Supplementary Information

Electrochemical Assay of Superoxide Based on Biomimic Enzyme at High Conductive TiO₂ Nanoneedles: From Principle to Applications in Living Cells

Yang Tian*, Yongping Luo, Qi Rui

Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China

1. Experimental details

- 2. Electrochemical properties of $Mn_2(PO_4)_3$ at different matrixes
- 3. Electrochemical reaction process of $Mn_2(PO_4)_3$ at Nafion-modified TiO₂

nanoneedles

4. Selectivity of the present O₂⁻ biosensor

1. Experimental details

Reagents and Materials. Manganese sulfate and potassium phosphate tribasic trihydrate were obtained from Shanghai Meixing Chemical Technology Co. Ltd (Shanghai, China) and Sinopharm Chemical Reagent Co. Ltd (Shanghai, China), respectively, and used without further purification. Other reagents were of analytical grade and used as received. ITO-coated glass plates with a square resistance of ~10 Ω cm⁻² were obtained from Shenzhen Nanbo Display Technology Co. Ltd. (Shenzhen, China). All the solutions were prepared with Milli-Q water and were deaerated with high purity nitrogen before experiments. All electrochemical experiments were carried out at room temperature.

*Fabrication and Modification of TiO*₂ *Nanoneedles and* $Mn^{2+}/Nafion/TiO_2$ *Films.* ITO-coated glass plates were thoroughly cleaned by sonication for 30 min in the following solvents successively: soapy water, neat ethanol, 1 M NaOH and water. A TiO₂ nanoneedle film was prepared as follows: an ITO-coated glass plate was coated with a high conductive (~10 Ω cm⁻²) nano-TiO₂ sol (Ishihara Sangyo Kaisha, FT-2000), and then sintered at 723 K for 1 h. Nafion-modified or Mn²⁺-Nafion modified TiO₂ films were prepared by spin-coating 1 ml 0.5% (wt) nafion or Mn²⁺-nafion composites (1 ml 0.5% nafion (wt) mixed with 10 ml 500 mM MnSO₄) onto the TiO₂ nanoneedle surface, respectively, and labeled as Nafion/TiO₂ or Mn²⁺/Nafion/TiO₂ film.

Apparatus and Measurements. A CHI 660 and CHI 832 electrochemical work stations (CH Instruments) were employed in all electrochemical measurements. The reference electrode was a KCl saturated Ag|AgCl electrode, while the auxiliary electrode was a platinum wire. SEM images were taken by a Quanta 200 FEG (FEI Company). The O_2^{\bullet} solutions were prepared by the addition of aliquots of KO₂ stock solution (N₂-saturated).¹ The concentration of O_2^{\bullet} was determined by recording the reduction of ferricytochrome *c* spectrophotometrically and using the extinction coefficient (21.1 mM⁻¹cm⁻¹) of ferrocytochrome *c* at 550 nm.² After a stable background current was obtained under the applied potential conditions, KO₂ was pipetted into the PBS to generate O_2^{\bullet} . The introduction of KO₂ into the electrolyte solution produced a rapid and obvious

increase in the anodic current. Well-defined steady-state current responses were obtained at both 600 and 0 mV, and the currents increased stepwise with successive additions of KO₂. The steady-state currents at 600 and 0 mV were proportional to the rate of O_2^{\bullet} generation in the examined range. The calibration plots were obtained from these data.

Cell Culture and Detection of O_2^{-} *Released from Living Cells.* Chinese hamster normal (HEK 293T) and cancer (CHO) ovary cell lines were obtained from Tongji Hospital (Shanghai, China) and cultured in flasks at 37°C. The medium contained 10% fetal bovine serum (FBS) in RPMI-1640 supplemented with 2 mM L-glutamine, 50 IU mL⁻¹ penicilin, and 50 µg mL⁻¹ streptomycin. The medium was changed every third day. For cell adhesion, 0.5 mL of cells at a concentration of 2.0×10^5 cells mL⁻¹ was directly plated onto the Nafion/TiO₂ film and Mn²⁺/Nafion/TiO₂ film for the electrochemical experiments. The adhered cells were fixed with 2% glutaraldehyde for 20 min at room temperature. For the detection of O_2^{--} released from living cells, the geometric surface area of nanostructured TiO₂ film was fabricated to be 2 mm in width and 10 mm in length. Real sample measurements were performed in 100 mM K₃PO₄ containing 100 mM glucose.

2. Electrochemical properties of Mn₂(PO₄)₃ at different matrixes

Matrixes	$E^{0'}$ (mV)	$k_{\rm s}~({\rm s}^{-1})$	$lpha_{ m c}$
Glassy carbon electrode	555.6	0.12	0.42
Cysteine-modified gold	450.1	0.51	0.48
electrode			
Spherical TiO ₂ film	540.3	0.05	0.44
Mn ²⁺ /Nafion/TiO ₂ film	552.4	7.03	0.52

Table S1. Electrochemical Properties of Mn₂(PO4)₃ at Different Matrixes

3. Electrochemical reaction process of Mn₂(PO₄)₃ at Nafion/TiO₂ film

Figure S1. CVs obtained at $Mn^{2+}/Nafion/TiO_2$ Film in 100 mM K₃PO₄ (pH 7.0) at 10, 20, 50, 100, 200, 300, 400, 500 mV s⁻¹.

Figure S2. Relationship between peak currents (I_p) and scan rates (v).

Both anodic and cathodic peak currents increase with the increasing potential scan rate (Figure S1), and are proportional to the scan rate (Figure S2), as expected for an electrochemical process with a surface-confined species. According to Laviron's procedure,³ the relevant kinetic parameters of the electrode reaction, i.e. the rate constant of the electrochemical process (k_s) and cathodic transfer coefficients (α_c), were calculated: $k_s = 7.03\pm0.64$ s⁻¹, $\alpha_c = 0.52\pm0.02$ at the nanostructured TiO₂ surface.

Electrochemical behaviors of $Mn^{2+}/Nafion/TiO_2$ Film in 100 mM K₃PO₄ with different pH values were also investigated. As shown in Figure S3, the formal potential ($E^{0^{\circ}}$) of $Mn^{2+}/Nafion/TiO_2$ Film decreased with the increasing pH value. In addition, the slope of $E^{0^{\circ}}/pH$ is near 59 mV/pH, indicating that the electrochemical process is one electron – one proton.

Figure S3. Relationship between the formal potential ($E^{0'}$) of Mn²⁺/Nafion/TiO₂ Film in 100 mM K₃PO₄ and pH.

4. Selectivity of the present O₂[•] biosensor

Table S2. Current responses of $Mn^{2+}/Nafion/TiO_2$ Film for the estimation of O_2^{-} against the diverse interferents.

Applied	Current / nA												
V vs.	O ₂	H_2O_2	Fe ³⁺	Ca ²⁺	Mg^2	Na^+	K^+	Zn ²⁺	UA	AA	DA	Cys	O ₂
Ag AgCl	1 µM	2.5 μΜ	5 μΜ	2.5 μΜ	5 μΜ	5 μΜ	5 μΜ	5 μΜ	1µM	1µM	1µM	5 μΜ	200 µM
0.0	49	0.79	0.86	0.45	0.22	0	0	0	0	0	0	0	0.3
		$(1.61)^{a}$	(1.76)	(0.92)	(0.45)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0.61)
0.6	42	0	0.20	0	0	0	0	0	0.22	5.73	10.42	1.94	0
		(0)	(0.48)	(0)	(0)	(0)	(0)	(0)	(0.52)	(13.64)	(24.81)	(4.62)	(0)

a) The values given in the parentheses are percentages with respect to the current for O_2 .

References

- [1] J. S. Valentine and . B. Curtis, J. Am. Chem. Soc. 1975, 97, 224.
- [2] J. M. McCord and I. Fridovich, J. Biol. Chem. 1969, 244, 6049.
- [3] E. Laviron, J. Electroanal. Chem. 1979, 101, 19-28.