1

The Nanogram Water Expelled by the Ultra-Thin Poly(N-isopropylacrylamide) Brushes upon the Thermo-induced Collapse

Hongwei Ma^{1*}, Long Fu², Wei Li², Yaozhong Zhang¹, and Mingwu Li^{3*}

¹Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, P. R. China, ²Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China, ³Department of Ophthalmology, People's Hospital, Affiliated Peking University, Beijing 100044, P. R. China

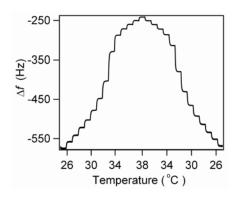


Figure S1. A representative temperature scan for ~32.5 nm pNIPAM in water. Temperature was conducted in a step by step mode. Starting from 25 °C and ending at 38 °C, we increased 1 °C at each step, which was kept for 20 min to achieve equilibrium.

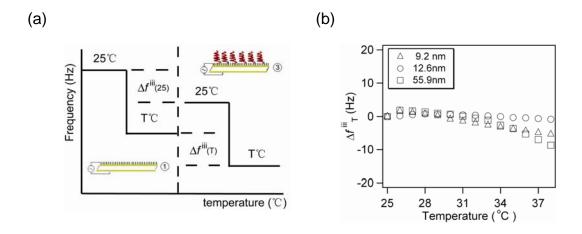


Figure S2. Control experiments of dry pNIPAM under temperature scan. (a) definitions of frequency changes, Δf^{iii} is the frequency difference between the SAM modified QCM chip and pNIPAM modified QCM chip at 25 °C; Δf^{iii} (T) is the frequency difference between the SAM modified QCM chip and pNIPAM modified QCM chip at T °C; (b) dry pNIPAM of three thicknesses had negligible frequency changes as temperature changed.

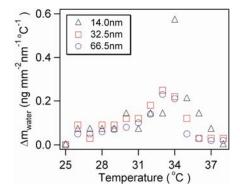


Figure S3. The mass of expelled water for 1 °C change per nm of dry pNIPAM was plotted against temperature. For the starting point of 25 °C, the change was zero. For 26 °C, the change was the value at 25 °C minus the value at 26 °C and was plotted against 26 °C. From the thickness averaged Δm values, thin films had a more dramatic change. Detailed studies are currently undergoing.

Table S1. The full list of $k_{1,n,t}$ at all tested temperatures.

T(℃)	25	26	27	28	29	30	31	32	33	34	35	36	37	30
1(0)	20	20	41	20	23	30	51	04	33	94	55	30	J1	
K _{1, n, a}	14. 4	13.7	13. 4	12. 9	12.4	11.8	11.1	10.6	8.3	7.4	6.1	5.8	5.6	6.2
R ²	0. 995	0.996	0.995	0.996	0.995	0. 993	0. 991	0. 98	0.93	0.91	0.91	0.91	0.92	0. 91