	2.258289
С	-0.085816	5.196776	2.300044
Н	-0.145241	5.529030	1.262877
Н	-1.086410	5.069871	2.723195
Н	0.469222	5.919014	2.905379

E(UB3LYP) = -576.440831 a.u.Zero Point Vibrational Energy = 0.208541 a.u. H(298.15K) = -576.218826 a.u.

7. Addition of to H₃C-CH=CH₂

(a) Transition state:

0	0.036190	-0.003665	0.030120
Н	0.026529	-0.000551	3.482738
С	1.039414	-0.037246	3.083217
С	2.066060	-0.417729	3.927900
Н	1.245686	0.658759	2.274968
Н	3.092595	-0.277050	3.587307
С	-0.314390	-0.873333	0.836250
С	-1.800620	-1.180542	1.022081
С	0.669681	-1.597058	1.646920
С	-2.112783	-2.181984	2.143886
Н	-2.153925	-1.574986	0.058329
Н	-2.325392	-0.227022	1.163264
С	0.306129	-2.883698	2.371609
Н	1.675386	-1.534485	1.239479
С	-1.131821	-3.358763	2.089108
Н	-3.148739	-2.531904	2.051995
Н	-2.038077	-1.690542	3.125275
Н	1.021954	-3.669677	2.094289
Н	0.424321	-2.750717	3.455931
Н	-1.410006	-4.135350	2.812779
Н	-1.183403	-3.822814	1.093355
С	1.889340	-1.104600	5.246748
Н	2.427611	-0.568687	6.042193
Н	0.834471	-1.167158	5.537044
Н	2.301431	-2.125642	5.234817

E(UB3LYP) = -427.148772 a.u.Zero Point Vibrational Energy = 0.219614 a.u. H(298.15K) = -426.917240 a.u.

(b) Product:

0	-0.240939	-0.114729	0.212504
Н	-0.128534	-0.312925	3.077612
С	0.923907	-0.210167	2.770937
С	1.816291	-0.244792	3.971064
Н	0.970555	0.781150	2.284287
Н	2.849618	-0.566259	3.838266
С	0.519532	-1.051672	0.393904
С	0.784676	-2.092687	-0.685198
С	1.253668	-1.278390	1.717431
С	0.540155	-3.523475	-0.158241
Н	1.837234	-2.000643	-0.995068
Н	0.158309	-1.863219	-1.552722
С	0.983620	-2.725284	2.207801
Н	2.329911	-1.215968	1.477755
С	1.314568	-3.779241	1.142159
Н	0.820839	-4.252575	-0.928666
Н	-0.535479	-3.658464	0.024519
Н	1.562017	-2.903707	3.122323
Н	-0.077032	-2.807532	2.489947
Н	1.084731	-4.781884	1.525546
Н	2.395428	-3.764116	0.934795
С	1.459593	0.493510	5.219781
Н	2.099676	0.206112	6.062081
Η	1.562227	1.588388	5.097941
Н	0.413866	0.316194	5.509456

E(UB3LYP) = -427.183381 a.u. Zero Point Vibrational Energy = 0.221245 a.u. H(298.15K) = -426.950114 a.u.

8. Addition of to H₃CO-CH=CH₂

(a) Transition state:

0	-0.004165	-0.011465	-0.030574
Н	0.029029	-0.114603	3.417324
С	1.040578	-0.032348	3.029647
С	2.081195	-0.341185	3.875315
Н	1.209911	0.724677	2.271438
Н	3.121062	-0.118365	3.638264
С	-0.243095	-0.936320	0.759059
С	-1.688090	-1.380569	0.992484
С	0.823300	-1.586319	1.513658
С	-1.865000	-2.413509	2.115992
Н	-2.040485	-1.800030	0.038727
Н	-2.292677	-0.480537	1.163038
С	0.614453	-2.913487	2.222013
Н	1.811830	-1.399124	1.101841
С	-0.792802	-3.503721	2.006825
Н	-2.870687	-2.849931	2.064671
Н	-1.789309	-1.925424	3.098701
Н	1.374804	-3.629735	1.879464
Н	0.789970	-2.793346	3.300913
Н	-0.971650	-4.303275	2.736905
Н	-0.854531	-3.966007	1.010750
0	1.867643	-1.084223	4.992532
С	3.018541	-1.356952	5.791434
Н	2.676554	-1.973961	6.623716
Н	3.774287	-1.904633	5.213585
Н	3.451420	-0.425575	6.178107

E(UB3LYP) = -502.360602 a.u.Zero Point Vibrational Energy = 0.224585 a.u. H(298.15K) = -502.122893 a.u.

(b) Product:

0	-0.039262	-0.015281	0.017511
Н	0.011462	0.012333	2.910449
С	1.063992	0.004943	2.598716
С	1.938010	0.051305	3.804893
Н	1.218256	0.924738	2.022460
Н	3.005808	0.269630	3.726264
С	0.608574	-1.010843	0.296630
С	0.770983	-2.165016	-0.684411
С	1.299413	-1.198995	1.650972
С	0.374862	-3.512016	-0.041606
Н	1.829949	-2.209283	-0.982923
Н	0.179543	-1.946911	-1.579130
С	0.874151	-2.561288	2.256761
Н	2.378909	-1.265052	1.429289
С	1.107488	-3.729871	1.288727
Н	0.585425	-4.329658	-0.742453
Н	-0.710564	-3.520110	0.133090
Н	1.414996	-2.720596	3.195474
Н	-0.192633	-2.510262	2.521508
Н	0.774502	-4.667960	1.751652
Н	2.186292	-3.840420	1.099579
0	1.567008	-0.743853	4.856386
С	2.396841	-0.652530	6.009061
Н	2.002298	-1.362933	6.738391
Н	3.435773	-0.916552	5.764456
Н	2.368365	0.362440	6.426329

E(UB3LYP) = -502.394255 a.u.Zero Point Vibrational Energy = 0.227277 a.u. H(298.15K) = -502.154097 a.u.

(a) Transition state:

0	0.767734	-0.445484	-0.803238
Н	0.135271	-0.213514	2.480705
С	1.137791	0.171469	2.321654
С	1.998964	0.256918	3.394774
Н	1.266375	0.843126	1.478709
Н	2.945213	0.783778	3.310800
С	1.778581	-0.355996	4.709112
0	2.556661	-0.255111	5.645787
0	0.605946	-1.042459	4.796421
С	0.318821	-1.622222	6.080834
Н	-0.645349	-2.118681	5.965265
Н	1.093802	-2.341768	6.359270
Н	0.261981	-0.843310	6.846189
С	0.738148	-1.335526	0.051368
С	-0.443923	-2.298677	0.125493
С	1.829545	-1.477720	1.026412
С	-0.409707	-3.252849	1.328850
Н	-0.430433	-2.874030	-0.811651
Н	-1.364546	-1.702356	0.095354
С	2.022639	-2.749127	1.826076
Н	2.723677	-0.921922	0.755893
С	0.994310	-3.847117	1.489469
Н	-1.154512	-4.046360	1.190805
Н	-0.688217	-2.719048	2.248377
Н	3.043425	-3.120623	1.660171
Н	1.966572	-2.523687	2.899104
Н	1.008915	-4.612358	2.274937
Н	1.279493	-4.350512	0.554372

E(UB3LYP) = -615.720695 a.u.Zero Point Vibrational Energy = 0.235263 a.u. H(298.15K) = -615.470765 a.u.

(b) Product:

0	0.152215	0.014487	-0.162970
Н	0.182540	0.312492	2.719678
С	1.224401	0.185192	2.409958
С	2.134572	0.243346	3.586810
Н	1.436969	1.038161	1.743401
Н	3.173744	-0.058753	3.479225
С	1.795554	0.734299	4.907107
0	2.590621	0.790881	5.841690
0	0.497110	1.131887	5.020222
С	0.111054	1.636700	6.308198
Н	-0.940230	1.909652	6.208537
Н	0.239406	0.868139	7.075967
Н	0.713106	2.510555	6.573233
С	0.698629	-1.006036	0.220763
С	0.742534	-2.267381	-0.629639
С	1.383876	-1.108212	1.587518
С	0.258752	-3.504034	0.157294
Н	1.787199	-2.426600	-0.939589
Н	0.149282	-2.096959	-1.533179
С	0.880745	-2.369118	2.336404
Н	2.455134	-1.264386	1.370506
С	1.005882	-3.643651	1.490509
Н	0.387945	-4.403403	-0.457382
Н	-0.819224	-3.408024	0.350214
Н	1.438724	-2.474479	3.275179
Н	-0.172192	-2.215052	2.615767
Н	0.616459	-4.501767	2.052995
Н	2.068660	-3.853226	1.296370

E(UB3LYP) = -615.760767 a.u.Zero Point Vibrational Energy = 0.237720 a.u. H(298.15K) = -615.508538 a.u.

¹H and ¹³C-NMR spectras

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

- ³ Curran, D. P.; Chang, C. T. J. Org. Chem. 1989, 54, 3140-3157.
- ⁴ Evans, R. D.; Schauble, J. H Synthesis 1986, 727-730.
- ⁵ Ghera, E.; Yechezkel, T.; Hassner, A. J. Org. Chem. **1990**, 55, 5977-82
- ⁶ (a) Du, Y.; Lu, X.; Yu, Y. J. Org. Chem. 2002, 67, 8901-8905. (b) Du, Y.; Lu, X. J. Org. Chem. 2003, 68, 6463-6465.
- ⁷ (a) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648. (b) Lee, C. ; Yang, W. ; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785. (c) Stephens, P. J. ; Devlin, F. J. ; Chabalowski, C. F. ; Frisch, M. J. *J. Phys. Chem.* **1994**, *98*, 11623.

- ⁹ Gaussian 03, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
- ¹⁰ Friedrich, E.; Kalinowski, H. O.; Lutz, W. *Tetrahedron* **1980**, *36*, 1051.
- ¹¹ (a) Markó, I. E.; Ates, A. Synlett **1999**, 1033. (b) Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel, Y.; Vanherck, J.-C.; Markó, I. E. Tetrahedron Lett. **2003**, *59*, 8989.
- ¹² Ghera, E.; Yechezkel, T.; Hassner, A. J. Org. Chem. 1990, 55, 5977.

¹ Sha, C. K.; Young, J. J.; Jean, T. S. J. Org. Chem. 1987, 52, 3919-3920.

² Dalla Cort, A. J. Org. Chem. 1991, 56, 6708-6709.

⁸ For a detailed account on these types of basis sets, see e.g. Hehre, W. J.; Radom, L.; Schleyer, P. v. R ; Pople, J. A. *Ab Initio Molecular Orbital Theory* (Wiley, New York, 1986).