ELECTRONIC SUPPLEMENTARY INFORMATION

Rapid Screening for Asymmetric Catalysts: Efficient Connection of Two Different Catalytic Asymmetric Reactions

Kazuhiro Yoshida,* Takeharu Toyoshima, Naohisa Akashi, Tsuneo Imamoto, and Akira Yanagisawa*

Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Table of Contents

Table of Contents	p.1
General	p.2
Materials	p.2
Procedures for the Preparation of 1	p.2
Procedures for the Screening for Asymmetric Catalysts 2 by Connecting Two Reactions	p.7
Procedures for the Asymmetric Ring Opening of 1 with Dialkylzinc Catalyzed by $PdCl_2((R,R)-t-Bu-QuinoxP^*)$	p.8
Procedures for the Asymmetric Addition of Diethylzinc to Aldehydes 7 Catalyzed by 2	p.9
<i>Table 1</i> . Relationships between Enantioselectivity of the Ethylation Product 8a and Enantiomeric Excess of 3i	p.12
References	p.13
Spectra (¹ H and ¹³ C NMR) of New Compounds	p.14
Chiral HPLC Traces	p.25

General. All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen. NMR spectra were recorded on a JEOL JNM LA-500 spectrometer (500 MHz for ¹H and 125 MHz for ¹³C) and LA-400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C). Chemical shifts are reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR and chloroform-d (δ 77.0) for ¹³C NMR. HPLC analyses were performed using Shimadzu LC-10AD VP pump, SPD-10A VP UV detector, and Shimadzu CTO-10AC VP column oven with appropriate chiral columns.

Materials. THF was distilled from sodium benzophenone-ketyl under argon prior to use. Et₂O was distilled from sodium benzophenone-ketyl under argon prior to use. Toluene was distilled from sodium benzophenone-ketyl under nitrogen and stored in a glass flask with a Teflon stopcock under nitrogen. Dichloromethane was distilled from CaH₂ under nitrogen and stored in a glass flask with a Teflon stopcock under nitrogen. Hexane was distilled from sodium benzophenone-ketyl under nitrogen and stored in a glass flask with a Teflon stopcock under nitrogen. 1,4-Dialkoxy-2-bromobenzenes¹ and PdCl₂((R,R)-t-Bu-QuinoxP*)² were prepared according to the reported procedures. Diisopropylamine, *n*-buthyllithium solution, furan, pyrrole, triethylamine, benzoyl chloride, benzenesulfonyl chloride, p-toluenesulfonyl chloride, methanesulfonyl chloride, 1,2-dibromobenzene, dialkylzinc solutions, benzaldehyde, 2-naphthaldehyde, 3-methoxybenzaldehyde, 3-chlorobenzaldehyde, 4-methylbenzaldehyde, 4-chlorobenzaldehyde, and 3-phenylpropionaldehyde were used as received.

Procedures for the Preparation of 1

1,4-Dihydro-5,8-dimethoxy-1,4-epoxynaphthalene: To a mixture of LDA (1.1 mmol) and furan (15 ml) in THF (15ml) was slowly added a solution of 1-bromo-2,5-dimethoxybenzene (10 mmol) in THF (5 ml) at -78 °C under nitrogen. After stirring for 1.5 h at the same temperature, the mixture was quenched by addition of H₂O and left to warm up. The mixture was extracted with Et₂O, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by recrystallization to give the oxabenzonorbornene. This product was characterized by comparison of the spectroscopic data with those reported previously.³

General Procedure A. To a mixture of diisopropylamine (13 mmol) and pyrrole (10 mmol) in THF (11.5 ml) was slowly added *n*-BuLi (1.55 M in hexane, 26 mmol, 16.8 ml) at -78 °C under nitrogen. After stirring for 10 min at the same temperature, a solution of 1,4-dialkoxy-2-bromobenzene in THF (8.5 ml) was slowly added to the mixture. After stirring for 1.5 h, the mixture was quenched by addition of H₂O and left to warm up. The mixture was extracted with Et₂O, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel column chromatography (AcOEt, then MeOH) to give corresponding azabenzonorbornene. To a solution of the azabenzonorbornene in CH₂Cl₂ were added triethylamine (1.0 eq) and protective reagent (1.0 eq). After stirring for 1.5 h, the mixture was quenched by addition of H₂O, extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel column chromatography or reprecipitation to give desired *N*-protected azabenzonorbornene.

9-Benzoyl-5,8-dimethoxy-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; benzoyl chloride was used; ¹H NMR (CDCl₃) δ 3.72 (br s, 3H), 3.82 (br s, 3H), 5.77 (br s, 1H), 6.23 (br s, 1H), 6.54-6.59 (m, 2H), 6.92-6.94 (m, 1H), 7.21-7.22 (m, 1H), 7.39-7.55 (m, 5H); ¹³C NMR (CDCl₃) δ 56.23, 56.37, 61.43, 65.44, 111.13, 111.48, 127.89, 128.36, 130.83, 134.44, 136.50, 136.58, 142.23, 144.78, 147.39, 147.40, 148.32, 148.35, 167.00; HRMS (FAB) calcd for C₁₉H₁₇O₃N (M⁺) 307.1208, found 307.1200.

9-Methanesulfonyl-5,8-dimethoxy-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; methanesulfonyl chloride was used; ¹H NMR (CDCl₃) δ 2.39 (s, 3H), 3.79 (s, 6H), 5.68 (t, *J* = 1.5 Hz, 2H), 6.58 (s, 2H), 7.11 (t, *J* = 1.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 39.00, 56.23, 65.13, 111.67, 135.77, 143.03, 148.37; HRMS (FAB) calcd for C₁₃H₁₅O₄NS (M⁺) 281.0722, found 281.0712.

9-Benzenesulfonyl-5,8-dimethoxy-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; benzenesulfonyl chloride was used; ¹H NMR (CDCl₃) δ 3.66 (s, 6H), 5.63 (s, 2H), 6.19 (s, 2H), 6.94 (s, 2H), 7.22 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (CDCl₃) δ 55.88, 65.03, 110.99, 128.10, 128.29, 131.95, 135.03, 137.43, 142.64, 148.02; HRMS (FAB) calcd for C₁₈H₁₇O₄NS (M⁺+H) 344.0957, found 344.0948.

5,8-Dimethoxy-9-(4-toluenesulfonyl)-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; *p*-toluenesulfonyl chloride was used; ¹H NMR (CDCl₃) δ 2.32 (s, 3H), 3.67 (s, 6H), 5.62 (t, *J* = 1.5 Hz, 2H), 6.23 (s, 2H), 6.91 (t, *J* = 1.5 Hz, 2H), 7.02 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 21.46, 55.92, 65.05, 110.85, 128.10, 128.94, 134.62, 135.31, 142.58, 142.74, 148.04; HRMS (FAB) calcd for C₁₉H₂₀O₄NS (M⁺+H) 358.1113, found 358.1104.

9-(4-Toluenesulfonyl)-1,4-dihydro-1,4-epiazanonaphthalene: To a solution of pyrrole (24.0 mmol) in THF (40 ml) was slowly added *n*-BuLi (1.55 M in hexane, 44.0 mmol, 28.4 ml) at -78 °C under nitrogen. After stirring for 10 min at the same temperature, 1,2-dibromobenzene was slowly added to the mixture. After stirring for 1.5 h, the mixture was quenched by addition of H₂O and left to warm up. The mixture was extracted with Et₂O, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel column chromatography (AcOEt, then MeOH) to give azabenzonorbornene. To a solution of the azabenzonorbornene (0.30 mmol) in CH₂Cl₂ (2 ml) were added triethylamine (0.30 mmol) and *p*-toluenesulfonyl chloride (0.30 mmol). After stirring for 1.5 h, the mixture was quenched by addition of H₂O, extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by reprecipitation to give the desired product. This product was characterized by comparison of the spectroscopic data with those reported previously.⁴

5,8-Diethoxy-9-(4-toluenesulfonyl)-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; *p*-toluenesulfonyl chloride was used; ¹H NMR (CDCl₃) δ 1.36 (t, *J* = 7.0 Hz, 6H), 2.32 (s, 3H), 3.80 (dq, *J* = 9.4, 7.0 Hz, 2H), 3.91 (dq, *J* = 9.4, 7.0 Hz, 2H), 5.63 (t, *J* = 1.5 Hz, 2H), 6.20 (s, 2H), 6.89 (t, *J* = 1.5 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 15.04, 21.46, 64.49, 65.15, 112.18, 128.11, 128.96, 134.76, 135.50, 142.42, 142.72, 147.35; HRMS (FAB) calcd for C₂₁H₂₄O₄NS (M⁺+H) 386.1426, found 386.1440.

5,8-Bisbenzyloxy-9-(4-toluenesulfonyl)-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; *p*-toluenesulfonyl chloride was used; ¹H

NMR (CDCl₃) δ 2.27 (s, 3H), 4.85 (d, J = 11.6 Hz, 2H), 4.90 (d, J = 11.9 Hz, 2H), 5.63 (t, J = 1.8 Hz, 2H), 6.27 (s, 2H), 6.80 (t, J = 1.8 Hz, 2H), 6.92 (d, J = 8.2 Hz, 2H), 7.34-7.44 (m, 12H); ¹³C NMR (CDCl₃) δ 21.45, 65.16, 71.03, 112.75, 127.41, 128.09, 128.60, 128.99, 134.56, 136.06, 136.95, 142.50, 142.74, 147.44; HRMS (FAB) calcd for C₃₁H₂₇O₄NS (M⁺) 509.1661, found 509.1663.

5,8-Bisdecyloxy-9-(4-toluenesulfonyl)-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; *p*-toluenesulfonyl chloride was used; ¹H NMR (CDCl₃) δ 0.89 (t, *J* = 7.1 Hz, 6H), 1.29-1.47 (m, 28H), 1.69-1.75 (m, 4H), 2.31 (s, 3H), 3.71 (dt, *J* = 9.2, 6.8 Hz, 2H), 3.82 (dt, *J* = 9.2, 6.5 Hz, 2H), 5.62 (t, *J* = 1.7 Hz, 2H), 6.18 (s, 2H), 6.91 (t, *J* = 1.7 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 12.69, 21.25, 24.64, 27.89, 28.00, 28.01, 28.17, 30.46, 63.67, 67.62, 110.71, 126.72, 127.53, 133.24, 133.88, 141.12, 141.24, 146.14; HRMS (FAB) calcd for C₃₇H₅₅O₄NS (M⁺) 609.3852, found 609.3859.

5,8-Bismethoxymethoxy-9-(4-toluenesulfonyl)-1,4-dihydro-1,4-epiazanonaphthalene: The reaction was carried out following the General Procedure A; *p*-toluenesulfonyl chloride was used; ¹H NMR (CDCl₃) δ 2.32 (s, 3H), 3.49 (s, 6H), 4.95 (d, *J* = 7.0 Hz, 2H), 5.01 (d, *J* = 7.0 Hz, 2H), 5.64 (t, *J* = 1.8 Hz, 2H), 6.41 (s, 2H), 6.92 (t, *J* = 1.9 Hz, 2H), 7.04 (d, *J* = 7.9 Hz, 2H), 7.44 (d, *J* = 7.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 21.48, 56.10, 65.29, 95.58, 115.61, 128.14, 129.09, 134.63, 136.30, 142.62, 142.97, 146.74; HRMS (FAB) calcd for C₂₁H₂₃O₆NS (M⁺) 417.1246, found 417.1234.

9-Benzenesulfonyl-5,8-bismethoxymethoxy-1,4-dihydro-1,4-epiazanonaphthalene:

The reaction was carried out following the General Procedure A; benzenesulfonyl chloride was used; ¹H NMR (CDCl₃) δ 3.49 (s, 6H), 4.94 (d, *J* = 6.7 Hz, 2H), 5.01 (d, *J* = 6.7 Hz, 2H), 5.66 (t, *J* = 1.8, Hz, 2H), 6.38 (s, 2H), 6.94 (t, *J* = 1.8 Hz, 2H), 7.22-7.26 (m, 2H), 7.37 (tt, *J* = 7.3, 1.2 Hz, 1H), 7.56 (dd, *J* = 7.3, 1.2 Hz, 2H). ¹³C NMR (CDCl₃) δ 56.09, 65.23, 95.50, 115.69, 128.10, 128.42, 132.14, 136.02, 137.40, 142.63, 146.67; HRMS (FAB) calcd for C₂₀H₂₂O₆NS (M⁺+H) 404.1168, found 404.1163.

Procedures for the Screening for Asymmetric Catalysts 2 by Connecting Two Reactions

General Procedure B. To a solution of $PdCl_2((R,R)-t$ -Bu-QuinoxP*) (0.00030 mmol) and **1** (0.0100 mmol) in toluene (0.5 ml) was added dialkylzinc (1.0 M in hexane, 0.033 ml, 0.033 mmol) under nitrogen. After stirring at 90 °C for 6 h, the mixture was cooled to room temperature and thoroughly pumped up under vacuum. To the residue were added hexane (4.0 ml), diethylzinc (1.0 M in hexane, 0.690 ml, 0.690 mmol), and benzaldehyde **7a** (0.340 mmol). The reaction mixture was stirred overnight at 30 °C. The mixture was then quenched by addition of 1N HCl aq and extracted with AcOEt three times. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by PTLC on silica gel (EtOAc/hexane = 1/4) to give 1-phenyl-1-propanol (**8a**). The ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 98/2, 0.5 mL/min, $t_1 = 26.0 min (major;$ *R* $-enantiomer), <math>t_2 = 30.8 min (minor;$ *S*-enantiomer).⁵

Procedures for the Asymmetric Ring Opening of 1 with Dialkylzinc Catalyzed by PdCl₂((*R*,*R*)-*t*-Bu-QuinoxP*)

General Procedure C. To a mixture of $PdCl_2((R,R)-t$ -Bu-QuinoxP*) (0.0060 mmol) and 1 (0.200 mmol) in toluene (5.0 ml) was added dimethylzinc (1.0 M in hexane, 0.600 ml, 0.600 mmol) under nitrogen. After stirring at 90 °C for 6 h, the mixture was cooled to room temperature and quenched by addition of few drops of water. The resulting mixture was stirred for 1.5 h, filtered through a short plug of Celite, and concentrated under vacuum. The residue was purified by PTLC on silica gel (EtOAc/hexane = 1/2) to give **3**.

N-(5,8-Bisbenzyloxy-2-methyl-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfon-

amide (3i): The reaction was carried out following the General Procedure C; 91% yield; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 9/1, 0.5 mL/min, $t_1 = 38.6$ min (major), $t_2 = 53.8$ min (minor); 95% ee; ¹H NMR (CDCl₃) δ 1.35 (d, J = 7.3 Hz, 3H), 2.29 (s, 3H), 2.59-2.63 (m, 1H), 4.60 (d, J = 12.2 Hz, 1H), 4.74 (d, J = 12.2 Hz, 1H), 4.87-5.03 (m, 4H), 5.70 (d, J = 9.8 Hz, 1H), 6.48 (d, J = 8.9 Hz, 1H), 6.70 (d, J = 8.9 Hz, 1H), 6.94 (d, J = 7.7 Hz, 2H), 6.97 (dd, J = 9.8, 3.1 Hz, 1H), 7.23-7.42 (m, 12H); ¹³C NMR (CDCl₃) δ 15.98, 21.29, 34.16, 48.75, 69.81, 70.87, 111.58, 112.60, 122.11, 122.77, 124.62, 126.44, 126.66, 127.25, 127.52, 127.85, 128.34, 128.47, 128.67, 132.21, 136.98, 137.09, 139.07, 141.87, 148.40, 148.50; HRMS (FAB) calcd for C₃₂H₃₁NO₄S (M⁺) 525.1974, found 525.1975; a single reprecipitation in hexane increased the ee to >99% ee; [α]²⁰_D +62.2 (*c* 1.00, CHCl₃); mp =

54-55 °C.

N-(5,8-Bismethoxymethoxy-2-methyl-1,2-dihydronaphthalen-1-yl)-benzenesulfon-

amide (3m): The reaction was carried out following the General Procedure C; 93% yield; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 9/1, 0.5 mL/min, $t_1 = 18.9$ min (major), $t_2 = 23.8$ min (minor); 93% ee; ¹H NMR (CDCl₃) δ 1.34 (d, J = 7.7 Hz, 3H), 2.61-2.64 (m, 1H), 3.34 (s, 3H), 3.46 (s, 3H), 4.58 (d, J = 7.0 Hz, 1H), 4.65 (d, J = 6.7 Hz, 1H), 4.87 (ddd, J = 9.8, 4.9, 1.2 Hz, 1H), 5.04 (d, J = 9.8 Hz, 1H), 5.08-5.12 (m, 2H), 5.71 (dt, J = 9.8, 1.5 Hz, 1H), 6.73 (d, J = 9.2 Hz, 1H), 6.88 (d, J = 8.9 Hz, 1H), 6.90 (dd, J = 9.8, 3.1 Hz, 1H), 7.33 (t, J = 7.9 Hz, 2H), 7.43 (tt, J = 7.7, 1.3 Hz, 1H), 7.63 (dd, J = 8.0, 1.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 16.05, 34.05, 48.90, 55.83, 56.03, 94.48, 95.35, 114.15, 115.50, 121.97, 123.09, 124.59, 126.28, 128.33, 131.62, 132.27, 142.34, 147.55, 148.00; HRMS (FAB) calcd for C₂₁H₂₅NNaO₆S (M⁺+Na) 442.1300, found 442.1279; >99% ee of **3m** was obtained by separation using preparative HPLC (Daicel Chiralcel OD-H, 2 cm x 25 cm, hexane/i-PrOH = 9/1, 5.0 mL/min; [α]²⁰_D +63.7 (*c* 1.00, CHCl₃).

Procedures for the Asymmetric Addition of Diethylzinc to Aldehydes 7 Catalyzed by 2

General Procedure D. A solution of 3 (1.0 M in AcOEt, 1.00 mL, 0.0100 mmol) was introduced to a Schlenk tube and concentrated under vacuum to remove AcOEt. To the residue were added hexane (4.0 mL) and diethylzinc (1.0 M in hexane, 692 μ l, 0.692 mmol) at room temperature under nitrogen. After stirring for 1 h, the mixture was added aldehyde 7 (0.342 mmol) and stirred for 24 h (or 6 h) at 30 °C. The mixture was then quenched by addition of 1N HCl aq and extracted with

AcOEt three times. The combined organic layers were washed with brine, dried over Na_2SO_4 , and concentrated under vacuum. The residue was purified by PTLC on silica gel (EtOAc/hexane = 1/4) to give **8**.

(*R*)-1-Phenylpropanol (8a): The reaction was carried out following the General Procedure D; 89% yield; this product was characterized by comparison of the spectroscopic data with those reported previously⁶; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 98/2, 0.5 mL/min, $t_1 = 26.0$ min (major; *R*-enantiomer), $t_2 = 30.8$ min (minor; *S*-enantiomer)⁵; 84% ee; $[\alpha]^{20}_{D}$ +40.0 (*c* 1.00, CHCl₃)⁵.

(*R*)-1-(2-Naphtyl)-1-propanol: The reaction was carried out following the General Procedure D; 99% yield; this product was characterized by comparison of the spectroscopic data with those reported previously⁷; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 98/2, 0.5 mL/min, $t_1 = 62.9$ min (minor; *S*-enantiomer), $t_2 = 70.2$ min (major; *R*-enantiomer)⁵; 80% ee; $[\alpha]^{20}_{D}$ +31.7 (*c* 1.00, CHCl₃)⁵.

(*R*)-1-(3-Methoxyphenyl)-1-propanol: The reaction was carried out following the General Procedure D; 98% yield; this product was characterized by comparison of the spectroscopic data with those reported previously⁷; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 98/2, 1.0 mL/min, $t_1 = 22.5$ min

(major; *R*-enantiomer), $t_2 = 28.0 \text{ min (minor; } S\text{-enantiomer)}^8$; 82% ee; $[\alpha]^{20}_{D} + 32.0 (c \ 1.00, \text{CHCl}_3)^8$.

(*R*)-1-(3-Chlorophenyl)-1-propanol: The reaction was carried out following the General Procedure D; 80% yield; this product was characterized by comparison of the spectroscopic data with those reported previously⁷; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel AD-H, hexane/i-PrOH = 98/2, 1.0 mL/min, $t_1 = 15.5$ min (major; *R*-enantiomer), $t_2 = 17.2$ min (minor; *S*-enantiomer)⁹; 82% ee; $[\alpha]^{20}_{D}$ +28.8 (*c* 1.00, CHCl₃)⁵.

(*R*)-1-(4-Methylphenyl)-1-propanol: The reaction was carried out following the General Procedure D; 88% yield; this product was characterized by comparison of the spectroscopic data with those reported previously⁶; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 1000/1, 1.0 mL/min, $t_1 = 49.0$ min (major; *R*-enantiomer), $t_2 = 63.0$ min (minor; *S*-enantiomer)¹⁰; 85% ee; $[\alpha]^{20}{}_{\rm D} + 37.2$ (*c* 1.00, CHCl₃)⁵.

(*R*)-1-(4-Chlorophenyl)-1-propanol: The reaction was carried out following the General Procedure D; 65% yield; this product was characterized by comparison of the spectroscopic data with those reported previously⁶; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 99/1, 0.5 mL/min, $t_1 = 20.8$ min (minor; *S*-enantiomer), $t_2 = 26.7$ min (major; *R*-enantiomer)¹¹; 89% ee; $[\alpha]^{20}_{D} + 34.2$ (*c* 1.00, CHCl₃)¹¹.

(*R*)-1-Phenyl-3-pentanol: The reaction was carried out following the General Procedure D; 41% yield; this product was characterized by comparison of the spectroscopic data with those reported previously¹²; the ee value was determined by HPLC analysis with a stationary phase column (Daicel Chiralcel OD-H, hexane/i-PrOH = 98/2, 1.0 mL/min, $t_1 = 16.5$ min (major; *R*-enantiomer), $t_2 = 27.0$ min (minor; *S*-enantiomer)¹²; 83% ee; $[\alpha]^{20}_{D} - 14.9$ (*c* 1.00, CHCl₃)¹².

Table 1. Relationships between Enantioselectivity of the Ethylation Product **8a** and Enantiomeric Excess of **3i**^a

		3i (3 mol %), Et ₂ Zn (2 eq)		OH	
		hexane, 30 °C, 24 h		Ph	
	7a			8a	
entry	ee ^{<i>b</i>} of 3	i (%)	yield ^c of 8a (%)	ee ^b of 8a (%)	
1	20		83	26	
2	30		76	42	
3	49		83	56	
4	85		88	71	
5	>99		89	84	

 a The reaction was carried out with benzaldehyde 7a and Et₂Zn (2 eq) in the presence of 3i (3 mol %) in hexane at 30 °C for 24 h. b

Chiral HPLC analysis.^c Isolated yield.

References

- (a) Khatyr, A.; Ziessel, R. J. Org. Chem. 2000, 65, 7814-7824. (b) Pulley, S. R.; Czakó, B. Tetrahedron Lett. 2004, 45, 5511-5514.
- 2. Imamoto, T.; Nishimura, M.; Koide, A.; Yoshida, K. J. Org. Chem. 2007, 72, 7413-7416.
- 3. Lautens, M.; Fagnou, K.; Yang, D. J. Am. Chem. Soc. 2003, 125, 14884-14892.
- 4. Kaupp, G. Chem. Ber. 1970, 103, 2288-2301.
- 5. Kang, S.-W.; Ko, D.-H.; Kim, K. H.; Ha, D.-C. Org. Lett. 2003, 5, 4517-4519.
- 6. Anderson, J. C.; Cubbon, R.; Harding, M.; James, D. S. *Tetrahedron: Asymmetry* **1998**, *9*, 3461-3490.
- 7. Yang, X.-W.; Sheng, J.-H.; Da, C.-S.; Wang, H.-S.; Su, W.; Wang, R.; Chan, A. S. C. J. Org. *Chem.* **2000**, *65*, 295-296.
- 8. Nakamura, Y.; Takeuchi, S.; Okumura, K.; Ohgo, Y. Tetrahedron 2001, 57, 5565-5571.
- 9. Bisai, A.; Singh, P. K.; Singh, V. K. Tetrahedron 2007, 63, 598-601.
- Fang, G. Y.; Wallner, O. A.; Di Blasio, N.; Ginesta, X.; Harvey, J. N.; Aggarwal, V. K. J. Am. Chem. Soc. 2007, 129, 14632-14639.
- 11. Zhong, J.; Guo, H.; Wang, M.; Yin, M.; Wang, M. Tetrahedron: Asymmetry 2007, 18, 734-741.
- 12. Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46, 7491-7494.

Spectra (¹H and ¹³C NMR) of New Compounds

ESI 18

Chiral HPLC Traces

Table 3, Entry 1

OD-H, Hexane/i-PrOH=98/2, 0.5ml/min, 254nm

Table 3, Entry 2

OD-H, Hexane/i-PrOH=98/2, 0.5ml/min, 254nm

Table 3, Entry 4

OD-H, Hexane/i-PrOH=98/2, 0.5ml/min, 254nm

保持時間	面積	Area Percent		高さ
60.849 69.449	1896587 17222599	9. 920 90. 080	-1	14742 91812
Totals	19119186	100. 000		106554

Table 3, Entry 5

1162248

100.000

18260

Table 3, Entry 6

OD-H, Hexane/i-PrOH=98/2, 1.0ml/min, 254nm

UV Results			
保持時間	面積	Area Percent	高さ
26. 478 30. 604	723324 70185	91.155 8.845	9158 988
Totals	793509	100. 000	10146

Table 3, Entry 7 AD-H, Hexane/i-PrOH=98/2, 1.0ml/min, 254nm

Table 3, Entry 8

AD-H, Hexane/i-PrOH=98/2, 1.0ml/min, 254nm

Detector 1 Results 保持時間	面積	Area Percent	高さ
18. 876 20. 687	1191950 108626	91. 648 8. 352	41884 4483
Totals	1300576	100. 000	46367

Table 3, Entry 9

OD-H, Hexane/i-PrOH=1000/1, 1.0ml/min, 254nm

Table 3, Entry 10

OD-H, Hexane/i-PrOH=1000/1, 1.0ml/min, 254nm

Detector 1 Results 保持時間	面積	Area Percent	高さ
58. 007 74. 527	2812119 295950	90. 478 9. 522	14161 1781
Totals	3108069	100. 000	15942

Table 3, Entry 11

OB, Hexane/i-PrOH=98/2, 0.5ml/min, 254nm

Table 3, Entry 12

OD-H, Hexane/i-PrOH=99/1, 0.5ml/min, 254nm

Detector 1 Results 保持時間	面積	Area Percent	高さ
59. 971 62. 380	225564 3842777	5. 544 94. 456	3077 23947
Totals	4068341	100. 000	27024

Table 3, Entry 13

OD-H, Hexane/i-PrOH=99/1, 0.5ml/min, 254nm

11471259

100.000

81779

Table 3, Entry 14 OD-H, Hexane/i-PrOH=98/2, 1.0ml/min, 254nm

Detector 1 Results 保持時間	面積	Area Percent	高さ
16. 593 27. 656	2192245 548702	79.981 20.019	64244 8965
Totals	2740947	100. 000	73209

Table 3, Entry 15

OD-H, Hexane/i-PrOH=98/2, 1.0ml/min, 254nm

