Concise Total Syntheses of (±)-Aspidospermidine and Formal Syntheses of Related Compounds

Cyrille Sabot, Kimiaka Guérard and Sylvain Canesi*

Laboratoire de Méthodologie et Synthèse de Produit Naturels. Université du Québec à Montréal, C.P.8888, Succ. Centre-Ville, Montréal. H3C 3P8, Québec, Canada.

Supporting Information

Table of Contents

1. General information	p2
2. Experimental procedures for all compounds	p2-p8
3. Copies of ¹ H and ¹³ C NMR spectra for all compounds	p8

I. General information and materials

Unless otherwise indicated, ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively, in CDCl₃ solutions. Chemical shifts are reported in ppm on the δ scale. Multiplicities are described as s (singlet), d (doublet), dd, ddd, etc. (doublet of doublets, doublet of doublets of doublets, etc.), t (triplet), q (quartet), p (pentuplet), m (multiplet), and further qualified as app (apparent) br (broad) c (complex). Coupling constants, J, are reported in Hz. IR spectra (cm–1) were recorded from thin films. Mass spectra (m/e) were measured in the electrospray (ESI) mode.

II. Experimental procedures for all compounds

2,6-dibromo-4-ethylphenol: To a stirred solution of 4-ethylphenol (2.00 g, 16.3 mmol) in dry dichloromethane (20 mL) at 0 °C, was added bromine (1.755 mL, 34.4 mmol, 2.1 equiv.). The solution was allowed to warm to room temperature and stirred overnight at room temperature.

The reaction mixture was concentrated under reduced pressure and purified by chromatography over silica gel (n-hexane/EtOAc, 95:5) to give 4.541 g (99%) of the desired product as a colorless oil. IR v (cm⁻¹) 3499, 2965, 1476, 1163; ¹H NMR (600 MHz, CDCl₃) δ 6.93 (s, 2H), 5.38 (br, 1H), 2.21 (q, *J* = 7.6 Hz, 2H), 0.86 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 138.7, 131.2, 109.4, 27.4, 15.4; HRMS (ESI): Calc. for C₈H₇Br₂O: 278.8842 (M-H)⁻; found: 278.8838.

OH

Br

Compound 7: To a solution of the compound dibromophenol (4.530 g, 16.2 mmol) in dry THF (30 mL) at room temperature, was added hexamethyldisilazane (7.50 mL, 35.6 mmol, 2.2 equiv.). The reaction mixture was stirred at reflux for 45 min. The resulting reaction

mixture was concentrated under reduced pressure to remove the excess of hexamethyldisilazane. Dry THF was added (30 ml) and a solution of n-BuLi (7.21 mL at 2.5 mol/L in hexane, 17.8 mmol, 1.1 equiv.) was added at -78 °C. The reaction was warmed slowly at room temperature and stirred overnight. The mixture was quenched with sat. aq. NaHCO₃ (30 ml), diluted with ethyl acetate (40 mL), washed with sat. aq. NH₄Cl (30 mL) and

brine (2 x 30 mL). The organic layer was dried over Na₂SO₄ and filtered, and the solvent was removed under reduced pressure. The resulting oil was purified by chromatography over silica gel (hexanes/EtOAc, 98:2) to yield 3.766 g (87%) of the compound 7 as a pale yellow oil. IR v (cm⁻¹) 3521, 2957, 1562, 1450, 1403, 1246; ¹H NMR (600 MHz, CDCl₃) δ 7.29 (d, *J* = 1.8 Hz, 1H), 7.09 (d, *J* = 1.8 Hz, 1H), 5.54 (br, 1H), 2. 56 (d, *J* = 8.2 Hz, 12H), 1.71 (q, *J* = 7.6 Hz, 2H), 1.20 (t, *J* = 7.6 Hz, 3H), 0.30 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 154.0, 137.4, 133.9, 131.9, 126.6, 110.2, 27.7, 15.8, -1.1; HRMS (ESI): Calc. for C₁₁H₁₆BrOSi (M-H)⁻: 271.0159; found: 271.0156.

Compound **8**: To a stirred solution of phenol **7** (300 mg, 1.1 mmol), allylsilane (0.35 mL, 2.2 mmol, 1 equiv.) and NaHCO₃ (280 mg, 3.3 mmol, 3 equiv.) in HFIP (3 mL) at 0 °C was added DIB

(353 mg, 1.1 mmol, 1 equiv.) dissolved in HFIP (1 mL), over 10 seconds. The reaction mixture was stirred at room temperature for 2 min and allylsilane (0.35 mL, 2.2 mmol, 2 equiv.) was added, followed by DIB (353 mg, 1.1 mmol, 1 equiv.) dissolved in HFIP (1 mL) at 0°C. This successive addition was repeated three more times, *i.e.* a total of 10 equiv. of allylsilane and 5 equiv. of DIB were added. Then the solution was treated with sat. aq. NaHCO₃ (30 mL). The aqueous phase was extracted with EtOAc (3 x 25 mL), the combined organic layers were washed with brine (30 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by chromatography over silica gel (n-hexane/CH₂Cl₂, from 100:0 to 70:30) to afford 193 mg (56%) of the corresponding dienone **8** as a yellow oil. IR v (cm⁻¹)2964, 1651, 1247; ¹H (300 MHz, CDCl₃) δ 7.15 (d, *J* = 2.7 Hz, 1H), 6.82 (d, *J* = 2.7 Hz, 1H), 5.55 (m, 1H), 5.06 (d, *J* = 10.4 Hz, 1H), 5.06 (d, *J* = 10.4 Hz, 1H), 5.03 (dd, 1H, *J* = 16.5, 1.6 Hz, 1H), 2. 36 (d, *J* = 8.2 Hz, 2H), 1.71 (q, *J* = 7.6 Hz, 2H), 0.75 (t, *J* = 7.6 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 181.7, 161.7, 153.6, 141.4, 131.9, 125.9, 119.0, 50.4, 43.5, 31.6, 9.1, -1.5; HRMS (ESI): Calc. for C₁₄H₂₂BrOSi (M+H)⁺: 313.0618; found: 313.0616.

Compound 9: To a solution of the dienone 8 (338 mg, 1.7mmol) in dry THF (1.5 mL) at 0 °C, was added 9-borabicyclo[3.3.1]nonane (0.5 M in toluene, 5.38 mL 2.7 mmol, 2.5 equiv.). The reaction mixture was stirred at room temperature

for 2 hours and a solution of H_2O_2 (30% w/w in water, 0.82 mL, 8.6 mmol, 8 equiv.) was added at 0°C, followed by K_2CO_3 (1.158 g, 8.4 mmol, 7.8 equiv.) dissolved in a minimum of

water. After 10 min stirring, the solution was treated with sat. aq. NH₄Cl (15 mL). The aqueous phase was extracted with EtOAc (3 x 20 mL), the combined organic layers were washed with brine (15 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by chromatography over silica gel (n-hexane/EtOAc, from 15:85 to 30:70) to afford 258 mg (72%) of the corresponding product **9** as an oil. IR v (cm⁻¹)3416, 2935, 1647, 1348, 1248; ¹H (300 MHz, CDCl₃) δ 7.13 (d, *J* = 2.7 Hz, 1H), 6.81 (d, *J* = 2.7 Hz, 1H), 3.60 (t, *J* = 6.4 Hz, 2H), 1.76 (t, *J* = 7.6 Hz, 2H), 1.71 (q, *J* = 7.6 Hz, 2H), 1.37 (m, 2H), 0.75 (t, *J* = 7.6 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 181.8, 162.2, 154.3, 141.7, 125.9, 62.3, 50.5, 35.6, 32.5, 27.7, 9.0, -1.5; HRMS (ESI): Calc. for C₁₄H₂₄BrO₂Si (M+H)⁺: 331.0723; found: 331.0719.

Compound **10**: To a solution of the alcohol **9** (240 mg, 0.72 mmol) in dry CH_2Cl_2 (1.5 mL) at 0 °C was added 2,6-lutidine (0.34 mL, 2.90 mmol, 4 equiv.) and mesyl

chloride (0.11 mL, 1.44 mmol, 2 equiv.). The solution was stirred at room temperature for 2 hours. The resulting reaction mixture was filtrated directly over silica gel (n-hexane/CH₂Cl₂, from 50:50 to 0:100) to afford 288 mg (97%) of the product **10** as a colorless oil. IR v (cm⁻¹) 2961, 1648, 1534, 1354, 1247, 1175; ¹H (300 MHz, CDCl₃) δ 7.10 (d, *J* = 2.7 Hz, 1H), 6.80 (d, *J* = 2.7 Hz, 1H), 4.16 (t, *J* = 6.4 Hz, 2H), 3.01 (s, 3H), 1.80 (t, *J* = 7.6 Hz, 2H), 1.71 (q, *J* = 7.6 Hz, 2H), 1.53 (m, 2H), 0.76 (t, *J* = 7.6 Hz, 3H), 0.20 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 181.5, 161.2, 153.4, 142.4, 126.4, 69.3, 50.2, 37.3, 35.0, 32.6, 24.6, 8.9, -1.5; HRMS (ESI): Calc. for C₁₅H₂₆BrO₄SSi (M+H)⁺: 409.0499; found: 409.0495.

2-*para*-Nosylamidoethanol: To a stirred solution of 2aminoethan-1-ol (0.20 mL, 3.3 mmol) in dry CH_2Cl_2 (8 mL) cooled at 0 °C were added triethylamine (0.69 mL, 5.0 mmol, 1.5 equiv.) and *para*-nosyl chloride (741 mg, 3.4 mmol, 1.05 equiv.). The reaction mixture was stirred for 3 hours at room temperature and then was treated with sat. aq. NaHCO₃ (10

ml). The aqueous phase was extracted with CH₂Cl₂ (4 x 20 mL) and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, concentrated under reduced pressure. 746 mg (92%) of a white solid were obtained. Mp = 126 °C; IR v (cm⁻¹) 3300, 1529, 1351, 1310, 1162; ¹H (300 MHz, DMSO-d₆) δ 8.42 (d, *J* = 7.2 Hz, 2H), 8.06 (d, *J* = 7.2 Hz, 2H), 7.91 (br, 1H), 4.75 (t, *J* = 5.5 Hz, 1H), 3.37 (q, *J* = 5.5 Hz, 2H), 2.86 (t, *J* = 6.0 Hz, 2H);

¹³C NMR (75 MHz, DMSO-d₆) δ 149.4, 146.2, 127.9, 124.4, 59.7, 45.0; HRMS (ESI): Calc. for $C_8H_{11}N_2O_3S$ (M+H)⁺: 247.0383; found: 247.0382.

Compound **11**: To a solution of 2-*para*-Nosylamidoethanol (744 mg, 3.03 mmol) in dry DMF at 0 °C were added imidazole (308 mg, 4.53 mmol, 1.5 equiv.) and *tert*-butyldimethylsilyl chloride (544 mg, 3.62 mmol, 1.2 equiv.). The resulting solution was stirred at room temperature for 2 hours and then was treated with sat. aq.

NaHCO₃ (10 mL). The aqueous phase was extracted with EtOAc (4 x 20 mL) and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by chromatography over silica gel (n-hexane/EtOAc, 80:20) to afford 1.055 g (97%) of the product as a white solid. Mp = 72 °C; IR ν (cm⁻¹) 3266, 2925, 2854, 1533, 1350, 1161; ¹H (600 MHz, CDCl₃) δ 8.37 (d, *J* = 9.4 Hz, 2H), 8.06 (d, *J* = 9.4 Hz, 2H), 4.95 (t, *J* = 5.3 Hz, 1H), 3.65 (t, *J* = 5.3 Hz, 1H), 3.12 (q, *J* = 5.3 Hz, 2H), 0.84 (s, 9H), 0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 149.9, 145.8, 128.2, 124.3, 61.2, 45.2, 25.7, 18.1, -5.5; HRMS (ESI): Calc. for C₁₄H₂₅N₂O₅SSi (M+H)⁺: 361.1248; found: 361.1250.

Compound **12**: To a stirred solution of compound **11** (670 mg, 1.86 mmol, 2.7 equiv) in dry DMF (2 mL) at 0 °C, was added sodium hydride (60% w/w in oil, 72 mg,1.79 mmol, 2.6 equiv.) by portion. The reaction mixture was stirred for one hour at room temperature before the dropwise addition of the mesylate **10** (282

mg, 0.69 mmol) dissolved in THF (1.5 mL). The reaction mixture was stirred at 65 °C for 12 hours. The resulting solution was directly filtrated over silica gel (n-hexane/EtOAc, 85:15) to remove DMF. The resulting crude mixture was purified over silica gel (toluene) to give 414 mg (89%) of the product **12** as a yellow oil. IR v (cm⁻¹) 2949, 2854, 1647, 1531, 1348, 1163, 1107; ¹H (300 MHz, CDCl₃) δ 8.35 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 7.08 (d, J = 2.7 Hz, 1H), 6.77 (d, J = 2.7 Hz, 1H), 3.68 (t, J = 5.9 Hz, 2H), 3.24 (t, J = 5.9 Hz, 2H), 3.22 (m, 2H), 1.69 (q, J = 7.6 Hz, 2H), 1.68 (m, 2H), 1.37 (m, 2H), 0.84 (s, 9H), 0.75 (t, J = 7.6 Hz, 3H), 0.19 (s, 9H), 0.01 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 181.6, 161.4, 153.5, 149.9, 145.8, 142.3, 128.1, 126.3, 124.4, 61.9, 50.4, 49.9, 49.2, 35.9, 32.7, 25.7, 23.6, 18.1, 9.0, -1.4, -5.4; HRMS (ESI): Calc. for C₂₈H₄₆BrN₂O₆SSi (M+H)⁺:673.1793; found: 673.1779.

Compound 16: To a solution of 12 (101 mg, 0.15 mmol) in degassed acetonitrile (1 mL) was added solid K_2CO_3 (104 mg, 0.75 mmol, 5 equiv.) and thiophenol (77 μ L, 0.75 mmol, 5 equiv.). The solution was stirred overnight and filtrated directly over celite (EtOAc) to remove the insolubilities. The resulting

crude product **16**, was purified by chromatography over silica gel (n-hexane/EtOAc, 80:20 to remove sulphur-containing by-product and then EtOAc/MeOH, 95:5 for the product) to afford 66 mg (85%) of the product **16** as an orange oil. IR v (cm⁻¹) 2951, 2856, 1634, 1246, 1106; ¹H (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.38 (m, 3H), 6.80 (d, *J* = 2.9 Hz, 1H), 5.91 (d, *J* = 2.9 Hz, 1H), 3.71 (t, *J* = 5.3 Hz, 2H), 2.67 (t, *J* = 5.3 Hz, 2H), 2.55 (t, *J* = 7.0 Hz, 2H), 1.80 (br, 1H), 1.60 (m, 2H), 1.52 (m, 2H), 1.23 (m, 2H), 0.89 (s, 9H), 0.63 (t, *J* = 7.6 Hz, 3H), 0.20 (s, 9H), 0.06 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 185.4, 162.8, 146.0, 141.4, 139.7, 134.5, 131.5, 129.4, 128.4, 61.8, 51.2, 49.4, 48.2, 37.3, 32.8, 25.8, 24.9, 18.1, 8.9, -1.4, -5.3; LRMS (ESI): 518, 410 and 408; HRMS (ESI): Calc. for C₂₈H₄₈NO₂SSi (M+H)⁺:518.2939; found: 518.2928.

Compound **19**: To a solution of the amine **16** (95 mg, 0.18 mmol) in THF (0.3 mL) at 0 °C was added dropewise TBAF (1M in THF, 0.73 mL, 0.73 mmol, 4 equiv.). The reaction mixture was stirred at room temperature for 5 hours and then the solution was quickly filtrated over a short plug of silica gel (EtOAc 100%) to afford 53 mg (87%) of the

alcohol **19** as an oil. IR v (cm⁻¹) 3424, 2930, 1674, 1582, 1044; ¹H (600 MHz, C₆D₆) δ 7.43 (d, *J* = 7.6 Hz, 2H), 7.05 (t, *J* = 7.6 Hz, 2H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.12 (s, 1H), 3.33 (m, 2H), 2.73 (dd, *J* = 12.3, 3.5 Hz, 1H), 2.46 (dd, *J* = 15.8, 12.3 Hz, 1H), 2.31 (dd, *J* = 15.8, 4.1 Hz, 1H), 2.11 (m, 2H), 2.04 (dt, *J* = 12.9, 4.7 Hz, 1H), 1.91 (td, *J* = 11.7, 2.3 Hz, 1H), 1.66 (sex, *J* = 7.0 Hz, 1H), 1.24 (m, 1H), 0.98 (m, 5H), 0.51 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 194.5, 153.0, 136.6, 133.7, 133.5, 129.5, 128.0, 58.6, 55.8, 44.9, 41.9, 32.7, 29.4, 28.2, 26.0, 20.9, 8.3; LRMS (ESI⁺): 332 and 222; HRMS (ESI): Calc. for C₁₉H₂₆BrNO₂S (M+H)⁺: 332.1679; found: 332.1682.

Compound **21**: To a solution the alcohol **19** (53 mg, 0.16 mmol) in dry CH_2Cl_2 (0.3 mL) at 0 °C, was added triethylamine (67µL, 0.48 mmol, 3 equiv.) and mesyl chloride (19 µL, 0.24 mmol, 1.5 equiv.) dropwise.

The reaction mixture was stirred for 2 hours at room temperature and quickly filtrated over a short plug of silica gel (n-hexane/EtOAc, 70:30) to give 44 mg (79%) of the compound **21** as a thick oil. IR v (cm⁻¹) 2926, 1673, 1317, 1172; ¹H (600 MHz, C₆D₆) δ 7.45 (d, *J* = 7.6 Hz, 2H), 7.05 (t, *J* = 7.6 Hz, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.16 (s, 1H), 3.00 (t, *J* = 6.4 Hz, 2H), 2.61 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.40 (c, 1H), 2.21 (dd, *J* = 15,8 4.0 Hz, 1H), 2.16 (m, 2H), 1.98 (br, 1H), 1.92 (td, *J* = 11.1, 2.3 Hz, 1H), 1.75 (sex, *J* = 7.0 Hz, 1H), 1.28 (c, 1H), 1.08 (sex, *J* = 7.6 Hz, 1H), 0.97 (m, 3H), 0.54 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 194.2, 153.1, 136.4, 133.6, 129.5, 128.3, 128.1, 58.6, 55.9, 45.8, 42.2, 41.8, 32.9, 29.5, 28.2, 21.0, 8.3; LRMS (ESI): 352, 350 and 314; HRMS (ESI): Calc. for C₁₉H₂₅ClNOS (M+H)⁺:350.1340; found: 350.1338.

Compound **22**: To a solution of the product **21** (44 mg, 0.13 mmol) in dry toluene (1 mL) at room temperature, was added potassium tert-butanolate (42 mg, 0.38 mmol, 3 equiv.) by portion. The reaction mixture was stirred for 12 hours at room temperature and directly

filtrated over silica gel (n-hexane/EtOAc, 70:30) to afford 33 mg (84%) of the product **22** as a yellow oil. IR v (cm⁻¹) 2922, 1668, 1439, 1194; ¹H (600 MHz, CDCl₃) δ 7.42 (d, J = 7.3 Hz, 2H), 7.32 (t, J = 7.3 Hz, 2H), 7.26 (t, J = 7.3 Hz, 1H), 6.23 (s, 1H), 2.99 (t, J = 7.3 Hz, 2H), 2.92 (dm, J = 9.4 Hz, 1H), 2.20 (m, 1H), 2.11 (br, 1H), 2.06 (q, J = 8.2 Hz, 1H), 2.00 (t, J = 10.0, 2.3 Hz, 1H), 1.94 (td, J = 10.5, 2.3 Hz, 1H), 1.76 (d, J = 13.5 Hz, 1H), 1.64 (sex, J = 7.6 Hz, 1H), 1.56 (d, J = 13.5 Hz, 1H), 1.47 (sex, J = 7.6 Hz, 1H), 1.43 (d, J = 13.5 Hz, 1H), 1.17 (td, J = 13.5, 4.1 Hz, 1H), 0.85 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.7, 152.8, 135.4, 133.6, 132.5, 129.1, 127.4, 69.4, 52.2, 51.6, 46.5, 40.5, 35.7, 34.1, 25.8, 23.1, 8.1; LRMS (ESI): 314 and 204; HRMS (ESI): Calc. for C₁₉H₂₄NOS (M+H)⁺:314.1573; found: 314.1571.

Compound **6**: To a stirred solution of the compound **22** (15 mg, 0.048 mmol) in EtOH (0.4 mL) was added small amount of Ni (Raney) at room temperature until the reaction was completed as indicated by TLC (n-hexane/EtOAc, 70:30). The mixture was directly filtered over silicagel (n-

hexane/EtOAc, 70:30) to give 8.5 mg (85%) of the tricylic compound **6** as a colorless oil. IR υ (cm⁻¹) 2932, 2786, 1439, 1194; ¹H (600 MHz, CDCl₃) δ 3.00 (m, 2H), 2.68 (m, 1H), 2.41 (m, 1H), 2.37 (dd, J = 15.2, 5.9 Hz, 1H), 2.30 (dm, J = 15.8 Hz, 1H), 2.25 (td, J = 14.1, 4.7 Hz, 1H), 1.94 (m, 2H), 1.89 (dd, J = 14.1, 7.6 Hz, 1H), 1.72 (td, J = 12.9, 3.5 Hz, 1H), 1.63 (m,

2H), 1.49 (m, 2H), 1.32 (sex, J = 7.6 Hz, 1H), 1.10 (td, J = 13.5, 4.1 Hz, 1H), 0.93 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 211.4, 73.5, 53.1, 52.9, 48.1, 36.7, 34.7, 32.8, 30.0, 26.0, 21.3, 21.2, 7.1; HRMS (ESI): Calc. for C₁₃H₂₂NO (M+H)⁺: 208.1696; found: 208.1700.

(±)-Aspidospermidine, 4: The ketone 6 (3 mg, 0.0145 mmol) in dry benzene (0.3 mL) and phenylhydrazine (2.4 mg, 0.022 mmol, 1.5 equiv.) was heated under reflux. After 2 hours, the mixture was cooled to room temperature, the solvent was evaporated. The

crude was dissolved in dry benzene and solvent evaporated under reduced pressure to remove residual water. The mixture was redissolved in dry acetic acid (0.4 mL) and was heated under reflux. After 4 hours, the mixture was cooled to room temperature, the solvent was evaporated and the mixture dissolved in THF (0.5 mL). LiAlH₄ (5.5 mg, 0.145 mmol, 10 equiv.) was added at 0 °C, and the mixture was stirred at room temperature for 30 min. The mixture was cooled to 0 °C, water (0.5 mL) was added, the suspension was filtered through celite and was washed with EtOAc. The resulting crude mixture was purified over silica gel (triethylamine/MeOH/CH₂Cl₂, 0.1:7:93) to give 1.8 mg (43%) of aspidospermidine as a white solid. ¹H (600 MHz, C₆D₆) δ 7.06 (d, *J* = 7.3 Hz, 1H), 7.03 (t, *J* = 7.3 Hz, 1H), 6.80 (d, *J* = 7.3 Hz, 1H), 6.48 (d, *J* = 7.3 Hz, 1H), 3.42 (dd, *J* = 10.3, 6.6 Hz, 1H), 2.96 (td, *J* = 9.5, 3.7 Hz, 1H), 2.87 (d, *J* = 10.3 Hz, 1H), 2.36 (m, 1H), 2.16 (s, 1H), 2.10 (q, *J* = 8.1 Hz, 1H), 2.02 (td, *J* = 13.2, 4.4 Hz, 1H), 1.84 (td, *J* = 11.4, 2.2 Hz, 1H), 1.71 (qt, *J* = 12.5, 3.7 Hz, 1H), 1.59 (sex, *J* = 7.3 Hz, 1H), 1.49 (dd, *J* = 13.9, 3.7 Hz, 1H), 1.45 (d, *J* = 11.0 Hz, 1H), 1.32 (m, 4H), 0.96 (td, *J* = 13.2, 4.4 Hz, 1H), 0.92 (d, *J* = 13.2 Hz, 1H), 0.88 (sex, *J* = 7.3 Hz, 1H), 0.55 (t, *J* = 7.6 Hz, 3H); LRMS (ESI): Calc. for C₁₉H₂₇N₂ (M+H)⁺: 283.

III. Copies of ¹H and ¹³C NMR spectra for all compounds

0.5

CDCl₃, 150 MHz

