Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

# Rhodium Catalyzed Enantioselective Cylization of Substituted Imidazoles via C-H

#### **Bond Activation**

Andy S. Tsai, Rebecca M. Wilson, Hitoshi Harada, Robert G. Bergman\*<sup>a</sup>, and

Jonathan A. Ellman $*^b$ 

<sup>a</sup> Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA. E-mail: <u>bergman@berkeley.edu</u>

<sup>b</sup> Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA. E-mail: <u>jellman@berkeley.edu</u>

# **Supporting Information**

|                                         | Page |
|-----------------------------------------|------|
| Experimental                            | S2   |
| Spectral Data                           | S18  |
| HPLC Traces                             | S39  |
| Crystal Structure Information for 2•HCl | S49  |
| References                              | S49  |

#### **Experimental:**

General Procedures. All organic reactions were performed under an atmosphere of N<sub>2</sub> in flame- or oven-dried glassware unless otherwise stated. All preparations for all C-H activation experiments were carried out in a N<sub>2</sub>-filled Vacuum Atmospheres inert atmosphere box (glovebox). Thin-layer chromatography was performed on Merck 60  $F_{254}$ 250-µm silica gel plates. Visualization of the developed chromatograms was performed by fluorescence quenching. Flash chromatography was carried out using Merck 60 230-240 mesh silica gel or a Biotage SP Flash Purification System (Biotage No. SP1-B1A). IR spectra were recorded on a Thermo Nicolet Avatar 370 fitted with a single bounce ZnSe ATR plate; stretching frequencies are reported in cm<sup>-1</sup> and the data shown include only major absorptions. <sup>1</sup>H, and <sup>13</sup>C NMR measurements were conducted using a Bruker AV-300, AVB-400, or DRX-500 spectrometer as noted at room temperature. NMR chemical shifts are reported in ppm and referenced to residual protonated solvent or added internal standard, and coupling constants are reported in Hz. High resolution mass spectra (HRMS) and elemental analyses were performed by the University of California, Berkeley Micro-Mass Facility using ProSpec equipped with an EI source (EI), ZAB equipped with a FAB (FAB), or LTQ Orbitrap (ESI). X-ray crystal structures were obtained by the University of California, Berkeley X-ray Crystallography Facility. Chiral HPLC analyses were performed on a Shimadzu VP Series with a Chiralcel AD-H column (250 mm x 4.6 mm) or Chiralcel AS-H (250 mm x 4.6 mm) using a flow rate of 1 mL/min. A Perkin-Elmer 241 polarimeter with a sodium lamp was used to determine specific rotations and concentrations are reported in g/dL. Melting points of the

#### Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

compounds obtained as solids were measured with a Laboratory Devices Inc. MEL-TEMP 3.0.

Materials. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Tetrahydrofuran (THF) was obtained from a Seca Solvent System by Glass Contour (solvents were passed through activated alumina columns under nitrogen pressure). (15,15',2R,2R')-1,1'-di-tert-butyl-(2,2')diphospholane ((S,S',R,R')-Tangphos) was purchased from Sigma-Aldrich. [RhCl(coe)<sub>2</sub>]<sub>2</sub> (also available from Strem Chemical) was prepared according to referenced literature procedure.<sup>1</sup> Tetrahydrofuran- $d_8$ , dioxane- $d_8$ , toluene- $d_8$  were dried over sodium/benzophenone ketyl and distilled using vacuum transfer procedures. All liquid reagents and deuterated solvents were thoroughly degassed using three freezepump-thaw cycles prior to transfer into the glovebox. Racemic samples of the cyclized products for chiral HPLC analysis were prepared by using PCy<sub>3</sub> as a ligand instead of (S,S',R,R')-Tangphos.<sup>2</sup>



1-(2-methylenebutyl)-1H-benzo[d]imidazole. To an ice-water cooled solution of 1*H*-benzimidazole (132 mg, 1.13 mmol) in THF (5 mL) was added NaH (60%/mineral oil) (81 mg, 2.0 mmol). The mixture was stirred under the same conditions for 15 minutes. 3-bromo-2-ethyl-propene (200 mg, 1.35 mmol) was added as a solution in THF (2mL) and the mixture was stirred at rt for 18 h. The reaction was quenched with sat. NaHCO<sub>3</sub> (aq), and the resulting mixture was extracted three times with ethyl acetate. The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated. The residue was purified by silica gel column chromatography (200:10:1 CH<sub>2</sub>Cl<sub>2</sub>: MeOH: NH<sub>4</sub>OH) to give the title compound as a clear oil (126 mg, 60% yield). ;  $v_{max}(film)/cm^{-1}1493$ , 1457; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.88 (s, 1H), 7.86-7.81 (m, 1H), 7.39-7.32 (m, 1H), 7.31-7.23 (m, 2H), 4.99 (s, 1H), 4.81 (s, 1H), 4.71 (s, 2H), 1.99 (q, 2H, *J* = 7.4 Hz), 1.06 (t, 3H, *J* = 7.4 Hz); <sup>13</sup>C{1H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  145.3, 144.1, 143.7, 134.3, 123.2, 122.4, 120.6, 112.0, 110.3, 50.3, 26.4, 12.1; HRMS (FAB+) Calcd for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub> [MH]<sup>+</sup> 187.1235; Found 187.1233.



**1-(2-Phenylallyl)-1***H***-benzoimidazole.** To a ice-water cooled solution of 1*H*-benzimidazole (249 mg, 2.11 mmol) in THF (10 mL) was added NaH (60%/mineral oil) (128 mg, 3.20 mmol). The mixture was stirred under the same conditions for 15 minutes. (1-bromomethylvinyl)benzene (389 mg, 1.98 mmol) was added as a solution in THF (3 mL), and the mixture was stirred at rt for 18 h. The reaction was quenched with sat. NaHCO<sub>3</sub> (aq), and the resulting mixture was extracted three times with ethyl acetate. The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated. The residue was purified by silica gel column chromatography (0-70% gradient of ethyl acetate in hexanes) followed by washing with diethyl ether to give the title compound as a white solid (326 mg, 66% yield). mp 126-127 °C;  $v_{max}$ (film)/cm<sup>-1</sup> 1490; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.90 (s, 1H), 7.84-7.77 (m, 1H), 7.45-7.26 (m, 8H), 5.55 (s, 1H), 5.18 (s, 2H), 4.98 (s, 1H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ143.8, 143.3, 142.2, 137.9, 133.9, 128.7, 128.5, 125.9, 123.0, 122.2, 120.4, 115.3, 110.0, 48.7; HRMS (EI): Calcd for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub> [M]<sup>+</sup> 234.1157; Found 234.1162.



**2-(1H-benzo[d]imidazol-1-yl)-1-(4-methoxyphenyl)ethanone.** To a 25 mL round bottom flask was added benzimidazole (890 mg, 7.54 mmol), 2-bromo-1-(4-methoxyphenyl)ethanone (695 mg, 3.05 mmol), and DMF (4 mL). The solution was stirred at rt for 16 h during which time the solution became cloudy. DMF was removed via high-vac at 0.05 mmHg, and the resulting crude solid was suspended in CH<sub>2</sub>Cl<sub>2</sub> and washed with sat. NaHCO<sub>3</sub> (aq). The layers were separated and the aqueous layer was washed three times with CH<sub>2</sub>Cl<sub>2</sub>. The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, concentrated, and purified by silica column chromatography (200:10:1 CH<sub>2</sub>Cl<sub>2</sub>: MeOH: NH<sub>4</sub>OH) to yield a white solid (350 mg, 43% yield). Physical data were consistent with the previously reported characterization.<sup>3</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.04 (d, 2H, *J* = 8.8 Hz) 7.97 (s, 1H), 7.92-7.83 (m, 1H), 7.37-7.24 (m, 3H), 7.05 (d, 2H, *J* = 8.8 Hz), 5.55 (d, 2H), 3.95 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  189.9, 164.6, 144.0, 143.5, 134.5, 130.5, 127.3, 123.3, 122.4, 120.4, 114.4, 109.5, 55.7, 50.1;



**1-(2-(4-methoxyphenyl)allyl)-1H-benzo[d]imidazole.** In a 25 mL Schlenk flask equipped with a stir bar was combined 2-(1H-benzo[d]imidazol-1-yl)-1-(4-methoxyphenyl)ethanone (280 mg, 1.05 mmol), methyl triphenylphosphonium bromide

(756 mg, 2.12 mmol), and K<sub>2</sub>CO<sub>3</sub> (336 mg, 2.43 mmol), and THF (10 mL). The suspension was heated at 135 °C for 24 h. The reaction vessel was cooled to rt, filtered through celite, and the celite was washed with THF. The filtrate was concentrated and purified by silica column chromatography (95:5 methyl *tert*-butyl ether: triethylamine) to yield a white solid (159 mg, 57%). mp 121-123 °C;  $v_{max}$ (film)/cm<sup>-1</sup> 1605, 1513; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.89 (s, 1H), 7.84-7.76 (m, 1H), 7.45-7.38 (m, 1H), 7.37-7.22 (m, 4H), 6.86 (d, 2H, *J* = 8.9 Hz), 5.47 (s, 1H), 5.13 (s, 2H), 4.91 (s, 1H), 3.79 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  159.8, 143.9, 143.4, 141.5, 134.0, 130.3, 127.1, 123.0, 122.2, 120.4, 114.1, 113.4, 110.0, 55.3, 48.8; HRMS (FAB+) Calcd for C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O [MH]<sup>+</sup> 265.1341; Found 265.1339.



**2-(1H-benzo[d]imidazol-1-yl)-1-(4-(trifluoromethyl)phenyl)ethanone.** To a 25 mL round bottom flask was combined benzimidazole (231 mg, 1.96 mmol), 2-bromo-1-(4-(trifluoromethyl)phenyl)ethanone (200 mg, 0.75 mmol), and DMF (1 mL). The solution was stirred at rt for 16 h during which time it became cloudy. DMF was removed via high-vac at 0.05 mmHg, and the resulting crude solid was suspended in CH<sub>2</sub>Cl<sub>2</sub> and washed with sat. NaHCO<sub>3</sub> (aq). The layers were separated and the aqueous layer was washed three times with CH<sub>2</sub>Cl<sub>2</sub>. The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, concentrated, and purified by silica column chromatography (200:10:1 CH<sub>2</sub>Cl<sub>2</sub>: MeOH: NH<sub>4</sub>OH) to yield a white solid (200 mg, 87% yield). mp 169-172 °C;  $v_{max}$ (film)/cm<sup>-1</sup> 1706, 1323; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.81 (d, 2H, *J* = 8.1

Hz), 7.98 (s, 1H), 7.93-7.82 (m, 3H) 7.40-7.22 (m, 3H), 5.64 (s, 2H);  ${}^{13}C\{{}^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  190.6, 143.6, 143.5, 135.9 (q,  $J_{C-F} = 31.5$  Hz), 136.8, 134.1, 128.5, 126.3 (q,  $J_{C-F} = 3.7$  Hz), 123.5, 123.4 (q,  $J_{C-F} = 271.5$  Hz) 122.6, 120.7, 109.2, 50.7;  ${}^{19}F$  NMR (375 Mhz, CDCl<sub>3</sub>):  $\delta$ -62.5; HRMS (FAB+) Calcd for C<sub>16</sub>H<sub>12</sub>F<sub>3</sub>N<sub>2</sub>O [MH]<sup>+</sup> 305.0896; Found 305.0899.



1-(2-(4-(trifluoromethyl)phenyl)allyl)-1H-benzo[d]imidazole. To a 25 mL Schlenk flask equipped with a stir bar was combined 2-(1H-benzo[d]imidazol-1-yl)-1-(4trifluoromethyl)ethanone (450 mg, 1.47 mmol), methyl triphenylphosphonium bromide  $(1.06 \text{ g}, 2.96 \text{ mmol}), \text{ K}_2\text{CO}_3$  (470 mg, 3.40 mmol), and THF (15 mL). The suspension was heated at 135 °C for 24 h. The reaction vessel was cooled to rt, the reaction mixture was filtered through celite, and the celite pad was washed with THF. The filtrate was concentrated, and the crude product purified by activity III neutral alumina chromatography (2:1 hex: EtOAc) to yield a white solid (190 mg, 42%). mp 119-121 °C; υ<sub>max</sub>(film)/cm<sup>-1</sup> 1498, 1325; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.91 (s, 1H), 7.88-7.81 (m, 1H), 7.63 (d, 2H, J = 8.1 Hz), 7.52 (d, 2H, J = 8.1 Hz), 7.45-7.49 (m, 1H), 7.38-7.29 (m, 2H), 5.64 (s, 1H), 5.19 (s, 2H), 5.14 (s, 1H);  ${}^{13}C{}^{1}H{}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  143.9, 143.2, 141.5, 141.4, 133.8, 130.5 (q,  $J_{C-F}$  = 32.9 Hz), 126.3, 125.8 (q,  $J_{C-F}$  = 3.7 Hz), 123.9 (q,  $J_{C-F} = 271.5$  Hz), 123.3, 122.4, 120.6, 117.4, 109.8, 48.6; <sup>19</sup>F NMR (375) Mhz, CDCl<sub>3</sub>):  $\delta$ -61.5; HRMS (FAB+) Calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>N<sub>2</sub> [MH]<sup>+</sup> 303.1109; Found 303.1111.



6-methoxy-1-(2-methylallyl)-1H-benzo[d]imidazole and 5-methoxy-1-(2methylallyl)-1H-benzo[d]imidazole. To an ice-water cooled solution of 6-methoxy-1Hbenzo[d]imidazole (300 mg, 2.0 mmol) in THF (5 mL) was added NaH (60%/mineral oil) (136 mg, 3.40 mmol). The mixture was stirred under the same conditions for 15 minutes. 3-Bromo-2-methylprop-1-ene (300 mg, 2.24 mmol) was added, and the mixture was stirred at rt for 18 h. The reaction was duenched with sat, NaHCO<sub>3</sub> (aq), and the resulting mixture was extracted three times with ethyl acetate. The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated. The residue was purified by silica gel column chromatography (10:1 *t*-butyl methyl ether: triethylamine) to obtain two clear oils. Less polar product (6-methoxy-1-(2-methylallyl)-1H-benzo[d]imidazole): 100 mg (24% yield);  $v_{max}$ (film)/cm<sup>-1</sup> 1491, 1438, 1224; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 7.76 (s, 1H), 7.66 (d, 1H, J = 8.6 Hz), 6.90 (dd, 1H, J = 8.6, 2.0 Hz), 6.78 (d, 1H, J = 2.0Hz), 4.97 (s, 1H), 4.79 (s, 1H), 3.83 (s, 2H), 3.83 (s, 3H), 1.69 (s, 3H); <sup>13</sup>C{1H} NMR (75 MHz, CDCl<sub>3</sub>): δ 157.0, 142.9, 139.7, 138.6, 134.9, 121.0, 114.1, 111.6, 93.9, 56.1, 51.3, 20.1; HRMS (FAB+) Calcd for  $C_{12}H_{15}N_2O$  [MH]<sup>+</sup> 203.1184; Found 203.1185. More polar product (5-methoxy-1-(2-methylallyl)-1H-benzo[d]imidazole): 60 mg (14%);  $v_{max}$ (film)/cm<sup>-1</sup> 1492, 1430, 1224; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>);  $\delta$  7.81 (s, 1H), 7.26 (d, 1H, J = 2.3 Hz), 7.22 (d, 1H, J = 8.9 Hz), 6.91 (dd, 1H, J = 8.9, 2.3 Hz), 4.97 (s, 1H), 4.81 (s, 1H), 4.53 (s, 2H), 3.84 (s, 3H), 1.67 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz,

CDCl<sub>3</sub>): *δ*156.4, 145.0, 143.8, 139.9, 128.9, 114.2, 113.5, 110.7, 102.6, 56.0, 51.53, 20.0; HRMS (FAB+) Calcd for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O [MH]<sup>+</sup> 203.1184; Found 203.1187.



1-(2-methylallyl)-6-(trifluoromethyl)-1H-benzo[d]imidazole and 1-(2methylallyl)-5-(trifluoromethyl)-1H-benzo[d]imidazole. To an ice-water cooled solution of 6-(trifluoromethyl)-1H-benzo[d]imidazole<sup>4</sup> (250 mg, 1.34 mmol) in THF (5 mL) was added NaH (60%/mineral oil) (91 mg, 2.28 mmol). The mixture was stirred under the same conditions for 15 minutes. 3-Bromo-2-methylprop-1-ene (216 mg, 1.61 mmol) was added, and the mixture was stirred at rt for 18 h. The reaction was guenched with sat. NaHCO<sub>3</sub> (aq), and the resulting mixture was extracted three times with ethyl acetate. The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated. The residue was purified by silica gel column chromatography (200:10:1 CH<sub>2</sub>Cl<sub>2</sub>: MeOH: NH<sub>4</sub>OH) to obtain two white solids. Less polar product (1-(2methylallyl)-5-(trifluoromethyl)-1H-benzo[d]imidazole): 50 mg (16%); mp 42-43 °C; υ<sub>max</sub>(film)/cm<sup>-1</sup> 1503, 1326; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.07 (s, 1H), 7.97 (s, 1H), 7.50 (d, 1H, J = 8.4 Hz), 7.42 (d, 1H, J = 8.4 Hz), 5.00 (s, 1H), 4.77 (s, 1H), 4.69 (s, 2H), 1.67 (s, 3H);  ${}^{13}C{}^{1}H$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  145.2, 143.2, 139.0, 135.9, 124.7 (q,  $J_{C-F} = 31.5 \text{ Hz}$ , 124.0 (q,  $J_{C-F} = 271.4 \text{ Hz}$ ), 119.9 (q,  $J_{C-F} = 2.9 \text{ Hz}$ ), 118.0 (q,  $J_{C-F} = 3.7 \text{ Hz}$ ) Hz), 114.3, 110.6, 51.2, 19.7; <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>): δ-59.8; HRMS (FAB+) Calcd for  $C_{12}H_{12}F_{3}N_{2}$  [MH]<sup>+</sup> 241.0953; Found 241.0954. More polar product (1-(2methylallyl)-6-(trifluoromethyl)-1H-benzo[d]imidazole): 50 mg (16%); mp 35-37 °C;  $v_{max}(film)/cm^{-1}$  1486, 1325; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.01 (s, 1H), 7.88 (d, 1H, J =

8.4 Hz), 7.64 (s, 1H), 7.52 (d, 1H, J = 8.4 Hz), 5.02 (s, 1H), 4.80 (s, 1H), 4.73 (s, 2H), 1.71 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 145.9, 145.6, 138.9, 133.4, 125.2 (q,  $J_{C-F} = 32.3$  Hz), 124.8 (q,  $J_{C-F} = 270.2$  Hz), 120.8, 119.2 (q,  $J_{C-F} = 3.7$  Hz), 114.4, 107.9 (q,  $J_{C-F} = 4.1$  Hz), 51.2, 19.7; <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>):  $\delta$ -59.9; HRMS (FAB+) Calcd for C<sub>12</sub>H<sub>12</sub>F<sub>3</sub>N<sub>2</sub> [MH]<sup>+</sup> 241.0953; Found 241.0952.



1-(2-Methylallyl)-4,5-diphenyl-1H-imidazole. To an ice-water cooled solution of 4,5-diphenyl-1H-imidazole (1.00 g, 4.54 mmol) in THF (20 mL) was added NaH (60%/mineral oil) (284 mg, 7.10 mmol). The mixture was stirred under the same conditions for 15 minutes. 3-Bromo-2-methylpropene (0.49 mL, 4.9 mmol) was added, and the mixture was stirred at rt for 18 h. The reaction was guenched with sat. NaHCO<sub>3</sub> (aq), and the resulting mixture was extracted three times with ethyl acetate. The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated. The residue was purified by silica gel column chromatography (0-50% gradient of ethyl acetate in hexanes) followed by washing with diethyl ether to give the title compound as a white solid (671 mg, 54% yield). mp 94-95 °C; v<sub>max</sub>(film)/cm<sup>-1</sup> 1600, 1503; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.60 (s, 1H), 7.52-7.46 (m, 2H), 7.45-7.39 (m, 3H), 7.35-7.29 (m, 2H), 7.24-7.17 (m, 2H), 7.17-7.10 (m, 1H), 4.90 (s, 1H), 4.60 (s, 1H), 4.28 (s, 2H), 1.64 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): *δ*140.9, 137.9, 137.2, 134.6, 130.8, 130.6, 128.9, 128.7, 128.6, 128.1, 126.5, 126.2, 113.0, 50.5, 19.9; HRMS (EI): Calcd for  $C_{19}H_{18}N_2$  [M]<sup>+</sup> 274.1470; Found 274.1471.

S10

General Procedure for ligand screen and reaction optimization. In a nitrogenfilled inert atmosphere box, [RhCl(coe)<sub>2</sub>]<sub>2</sub> (2.9 mg, 0.0040 mmol), ligand, substrate (0.05 mmol), and solvent (0.4 mL) were combined in a medium-walled NMR tube. The tube was fitted with a Cajon adapter, frozen with liquid nitrogen, and flame-sealed under vacuum. The tube was then placed in an oil bath set to the desired temperature. Periodically, the tube was removed from the bath, cooled to room temperature, and analyzed by <sup>1</sup>H-NMR spectroscopy. All optimization reactions were carried out via this procedure by varying temperature, solvent, ligand, ligand loading, and additives.

General procedure for asymmetric alkylation. To a scintillation vial in a glovebox, was added (S,S',R,R')-Tangphos (8.1 mg, 0.028 mmol), [RhCl(coe)<sub>2</sub>]<sub>2</sub> (10.8 mg, 0.0150 mmol), substrate (0.15 mmol) and THF (1.5 mL). The solution was then transferred to a 15 mL Schlenk tube, heated for the specified time, cooled to rt, and concentrated. The residue was purified by silica gel column chromatography (200:10:1 CH<sub>2</sub>Cl<sub>2</sub>: MeOH: NH<sub>4</sub>OH) to yield the desired product.



**2-Methyl-2,3-dihydro-1***H***-benzo**[*d*]**pyrrolo**[**1,2**-*a*]**imidazole** (**2**). The general procedure was applied using 1-(2-methylallyl)-1H-benzo[d]imidazole as the substrate. The reaction vial was heated at 135 °C for 20 h, and after purification the product was obtained as a white solid (23 mg, 89%). mp 85-87 °C;  $[\alpha]_D^{25}$  +21.43 (c 0.19, CHCl<sub>3</sub>);  $v_{max}(film)/cm^{-1}$  1615, 1521, 1453; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.73-7.66 (m, 1H), 7.32-7.17 (m, 3H), 4.26 (dd, 1H, *J* = 7.6, 10.0 Hz), 3.66 (dd, 1H, *J* = 6.0, 10.0 Hz), 3.29-3.12 (m, 2H), 2.69 (dd, 1H, *J* = 6.0, 15.6 Hz), 1.35 (d, 3H, *J* = 6.8 Hz); <sup>13</sup>C {<sup>1</sup>H} NMR

(100 MHz, CDCl<sub>3</sub>):  $\delta$  160.6, 148.5, 132.4, 121.8, 121.6, 119.6, 109.4, 50.1, 35.7, 32.2, 20.0; HRMS (EI): *m*/*z* calcd. for C<sub>11</sub>H<sub>12</sub>N<sub>2</sub> (M<sup>+</sup>): 172.1000; found: 172.1006; HPLC (Chiralcel AD-H column, 5% *i*PrOH/hexanes, 1mL/min): major, 18.45 min; minor, 21.50 min; 98% ee.\_ X-ray quality crystals of the HCl salt of **2** (CCDC 727522) were obtained by dissolving the compound in a minimal amount of Et<sub>2</sub>O, precipitation with 1M HCl in Et<sub>2</sub>O, and recrystallation from CH<sub>2</sub>Cl<sub>2</sub>/hexanes.



**2-Ethyl-2,3-dihydro-1***H*-benzo[*d*]**pyrrolo**[1,2-*a*]**imidazole.** The general procedure was applied using 1-(2-methylenebutyl)-1H-benzo[d]imidazole as the substrate. The reaction vial was heated at 135 °C for 60 h, and after purification the product was obtained as a yellowish oil (20 mg, 71%).  $[\alpha]_D^{25}$  +7.28 (c 0.38, CHCl<sub>3</sub>);  $v_{max}(film)/cm^{-1}$  1525, 1451; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.77-7.69 (m, 1H), 7.35-7.29 (m, 1H), 7.29-7.20 (m, 2H), 4.29 (dd, 1H, *J* = 10.1, 8.1 Hz), 3.75 (dd, 1H, *J* = 10.1, 6.8 Hz), 3.26 (dd, 1H, *J* = 16.6, 8.6 Hz), 3.06 (apparent septet, 1H), 2.77 (dd, 1H, *J* = 16.6, 7.1 Hz), 1.75 (m, 2H), 1.09 (t, 3H, *J* = 7.3 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 160.6, 148.5, 132.4, 121.8, 121.6, 119.6, 109.4, 48.4, 42.8, 30.1, 27.8, 12.1; HRMS (EI): *m/z* calcd. for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub> [MH]<sup>+</sup> 187.1232; Found 187.1230; HPLC (Chiralcel AD-H column, 5% EtOH/hexanes, 1mL/min): major, 30.85 min; minor, 28.20 min; 90% ee.



**2-Phenyl-2,3-dihydro-1***H***-benzo**[*d*]**pyrrolo**[**1,2***-a*]**imidazole.** The general procedure was applied using 1-(2-Phenylallyl)-1H-benzoimidazole as the substrate. The

reaction vial was heated at 135 °C for 46 h, and after purification the product was obtained as a white solid (32 mg, 91%). mp 144-146 °C;  $[\alpha]_D^{25}$  +64.55 (c 0.44, CHCl<sub>3</sub>);  $\nu_{max}(film)/cm^{-1}$  1618, 1516; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.78-7.70 (m, 1H), 7.46-7.19 (m, 8H), 4.54 (dd, 1H, J = 8.4, 10.0 Hz), 4.28 (m, 1H), 4.10 (dd, 1H, J = 7.2, 10.0 Hz), 3.53 (dd, 1H, J = 8.4, 16.8 Hz), 3.21 (dd, 1H, J = 7.2, 16.8 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.9, 148.6, 141.8, 132.3, 129.1, 127.6, 126.9, 122.1, 121.9, 119.8, 109.6, 50.4, 46.2, 32.4; HRMS (EI): m/z calcd. for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub> (M<sup>+</sup>): 234.1157; found: 234.1160; HPLC (Chiralcel AD-H column, 10% *i*PrOH/hexanes, 1mL/min): major, 41.78 min; minor, 35.43 min; 97% ee.



**2-(4-methoxy-phenyl)-2,3-dihydro-1***H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole. The general procedure was applied using 1-(2-(4-methoxyphenyl)allyl)-1H-benzo[d]imidazole as the substrate. The reaction vial was heated at 175 °C for 24 h, and after purification the product was obtained as a yellowish solid (33 mg, 83%). mp 115-117 °C;  $[\alpha]_D^{25}$  +48.11 (c 0.9, CHCl<sub>3</sub>);  $\upsilon_{max}(film)/cm^{-1}$  1513; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.77–7.69 (m, 1H), 7.35-7.15 (m, 5H), 6.88 (d, 2H, *J* = 8.6 Hz), 4.47 (dd, 1H, *J* = 10.1, 8.1 Hz), 4.21 (m, 1H), 4.02 (dd, 1H, *J* = 10.1, 8.1 Hz), 3.80 (s, 3H), 3.48 (dd, 1H, *J* = 16.9, 8.8 Hz), 3.14 (dd, 1H, *J* = 16.9, 8.6 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 159.9, 158.8, 148.5, 133.6, 132.2, 127.9, 121.9, 121.7, 119.6, 114.3, 109.5, 55.3, 50.4, 45.4, 32.5; HRMS (FAB+): *m*/*z* calcd. for C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O (MH<sup>+</sup>): 265.1335; found:

265.1333; HPLC (Chiralcel AD-H column, 10% EtOH/hexanes, 1mL/min): major, 47.10 min; minor, 32.32 min; 87% ee.



#### 2-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-benzo[d]pyrrolo[1,2-

*a*]imidazole. The general procedure applied using 1-(2-(4was (trifluoromethyl)phenyl)allyl)-1H-benzo[d]imidazole as the substrate. The reaction mixture was heated at 175 °C for 24 h, and after purification the product was obtained as a yellowish solid (39 mg, 87%). mp 162-165 °C;  $[\alpha]_D^{25}$  +36.63 (c 0.8, CHCl<sub>3</sub>); υ<sub>max</sub>(film)/cm<sup>-1</sup> 1538, 1412, 1324; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.80-7.71 (m, 1H), 7.62 (d, 2H, J = 8.2 Hz), 7.39 (d, 2H, J = 8.2 Hz), 7.34-7.21 (m, 3H), 4.56 (dd, 1H, J = 10.4, 8.1 Hz), 4.33 (m, 1H), 4.10 (dd, 1H, J = 10.4, 7.9 Hz), 3.56 (dd, 1H, J = 16.9, 8.8 Hz), 3.19 (dd, 1H, J = 16.9, 7.3 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 159.4, 148.7, 145.9, 132.2, 130.0 (q,  $J_{C-F} = 33.0$  Hz), 127.4, 126.3 (q,  $J_{C-F} = 3.9$  Hz), 124.0 (q,  $J_{C-F} = 272.3$ Hz), 122.3, 122.1, 119.9, 109.6, 50.1, 45.8, 32.2; <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>):  $\delta$ -61.7; HRMS (FAB+) Calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>N<sub>2</sub> [MH]<sup>+</sup> 303.1109; Found 303.1106; HPLC (Chiralcel AD-H column, 10% EtOH/hexanes, 1mL/min): major, 26.66 min; minor, 22.43 min; 79% ee.



**2-Methyl-2,3-dihydro-1H-7-methoxy-benzo[d]pyrrolo[1,2-a]imidazole.** The general procedure was applied using (6-methoxy-1-(2-methylallyl)-1H-

benzo[d]imidazole) as the substrate. The reaction vial was heated at 175 °C for 36 h, and after purification the product was obtained as a yellowish solid (27 mg, 89%). mp 100-103 °C;  $[\alpha]_D^{25}$  +22.95 (c 0.9, CHCl<sub>3</sub>);  $\upsilon_{max}$ (film)/cm<sup>-1</sup> 1626, 1457, 1408; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.54 (d, 1H, J = 8.1 Hz), 6.83 (dd, 1H, J = 8.1, 2.3 Hz), 6.74 (d, 1H, J = 2.3 Hz), 4.17 (dd, 1H, 1H, J = 9.9, 7.6 Hz), 3.83 (s, 3H), 3.58 (dd, 1H, J = 9.9, 6.9 Hz), 3.22-3.07 (m, 2H), 2.68-2.56 (m, 1H), 1.31 (d, 3H, J = 6.7 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  159.7, 155.8, 142.8, 132.8, 119.8, 110.2, 93.5, 55.8, 49.9, 35.6, 32.0, 19.9; HRMS (FAB+): m/z calcd. for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O (MH<sup>+</sup>): 203.1179; found: 203.1175; HPLC (Chiralcel AS-H column, 2% EtOH/hexanes w/ 0.1% diethylamine, 1mL/min): major, 33.96 min; minor, 40.53 min; 71% ee.



2-Methyl-2,3-dihydro-1H-6-methoxy-benzo[d]pyrrolo[1,2-a]imidazole. The general procedure was applied using (5-methoxy-1-(2-methylallyl)-1Hbenzo[d]imidazole) as the substrate. The reaction vial was heated at 175 °C for 24 h, and after purification the product was obtained as a yellowish solid (28 mg, 92%). mp 119-122 °C;  $[\alpha]_D^{25}$  +12.56 (c 0.7, CHCl<sub>3</sub>);  $v_{max}$ (film)/cm<sup>-1</sup> 1522, 1282, 1442; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.19 (d, 1H, J = 2.3 Hz), 7.14 (d, 1H, J = 8.8 Hz), 6.84 (dd, 1H, J = 8.8, 2.3 Hz), 4.21 (dd, 1H, J = 10.0, 7.7 Hz), 3.85 (s, 3H), 3.62 (dd, 1H, J = 10.0, 6.0 Hz), 3.26-3.09 (m, 2H), 2.72-2.59 (m, 1H), 1.33 (d, 3H, J = 6.6 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl3): 8 162.4, 155.7, 149.2, 127.0, 111.2, 109.6, 102.3, 55.8, 50.2, 35.6, 32.3, 20.0; HRMS (FAB+): m/z calcd. for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O (MH<sup>+</sup>): 203.1184; found: 203.1177; HPLC

(Chiralcel AS-H column, 2% EtOH/hexanes w/ 0.1% diethylamine, 1mL/min): major, 33.67 min; minor, 38.65 min; 81% ee.



**2-Methyl-2,3-dihydro-1H-7-trifluoromethyl-benzo[d]pyrrolo[1,2-a]imidazole.** The general procedure was applied using (1-(2-methylallyl)-6-(trifluoromethyl)-1Hbenzo[d]imidazole) as the substrate. The reaction vial was heated at 175 °C for 24 h, and after purification the product was obtained as a yellowish solid (30 mg, 83%). mp 80-83 °C;  $[\alpha]_D^{25}$  +10.89 (c 0.9, CHCl<sub>3</sub>);  $\nu_{max}(film)/cm^{-1}$  1523, 1454, 1309; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.76 (d, 1H, J = 8.6 Hz), 7.58 (s, 1H), 7.48 (d, 1H, J = 8.6 Hz), 4.32 (dd, 1H, J = 10.2, 7.8 Hz), 3.73 (dd, 1H, J = 10.2, 6.3 Hz), 3.36-3.17 (m, 2H), 2.72 (dd, 1H, J= 15.1, 5.6 Hz), 1.37 (d, 3H, J = 6.6 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  163.3, 150.6, 131.8, 124.9 (q,  $J_{C-F}$  = 271.5 Hz), 124.0 (q,  $J_{C-F}$  = 32.2 Hz), 119.8, 118.7 (q,  $J_{C-F}$  = 3.7 Hz), 107.2 (q,  $J_{C-F}$  = 4.4 Hz), 50.3, 35.7, 32.2, 19.9; HRMS (FAB+): m/z calcd. for C<sub>12</sub>H<sub>12</sub> F<sub>3</sub>N<sub>2</sub> (MH<sup>+</sup>): 241.0953; found: 241.0944; HPLC (Chiralcel AS-H column, 2% EtOH/hexanes, 1mL/min): major, 22.75 min; minor, 17.55 min; 53% ee.



# **2-Methyl-2,3-dihydro-1H-6-trifluoromethyl-benzo[d]pyrrolo[1,2-a]imidazole.** The general procedure was applied using (1-(2-methylallyl)-5-(trifluoromethyl)-1H-benzo[d]imidazole) as the substrate. The reaction vial was heated at 175 °C for 24 h, and after purification the product was obtained as a yellowish solid (29 mg, 81%). mp 107-110 °C; $[\alpha]_D^{25}$ +4.02 (c 1.0, CHCl<sub>3</sub>); $v_{max}$ (film)/cm<sup>-1</sup> 1531, 1322; <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>):  $\delta$ 7.95 (s, 1H), 7.46 (d, 1H, J = 8.3 Hz), 7.3 (d, 1H, J = 8.3 Hz), 4.29 (dd, 1H, J = 10.1, 7.6 Hz), 3.69 (dd, 1H, J = 10.1, 6.3 Hz), 3.32-3.15 (m, 2H), 2.72 (dd, 1H, J = 15.7, 5.8 Hz), 1.36 (d, 3H, J = 6.6 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 162.7, 147.9, 134.4, 125.0 (q,  $J_{C-F}$  = 271.5 Hz), 124.1 (q,  $J_{C-F}$  = 3.1 Hz), 118.9 (q,  $J_{C-F}$  = 3.6 Hz), 117.1 (q,  $J_{C-F}$  = 3.7 Hz), 109.7, 50.2, 35.8, 32.2, 19.9; HRMS (FAB+): m/z calcd. for C<sub>12</sub>H<sub>12</sub>F<sub>3</sub>N<sub>2</sub> (MH<sup>+</sup>): 241.0953; found: 241.0947; HPLC (Chiralcel AS-H column, 2% EtOH/hexanes, 1mL/min): major, 13.44 min; minor, 14.75 min; 71% ee.



**6-Methyl-2,3-diphenyl-6,7-dihydro-5***H***-pyrrolo[1,2-***a***]imidazole. The general procedure was applied using 1-(2-Methylallyl)-4,5-diphenyl-1H-imidazole as the substrate. The reaction vial was heated at 135 °C for 98 h, and after purification the product was obtained as a white solid (37 mg, 90%). mp 139-141 °C; [\alpha]\_D^{25} +4.09 (c 0.29, CHCl<sub>3</sub>); \nu\_{max}(film)/cm<sup>-1</sup> 1599; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): \delta7.55 (d, 2H,** *J* **= 7.2 Hz), 7.42-7.12 (m, 8H), 4.08 (dd, 1H,** *J* **= 7.6, 10.4 Hz), 3.53 (dd, 1H,** *J* **= 6.4, 10.4 Hz), 3.23-3.04 (m, 2H), 2.63 (dd, 1H,** *J* **= 6.4, 15.6 Hz), 1.30 (d, 3H,** *J* **= 6.8 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): \delta153.1, 141.2, 135.2, 131.3, 128.9, 128.8, 128.2, 127.7, 127.1, 126.4, 125.2, 51.8, 35.6, 32.3, 19.8; HRMS (EI):** *m/z* **calcd. for C<sub>19</sub>H<sub>18</sub>N<sub>2</sub> (M<sup>+</sup>): 274.1470; found: 274.1474; HPLC (Chiralcel AD-H column, 3% EtOH/hexanes, 1mL/min): major, 18.40 min; minor, 16.20 min; 95% ee.** 

























NOESY:















NOESY:











































# 2-Methyl-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole

Racemic (Chiralcel AD-H column, 5% *i*PrOH/hexanes, 1mL/min,  $\lambda = 254$  nm)



Signal 1: MWD1 B, Sig=254,16 Ref=360,100

| Peak   | RetTime          | Type         | Width            | Area                         | Heiqht               | Area               |
|--------|------------------|--------------|------------------|------------------------------|----------------------|--------------------|
| #      | [min]            |              | [min]            | [mAU*s]                      | [mAU]                | %                  |
| 1<br>2 | 18.887<br>20.806 | <br>MF<br>FM | 0.4711<br>0.5199 | <br>2695.59155<br>2731.75952 | 95.35656<br>87.57645 | 49.6668<br>50.3332 |

Enantiomerically enriched (98% ee)



# 2-Ethyl-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole

![](_page_39_Figure_2.jpeg)

Racemic (Chiralcel AD-H column, 5% EtOH/hexanes, 1mL/min,  $\lambda = 280$  nm)

Signal 5: MWD1 E, Sig=280,16 Ref=360,100

| Peak<br># | RetTime<br>[min] | Туре   | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|--------|----------------|-----------------|-----------------|-----------|
|           | 28.176           | <br>MM | 0.9860         | 1058.45264      | <br>17.89218    | 50.0903   |
| 2         | 32.213           | MM     | 1.5966         | 1054.63464      | 11.00931        | 49.9097   |

Enantiomerically enriched (90% ee)

![](_page_39_Figure_7.jpeg)

Signal 5: MWD1 E, Sig=280,16 Ref=360,100

| Peak<br># | RetTime<br>[min] | Type | Width<br>[min] | Area<br>[mAU*s] | Heiqht<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 28.198           | MM   | 1.0463         | 34.70732        | 5.52842e-1      | 5.1471    |
| 2         | 30.854           | MM   | 1.6288         | 639.59619       | 6.54467         | 94.8529   |

# 2-(4-methoxy-phenyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole.

![](_page_40_Figure_2.jpeg)

Racemic (Chiralcel AD-H column, 10% EtOH/hexanes, 1mL/min,  $\lambda = 280$  nm)

Signal 5: MWD1 E, Sig=280,16 Ref=360,100

| Peak<br># | RetTime<br>[min] | Type | Width<br>[min] | Area<br>[mAU*s] | Heiqht<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 31.478           | MM   | 2.0557         | 2587.55688      | 20.97914        | 50.3030   |
| 2         | 48.824           | MM   | 2.3286         | 2556.38159      | 18.29736        | 49.6970   |

Enantiomerically enriched (87% ee)

![](_page_40_Figure_7.jpeg)

Signal 5: MWD1 E, Sig=280,16 Ref=360,100

| Peak<br># | RetTime<br>[min] | Type | Width<br>[min] | Area<br>[mAU*s] | Heiqht<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 32.328           | MM   | 3.0648         | 128.47971       | 6.98679e-1      | 6.6668    |
| 2         | 47.099           | MM   | 2.5286         | 1798.67822      | 11.85556        | 93.3332   |

# 2-(4-trifluoromethyl-phenyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole

mAU 160 CF<sub>3</sub> 140 120 100 80 60 40 20 10 Peak RetTime Type Width Area Height Area [min] # [min] [mAU\*s] [mAU] 융 --- | -- | --21.05252 50.5342 1 21.964 MM 1.9093 2411.67847 2 26.380 MM 2.5031 2360.69092 15.71821 49.4658

**Racemic** ((Chiralcel AD-H column, 10% EtOH/hexanes, 1mL/min,  $\lambda = 230$  nm)

Enantiomerically enriched (79% ee)

![](_page_41_Figure_5.jpeg)

| Peak<br># | RetTime<br>[min] | Type | Width<br>[min] | Area<br>[mAU*s] | Heiqht<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 22.426           | MM   | 0.7140         | 351.97824       | 8.21624         | 10.6481   |
| 2         | 26.663           | MM   | 2.5632         | 2953.56177      | 19.20501        | 89.3519   |

# 2-Methyl-2,3-dihydro-1H-7-methoxy-benzo[d]pyrrolo[1,2-a]imidazole

Racemic (Chiralcel AS-H column, 2% EtOH/hexanes w/ 0.1% diethylamine, 1mL/min,  $\lambda$  = 280 nm)

![](_page_42_Figure_3.jpeg)

| Peak   | RetTime          | Type         | Width            | Area                   | Height             | Area               |
|--------|------------------|--------------|------------------|------------------------|--------------------|--------------------|
| #      | [min]            |              | [min]            | [mAU*s]                | [mAU]              | %                  |
| 1<br>2 | 34.584<br>40.475 | <br>MM<br>MM | 2.5242<br>2.5611 | 847.75989<br>889.48822 | 5.95445<br>5.65677 | 48.7990<br>51.2009 |

Enantiomerically enriched (71% ee)

![](_page_42_Figure_6.jpeg)

# 2-Methyl-2,3-dihydro-1H-6-methoxy-benzo[d]pyrrolo[1,2-a]imidazole

Racemic (Chiralcel AS-H column, 2% EtOH/hexanes w/ 0.1% diethylamine, 1mL/min,  $\lambda$  = 280 nm)

![](_page_43_Figure_3.jpeg)

Enantiomerically enriched (81% ee)

![](_page_43_Figure_5.jpeg)

# 2-Methyl-2,3-dihydro-1H-7-trifluoromethyl-benzo[d]pyrrolo[1,2-a]imidazole

![](_page_44_Figure_2.jpeg)

Racemic (Chiralcel AS-H column, 2% EtOH/hexanes, 1mL/min,  $\lambda = 250$  nm)

Enantiomerically enriched (53% ee)

![](_page_44_Figure_5.jpeg)

| Peak | RetTime | Type | Width  | Area       | Heiqht   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | 8       |
|      |         |      |        |            |          |         |
| 1    | 17.552  | MM   | 0.4337 | 745.00134  | 28.63176 | 23.5029 |
| 2    | 22.750  | MM   | 0.5627 | 2424.82715 | 71.82219 | 76.4971 |

## 2-Methyl-2,3-dihydro-1H-6-trifluoromethyl-benzo[d]pyrrolo[1,2-a]imidazole

Racemic (Chiralcel AS-H column, 2% EtOH/hexanes, 1mL/min,,  $\lambda = 250$  nm)

![](_page_45_Figure_3.jpeg)

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

| Peak<br># | RetTime<br>[min] | Type | Width<br>[min] | Area<br>[mAU*s] | Heiqht<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 14.094           | MM   | 0.3633         | 787.62561       | 36.13475        | 50.3982   |
| 2         | 15.354           | MM   | 0.3899         | 775.18097       | 33.13570        | 49.6018   |

Enantiomerically enriched (71% ee)

![](_page_45_Figure_7.jpeg)

![](_page_45_Figure_8.jpeg)

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Heiqht<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 13.444           | MM   | 0.3495         | 3677.24707      | 175.35199       | 85.6433   |
| 2         | 14.715           | MM   | 0.3523         | 616.43256       | 29.16059        | 14.3567   |

# 2-Phenyl-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole

Racemic (Chiralcel AD-H column, 10% *i*PrOH/hexanes, 1mL/min,  $\lambda = 280$  nm)

![](_page_46_Figure_3.jpeg)

Enantiomerically enriched (97% ee)

![](_page_46_Figure_5.jpeg)

# 6-Methyl-2,3-diphenyl-6,7-dihydro-5*H*-pyrrolo[1,2-*a*]imidazole

![](_page_47_Figure_2.jpeg)

Racemic (Chiralcel AD-H column, 3% EtOH/hexanes, 1mL/min,  $\lambda = 230$  nm)

| Retention Time | Area    | Area Percent |
|----------------|---------|--------------|
| 16.091         | 1327012 | 50.463       |
| 18.299         | 1302667 | 49.537       |

Enantiomerically enriched (95% ee)

![](_page_47_Figure_6.jpeg)

ORTEP diagram of the HCl salt of 2-Methyl-2,3-dihydro-1H-benzo[d]pyrrolo[1,2-

*a*]imidazole (2•HCl) (CCDC 727522)

![](_page_48_Figure_1.jpeg)

#### References

- 1. A. Van der Ent and A. L. Onderdelinden, Inorg. Synth., 1973, 14, 92-93.
- 2. K. L. Tan, R. G. Bergman and J. A. Ellman, *J. Am. Chem. Soc.*, 2002, **124**, 13964-13965.
- 3. E. C. Yanez, J. M. Serrano, G. Huert, J. M. Muchowski and R. C. Almanza, *Tetrahedron*, 2004, **60**, 9391-9396.
- 4. C. L. Moore, A. Zivkovic, J. W. Engels and R. D. Kuchta, *Biochemistry*, 2004, **43**, 12367-12374.