# **Supplementary information**

# Selective ion probe for Mg<sup>2+</sup> based on Au(I)•••Au(I) interactions in tripodal

# alkynylgold(I) complex with oligoether pendants

Xiaoming He, Eddie Chung-Chin Cheng, Nianyong Zhu and Vivian Wing-Wah Yam\*

Centre for Carbon-Rich Molecular and Nano-Scale Metal-Based Materials Research and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.

# **Experimental Procedure:**

## (1) Ligand synthesis and characterization



## IC<sub>6</sub>H<sub>4</sub>-*p*-(OCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>OMe

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, relative to Me<sub>4</sub>Si):  $\delta$  3.39 (3H, s, -OCH<sub>3</sub>), 3.58 (2H, t, J = 4.4 Hz, -OCH<sub>2</sub>-), 3.71 (2H, t, J = 4.4 Hz, -OCH<sub>2</sub>-), 3.85 (2H, t, J = 4.7 Hz, -OCH<sub>2</sub>-), 4.11 (2H, t, J = 4.7 Hz, -OCH<sub>2</sub>-), 6.70 (2H, d, J = 8.6 Hz, -C<sub>6</sub>H<sub>4</sub>-), 7.54 (2H, d, J = 8.6 Hz, -C<sub>6</sub>H<sub>4</sub>-). Elemental analysis, Anal. Found (%): C, 40.92; H, 4.62. Calcd. For C<sub>11</sub>H<sub>15</sub>IO<sub>3</sub>: C, 41.01; H, 4.69.

## TMSC≡CC<sub>6</sub>H<sub>4</sub>-*p*-(OCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>OMe

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, relative to Me<sub>4</sub>Si):  $\delta$  0.24 (9H, s, -SiMe<sub>3</sub>), 3.39 (3H, s, -OCH<sub>3</sub>), 3.59 (2H, t, *J* = 4.6 Hz, -OCH<sub>2</sub>-), 3.72 (2H, t, *J* = 4.6 Hz, -OCH<sub>2</sub>-), 3.86 (2H, t, *J* = 4.8 Hz, -OCH<sub>2</sub>-), 4.14 (2H, t, *J* = 4.8 Hz, -OCH<sub>2</sub>-), 6.83 (2H, d, *J* = 8.7 Hz, -C<sub>6</sub>H<sub>4</sub>-), 7.39 (2H, d, *J* = 8.7 Hz, -C<sub>6</sub>H<sub>4</sub>-). Elemental analysis, Anal. Found (%): C, 65.53; H, 8.29. Calcd. For C<sub>16</sub>H<sub>24</sub>O<sub>3</sub>Si: C, 65.71; H, 8.27.

#### HC≡CC<sub>6</sub>H<sub>4</sub>-*p*-(OCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>OMe

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, relative to Me<sub>4</sub>Si):  $\delta$  2.99 (1H, s, C=CH), 3.39 (3H, s, -OCH<sub>3</sub>), 3.58 (2H, t, *J* = 4.6 Hz, -OCH<sub>2</sub>-), 3.71 (2H, t, *J* = 4.6 Hz, -OCH<sub>2</sub>-), 3.85 (2H, t, *J* = 4.9 Hz, -OCH<sub>2</sub>-), 4.14 (2H, t, *J* = 4.9 Hz, -OCH<sub>2</sub>-), 6.85 (2H, d, *J* = 8.7 Hz, -C<sub>6</sub>H<sub>4</sub>-), 7.41 (2H, d, *J* = 8.7 Hz, -C<sub>6</sub>H<sub>4</sub>-). Elemental analysis, Anal. Found (%): C, 70.85; H, 7.39. Calcd. For C<sub>13</sub>H<sub>16</sub>O<sub>3</sub>: C, 70.89; H, 7.32.

#### (2) Complexes 1-3 synthesis and characterization

#### $[Au_3(Triphos){C=CC_6H_4-p-(OCH_2CH_2)_2OMe}_3] (1)$

To a dichloromethane solution of  $[Au(C=C-L)]_{\infty}$  (100 mg, 0.24 mmol) was added a solid sample of 1,1,1-tris(diphenylphosphinomethyl)ethane (50 mg, 0.08 mmol) under a nitrogen atmosphere. After it was stirred for 2 hours, the reaction became clear and the solvent was evaporated under reduced pressure. Recrystallization by layering *n*-hexane onto a concentrated dichloromethane solution of the product afforded **1** as white crystals. Yield: 82 mg, 53 %. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, relative to Me<sub>4</sub>Si):  $\delta$  0.76 (3H, s, -CH<sub>3</sub>), 3.39 (9H, s, -OCH<sub>3</sub>), 3.51 (6H, d, *J* = 10.6 Hz, -CH<sub>2</sub>P-), 3.57 (6H, t, *J* = 4.7 Hz, -OCH<sub>2</sub>-), 3.72 (6H, t, *J* = 4.7 Hz, -OCH<sub>2</sub>-), 3.85 (6H, t, *J* = 4.9 Hz, -OCH<sub>2</sub>-), 4.13 (6H, t, *J* = 4.9 Hz, -OCH<sub>2</sub>-), 6.80 (6H, d, *J* = 8.8 Hz, -C<sub>6</sub>H<sub>4</sub>-), 7.41 (24H, m, -PPh<sub>2</sub> and -C<sub>6</sub>H<sub>4</sub>-), 8.01 (12H, m, -PPh<sub>2</sub>). <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz, relative to 85 % H<sub>3</sub>PO<sub>4</sub>):  $\delta$  27.79. Elemental analysis, Anal. Found (%): C, 51.40; H, 4.55. Calcd. for C<sub>80</sub>H<sub>84</sub>Au<sub>3</sub>O<sub>9</sub>P<sub>3</sub>: C, 51.29; H, 4.52. FAB-MS m/z 1654 [M-L]<sup>+</sup>.

## [Au<sub>3</sub>(Triphos)(C≡CC<sub>6</sub>H<sub>4</sub>OMe-*p*)<sub>3</sub>] (2)

This was prepared according to the procedure for **1** except  $[Au(C=CC_6H_4OMe_{-p})]_{\infty}$  (80 mg, 0.24 mmol) was used instead of  $[Au(C=C-L)]_{\infty}$ . The product was recrystallized from dichloromethane-*n*-hexane to give **2** as yellow crystals. Yield 100 mg, 77 % .<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, relative to Me<sub>4</sub>Si):  $\delta$  0.77(3H, s, -CH<sub>3</sub>), 3.51 (6H, d, J = 10.7 Hz, -CH<sub>2</sub>P-), 3.80 (9H, s, -OCH<sub>3</sub>), 6.80 (6H, d, J = 8.8 Hz, -C<sub>6</sub>H<sub>4</sub>-), 7.42 (24H, m, -PPh<sub>2</sub> and -C<sub>6</sub>H<sub>4</sub>-), 8.02 (12H, m, -PPh<sub>2</sub>). <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz, relative to 85 % H<sub>3</sub>PO<sub>4</sub>):  $\delta$  26.65. Elemental analysis, Anal. Found (%): C, 50.53; H, 3.85. Calcd. For C<sub>68</sub>H<sub>60</sub>Au<sub>3</sub>O<sub>3</sub>P<sub>3</sub>: C, 50.76; H, 3.76.

FAB-MS m/z: 1479 [M-L]<sup>+</sup>, 1610 [M]<sup>+</sup>, 1807 [M+Au]<sup>+</sup>.

#### [Au<sub>3</sub>(Triphos)(C≡CPh)<sub>3</sub>] (3)

This was prepared according to the procedure for 1 except  $[Au(C=CC_6H_4Ph)]_{\infty}$  (72 mg, 0.24 mmol) [Au(C≡C-L)]<sub>∞</sub>. The was used instead of product was recrystallized from dichloromethane-*n*-hexane to give **2** as white crystals. Yield 97 mg, 80 %. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, relative to Me<sub>4</sub>Si):  $\delta$  0.79 (3H, s, -CH<sub>3</sub>), 3.52 (6H, d, J = 10.6 Hz, -CH<sub>2</sub>P-), 7.25 (9H, m, -C<sub>6</sub>H<sub>5</sub>-), 7.44 (24H, m, PPh<sub>2</sub> and -C<sub>6</sub>H<sub>5</sub>-), 8.01 (12H, m, -PPh<sub>2</sub>). <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz, relative to 85 % H<sub>3</sub>PO<sub>4</sub>): δ 26.45. Elemental analysis, Anal. Found (%): C, 50.29; H, 3.58. Calcd. For C<sub>65</sub>H<sub>54</sub>Au<sub>3</sub>P<sub>3</sub>•H<sub>2</sub>O: C, 50.79; H, 3.67. FAB-MS m/z: 1419 [M-L]<sup>+</sup>, 1520 [M]<sup>+</sup>, 1717 [M+Au]<sup>+</sup>.

#### X-Ray Crystallography of Au<sub>3</sub>(Triphos)(C≡CPh)<sub>3</sub> (3)

Crystals of complex **3** for X-ray studies were obtained by layering of *n*-hexane onto a dichloromethane solution of complex **3**. A crystal of dimensions 0.48 mm × 0.05 mm × 0.02 mm mounted in a glass capillary was used for data collection at 28 °C on a Bruker Smart CCD 1000 using graphite monochromatized Mo-K<sub> $\alpha$ </sub> radiation ( $\lambda = 0.71073$  Å). Raw frame data were integrated with SAINT<sup>1</sup> program. Semi-empirical absorption correction with SADABS<sup>2</sup> was applied.

The structure was solved by direct methods employing SHELXS-97 program<sup>3</sup> on PC. Au, P and many non-H atoms were located according to the direct methods. The positions of the other non-hydrogen atoms were found after successful refinement by full-matrix least-squares using program SHELXL-97<sup>4</sup> on PC. There were two formula units in the asymmetric unit. Two water O were also located and their occupancies were set to be 0.5 due to closure. Phenyl rings were constrained to be regular hexagon rings with bond lengths of 1.39 Å. C=C triple bonds were also restrained to be around 1.18(2) Å.

According to the SHELXL-97 program,<sup>4</sup> all 22320 independent reflections ( $R_{int}^{5}$  equal to 0.0452, 15563 reflections larger than  $4\sigma(F_0)$ ) from a total 67724 reflections were participated in the full-matrix least-square refinement against  $F^2$ . These reflections were in the range  $-31 \le h \le 35$ ,  $-13 \le k \le 17$ ,  $-35 \le l \le$ 35 with  $2\theta_{max}$  equal to 51.36°.

One crystallographic asymmetric unit consists of two formula units. In the final stage of least-squares refinement, water O atoms were refined isotroically, other non-H atoms were refined anisotropically. H atoms were generated by program SHELXL-97. The positions of H atoms were calculated based on riding mode with thermal parameters equal to 1.2 times that of the associated C atoms, and participated in the calculation of final *R*-indices<sup>6</sup>.

Convergence ((  $\Delta/\sigma$ )<sub>max</sub> = 0.001, av. 0.001) for 1073 variable parameters by full-matrix least-squares

refinement on  $F^2$  reaches to  $R_1 = 0.0498$  and  $wR_2 = 0.1189$  with a goodness-of-fit of 1.043, the parameters *a* and *b* for weighting scheme are 0.0609 and 46.01. The final difference Fourier map shows maximum rest peaks and holes of 1.420 and -0.970 eÅ<sup>-3</sup> respectively.

All experimental details are given in Table S1.

<sup>1</sup> SAINT+. SAX area detector integration program. Version 7.34A. Bruker AXS, Inc. Madison, WI.

<sup>2</sup> G. M. Sheldrick, SADABS, Empirical Absorption Correction Program. University of Göttingen: Göttingen, Germany, 2004.

<sup>3</sup> SHELXS97, Sheldrick, G. M. (1997). SHELX97. Programs for Crystal Structure Analysis (Release 97-2). University of Goetingen, Germany.

<sup>4</sup> SHELXL97, Sheldrick, G. M. (1997). SHELX97. Programs for Crystal Structure Analysis (Release 97-2). University of Goetingen, Germany.

$${}^{5}R_{\text{int}} = \Sigma |F_{0}{}^{2} - F_{0}{}^{2}(\text{mean})| / \Sigma [F_{0}{}^{2}]$$

<sup>6</sup> Since the structure refinements are against  $F^2$ , *R*-indices based on  $F^2$  are larger than (more than double) those based on *F*. For comparison with older refinements based on *F* and an OMIT threshold, a conventional index  $R_1$  based on observed *F* values larger than  $4\sigma(F_0)$  is also given (corresponding to Intensity  $\geq 2\sigma(I)$ ).  $wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[w(F_0^2)^2]\}^{1/2}$ ,  $R_1 = \Sigma||F_0| - |F_c||/\Sigma|F_0|$ , The Goodness of Fit is always based on  $F^2$ : GooF =  $S = \{\Sigma[w(F_0^2 - F_c^2)^2]/(n-p)\}^{1/2}$ , where n is the number of reflections and *p* is the total number of parameters refined. The weighting scheme is:  $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ , where *P* is  $[2F_c^2 + Max(F_0^2, 0)]/3$ .

| Empirical formula                                        | $C_{45}H_{54}A_{112}O_{0.5}P_{2}$                      |  |  |
|----------------------------------------------------------|--------------------------------------------------------|--|--|
| Formula weight                                           | 1527 90                                                |  |  |
| T K                                                      | 301 (2)                                                |  |  |
| Wavelength                                               | 0.71073 Å                                              |  |  |
| Crustal system                                           | Monoclinic                                             |  |  |
| Space group                                              |                                                        |  |  |
| Unit cell dimensions                                     | $r_{21/C}$                                             |  |  |
| Unit cell dimensions                                     | $a = 29.200(6)$ A, $a = 90^{\circ}$                    |  |  |
|                                                          | $b = 13.992(2) \text{ A}, \beta = 96.25(2)^{\circ}$    |  |  |
|                                                          | $c = 28.986(6) \text{ A}, \gamma = 90^{\circ}$         |  |  |
| Volume                                                   | $11772(4) \text{ Å}^3$                                 |  |  |
| Ζ                                                        | 8                                                      |  |  |
| Density (calculated)                                     | $1.724 \text{ g cm}^{-3}$                              |  |  |
| Absorption coefficient                                   | $7.579 \text{ mm}^{-1}$                                |  |  |
| <i>F</i> (000)                                           | 5848                                                   |  |  |
| Crystal size                                             | $0.48~mm \times 0.05~mm \times 0.02~mm$                |  |  |
| Theta range for data collection                          | 1.65 to 25.68°                                         |  |  |
| Index ranges                                             | $-31 \le h \le 35, -13 \le k \le 17, -35 \le l \le 35$ |  |  |
| Reflections collected                                    | 67724                                                  |  |  |
| Independent reflections                                  | 22320 [ $R(int) = 0.0452$ ]                            |  |  |
| Completeness to theta = $25.68^{\circ}$                  | 99.8 %                                                 |  |  |
| Absorption correction                                    | None                                                   |  |  |
| Refinement method                                        | Full-matrix least-squares on $F^2$                     |  |  |
| Data / restraints / parameters                           | 22320 / 21 / 1073                                      |  |  |
| Goodness-of-fit on $F^2$                                 | 1.043                                                  |  |  |
| Final <i>R</i> indices <sup>[a]</sup> $[I > 2\sigma(I)]$ | $R_1 = 0.0498, wR_2 = 0.1189$                          |  |  |
| <i>R</i> indices (all data)                              | $R_1 = 0.0830, wR_2 = 0.1343$                          |  |  |
| Largest diff. peak and hole                              | 1.420 and -0.970 eÅ <sup>-3</sup>                      |  |  |

| Table S1 | Crystal structure | determination | data for o | complex 3. | 0.5H <sub>2</sub> O |
|----------|-------------------|---------------|------------|------------|---------------------|
|----------|-------------------|---------------|------------|------------|---------------------|

 $[a] R_{int} = \Sigma |F_o^2 - F_o^2(mean)| / \Sigma [F_o^2], R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| \text{ and } wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}.$ 





monitored at 450 nm and 675 nm, respectively



Figure S2 UV-Vis spectral changes of complex 3 ( $1.8 \times 10^{-5}$  M) in CH<sub>2</sub>Cl<sub>2</sub>-MeOH (1:1 v/v, containing 0.1 M <sup>n</sup>Bu<sub>4</sub>NPF<sub>6</sub>) in the presence of a large excess of Mg(ClO<sub>4</sub>)<sub>2</sub>



Figure S3 UV-Vis spectral changes of complex 2 ( $1.4 \times 10^{-5}$  M) in CH<sub>2</sub>Cl<sub>2</sub>-MeOH (1:1 v/v, containing 0.1 M

 $^{n}Bu_{4}NPF_{6}$  ) upon addition of Mg(ClO<sub>4</sub>)<sub>2</sub>



Figure S4 UV-Vis spectral changes of complex 1 ( $1.5 \times 10^{-5}$  M) in CH<sub>2</sub>Cl<sub>2</sub>-MeOH (1:1 v/v, containing 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub>) upon addition of Ca(ClO<sub>4</sub>)<sub>2</sub>