"Clickable" elastins : Elastin-like polypeptides functionalized with azide or alkyne groups - Supplementary information

Rosalie L.M. Teeuwen, ${ }^{\text {a,c }}$ Sander S. van Berkel, ${ }^{\text {a }}$ Tim H.H. van Dulmen, ${ }^{\text {a }}$ Sanne Schoffelen, ${ }^{\text {a }}$ Silvie A. Meeuwissen, ${ }^{\text {a }}$ Frits A. de Wolf, ${ }^{\text {b }}$ Han Zuilhof, ${ }^{\text {c }}$ and Jan C.M. van Hest,*a
${ }^{\text {a }}$ Radboud University Nijmegen, Institute for Molecules and Materials, Department of Organic Chemistry, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
${ }^{\mathrm{b}}$ Wageningen UR, Agrotechnology \& Food Innovations B.V., P.O. Box 17, 6700 AA Wageningen, The Netherlands
${ }^{c}$ Wageningen UR, Laboratory for Organic Chemistry, P.O. Box 8026, 6700 EG Wageningen, The Netherlands

Nomenclature

The ELP construct can be described using the notation $\operatorname{ELP}\left[\mathrm{V}_{5} \mathrm{~L}_{2} \mathrm{G}_{3}-90\right]^{1}$, where the capitals between the brackets represent the single letter amino acid code replacing guest residue Xaa in the pentapeptide ValProGyXaaGly. The subscript stands for the number of guest residues in the monomer gene, and the ELP consists of 90 pentapeptide repeats.

Cloning

Standard molecular biology protocols were used for gene synthesis and oligomerization. Digested inserts and linearized vectors were purified by agarose gel electrophoresis (QIAquick Gel Extraction Kit, Qiagen, Valencia, CA). All clones were maintained in E. coli XL1-Blue.

ELP gene synthesis
A synthetic gene for a 10 -polypentapeptide ELP was constructed from four $X_{i} Y_{j} Z_{k}$ synthetic oligonucleotides (Fig. S1). The oligonucleotides were annealed to form doublestranded DNA with BsmBI- and EcoRI-compatible ends, phosphorylated, and ligated into BsmBI/EcoRI linearized, and dephosphorylated pMTL23- δ-BsaI-aIII. This vector was constructed from two synthetic aIII oligonucleotides (Fig. S1), that were annealed to form double-stranded DNA with XhoI- and EcoRI-compatible ends, and ligated into

XhoI/EcoRI linearized pMTL23- δ - BsaI^{2} (BsaI site removed from Amp gene). The DNA sequence of the insert was verified by DNA sequencing. For a typical oligomerization, the vector was linearized with BsmFI, and enzymatically dephosphorylated. The insert was doubly digested with BsmFI and FokI, and ligated into the linearized vector. This was repeated until the ELP gene had 90 repeats of the pentapeptide, resulting in vector pMTL23- δ-BsaI-aIII-ELP. Colonies were screened by PCR, and the DNA sequence of inserts was verified by DNA sequencing.

Adapter gene synthesis
The genes for adapterXX were constructed from synthetic Adapter oligonucleotides (Fig. S1). The oligonucleotides were annealed to form double-stranded DNA with XhoIand EcoRI-compatible ends, and ligated into XhoI/EcoRI linearized pMTL23- δ-BsaI. Colonies were screened by PCR and restriction analysis with SmaI, and the DNA sequence of inserts was verified by DNA sequencing. The ELP genes were doubly digested from pMTL23- δ-BsaI-aIII-ELP with BsmFI and EcoRI, and ligated into BsmFI/EcoRI linearized and dephosphorylated pMTL23- δ-BsaI-XX, resulting in pMTL23- δ-BsaI-XX-ELP. Colonies were screened by PCR, and the DNA sequence of inserts was verified by DNA sequencing.

Expression vector pET15b

The ELP gene was doubly digested with XhoI/BamHI and ligated into XhoI/BamHI linearized expression vector pET15b (Novagen). Colonies were screened by restriction analysis with $\mathrm{XhoI} / \mathrm{BamHI}$.

Resulting ELP sequence

MGSSHHHHHHSSGLVPRGSHMLEKREAEAGP(VPGGGVP GVGVPGVGVPGGGVPGLGVPGVGVPGVGVPGVGVPGGG V P G L G) ${ }_{9}$ V P G G G A
Sense 5’-TCGAGAAAAGAGAGGCTGAAGCGGGACGTCTCGGTGCCTAACATCCG-3'
anti-sense 5^{\prime} 'AATTCGGATGTTAGGCACCGAGACGTCCCGCTTCAGCCTCTCTTTTC-3'
$\mathrm{V}_{5} \mathrm{~L}_{2} \mathrm{G}_{3}-10$
Sense I
5'-
GTGCTGGTGGTGTTCCGGGCGTCGGTGTTCCTGGAGTCGGTGTTCCAGGTGGAGGTGTTCCAGGATTGGGTGTTCCTGG
TGTAGGTG-3'

Anti-sense I
5'-
GGAACACCTACACCAGGAACACCCAATCCTGGAACACCTCCACCTGGAACACCGACTCCAGGAACACCGACGCCCGGA ACACCACCA-3

Sense II
5'-
TTCCTGGTGTTGGTGTTCCAGGTGTTGGTGTTCCAGGTGGAGGTGTTCCTGGTTTGGGAGTTCCTGGTGGTGGTGCCTAA CATCCG-3'

Anti-sense II
5'-
AATTCGGATGTTAGGCACCACCACCAGGAACTCCCAAACCAGGAACACCTCCACCTGGAACACCAACACCTGGAACAC CAACACCA-3'

AdapterXX
Sense 5^{\prime} '-TCGAGAAAAGAGAGGCTGAAGCGGGACCAGTTCCTGGTGGTGCCTAACATCCG-3'
Anti-sense 5'-AATTCGGATGTTAGGCACCACCAGGAACTGGTCCCGCTTCAGCCTCTCTTTTC-3'

Adapter FP
Sense 5’-GTGCTGGTGGACCGGTGTAACATCCGAGCGGCCGCCATCCG-3’
Anti-sense 5’-AATTCGGATGGCGGCCGCTCGGATGTTACACCGGTCCACCA-3'

Figure S1. DNA sequences of the used oligonucleotides (Eurogentec, Seraing, Belgium).

Protein expression

PET15b-ELP was transformed into the E. coli expression strain BLR(DE3) (Novagen). For a typical expression a 100 mL Luria Broth culture, supplemented with $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and $12.5 \mu \mathrm{~g} / \mathrm{mL}$ tetracycline, was inoculated with a single colony and incubated at $37{ }^{\circ} \mathrm{C}$ overnight. The overnight culture was diluted to an OD_{600} of 0.1 in a 0.5 L LB culture supplemented with $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and $12.5 \mu \mathrm{~g} / \mathrm{mL}$ tetracycline,
and incubated at $37^{\circ} \mathrm{C}$. At an OD_{600} of 0.6 the expression was induced by the addition of IPTG to a final concentration of 1 mM . After incubation at $25^{\circ} \mathrm{C}$ overnight the cultures were harvested by centrifugation $\left(18,000 \mathrm{xg}, 4^{\circ} \mathrm{C}\right)$. The cell pellet was re-suspended in PBS, and incubated with lysozyme ($1 \mathrm{mg} / \mathrm{mL}$ in PBS) at $4^{\circ} \mathrm{C}$ for 30 min . The cells were then lysed by ultrasonic disruption at $4^{\circ} \mathrm{C}$. The lysate was centrifuged ($15 \mathrm{~min}, 4600$ rpm, $4^{\circ} \mathrm{C}$ Minifuge RF, Heraeus Sepatech, Germany) to remove insoluble material.

Auxotroph expression

PET15b-ELP was transformed into the methionine auxotroph expression strain B834(DE3)pLysS (Novagen). For a typical expression a 100 mL Luria Broth culture, supplemented with $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and $50 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol, was inoculated with a single colony and incubated at $37^{\circ} \mathrm{C}$ overnight. The overnight culture was diluted to an OD_{600} of 0.1 into 0.5 L M9 minimal medium supplemented with all 20 natural amino acids ($40 \mathrm{mg} / \mathrm{L}$ each), thiamine (0.0005%), ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) and chloramphenicol ($50 \mu \mathrm{~g} / \mathrm{mL}$), and incubated at $37^{\circ} \mathrm{C}$ to OD_{600} of 0.8 . To induce synthesis of T7 polymerase in the presence of methionine, isopropyl-D-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM , and the culture was incubated for 15 min at $37^{\circ} \mathrm{C}$. Cells were spun down ($10 \mathrm{~min}, 4600 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ Minifuge RF, Heraeus Sepatech, Germany), washed twice in cold $\mathrm{NaCl}(0.9 \%)$, and re-suspended in 0.5 L M9 minimal medium supplemented with 19 natural amino acids ($40 \mathrm{mg} / \mathrm{L}$ each, no methionine), thiamine (0.0005%), ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) and chloramphenicol $(50 \mu \mathrm{~g} / \mathrm{mL})$. After incubation for 10 min at $37^{\circ} \mathrm{C}$, the culture was supplemented with azidohomoalanine (AHA) ${ }^{3}$ or homopropargylglycine (HPG; Chiralix, Nijmegen, The Netherlands) $(40 \mathrm{mg} / \mathrm{L})$ and IPTG $(1 \mathrm{mM})$, followed by incubation overnight at $25^{\circ} \mathrm{C}$. Cells were harvested by centrifugation $\left(18,000 \mathrm{xg}, 4^{\circ} \mathrm{C}\right)$.

ELP purification

The ELPs were purified by inverse transition cycling. ${ }^{4}$ In short, ELPs were aggregated by adding NaCl to a concentration of 1 M and increasing the temperature of the cell lysate to $65^{\circ} \mathrm{C}$. The aggregated protein was separated from the solution by centrifugation at $40^{\circ} \mathrm{C}$ (10 min, 4600 rpm , Multifuge, Heraeus Sepatech, Germany). The supernatant was
decanted and discarded while the pellet containing the fusion protein was re-suspended in cold PBS. The re-solubilized pellet was then centrifuged at $4{ }^{\circ} \mathrm{C}(10 \mathrm{~min}, 4600 \mathrm{rpm})$ to remove any remaining insoluble material. The inverse transition cycling was repeated, yielding typically 10 mg purified protein/L culture.

Characterization of proteins

The SDS-PAGE analysis used a Mini-PROTEAN system (Bio-Rad, Hercules, CA) with 7.5% or 10% gels, stained with Coomassie brilliant blue. Protein concentrations were determined by bicinchonic acid assay (Pierce Chemical Co., Rockford, IL).

Figure S2. Typical SDS-PAGE coomassie stained gel after purification. 1) AHA-ELP, 2) HPG-ELP, 3) Met-ELP.

MALDI-TOF mass spectrometry measurements on the whole proteins were performed on a Bruker Biflex III spectrometer with 2,5-dihydroxyacetophenone (DHAP) as matrix. ${ }^{5}$

Table S1. Calculated and measured molecular weights of proteins, determined by MALDI-TOF.

Protein	Calculated (Da)	Measured (Da)
Met-ELP	39802	39390
AHA-ELP	39792	39497

HPG-ELP	39758	39551

To detect incorporation of AHA and HPG tryptic digests were performed and analyzed by MALDI-TOF mass spectrometry. Sequencing-grade modified trypsin ($0.5 \mu \mathrm{~g}$, Promega) was added to the ELPs in PBS. After incubation for 3h at RT the tryptic digests were analyzed with α-cyanohydroxycinnamic acid (Sigma) as matrix. In all samples the N -terminal methionine deletion ${ }^{6,7}$ was clearly observed.

Figure S3. MALDI-TOF spectra of two peptide fragments derived from tryptic digest of Met-ELP (a), AHA-ELP (b), HPG-ELP (c). The peak at 801/796/779 originates from the peptide fragment with residue $18-24$. The peak at $1769 / 1895 / 1878$ comes from the peptide fragment with residue 1-17.

The optical absorbance at 350 nm of ELPs was measured in the $15-65^{\circ} \mathrm{C}$ range on a Jasco J-810 spectropolarimeter (band width: 1 nm , response: 1 sec ., sensitivity: standard,
heating rate: $1{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$) equipped with a PFD-425s Peltier temperature controller (Jasco).

Figure S4. Normalized turbidity profile of Met-ELP, AHA-ELP, and HPG-ELP (each $0.1 \mathrm{mg} / \mathrm{mL}$) in PBS measured at 350 nm .

Syntheses of fluorescent probes

The synthesis of ClickGreen derivatives $\mathbf{6}$ and $\mathbf{8}$ commenced with the functionalization of 4-bromo-3-methylphenol (Scheme S1). As a result compound 9 was obtained in excellent yield (95\%) by reacting 4-bromo-3-methylphenol with ethylene carbonate. The alcohol moiety was subsequently protected with a silyl protecting group yielding 10 (95\%). Next, a Grignard reaction between 10 and TBDMS protected xanthone \mathbf{A} was performed followed by the in situ deprotection resulting in desired product 5 in excellent yield (89%). Transformation of primary alcohol into a good leaving group was envisioned to proceed smoothly using a small excess mesyl chloride. Surprisingly, the phenolic hydroxyl group turned out to be more reactive than the primary alcohol resulting in a mixture of mono and dimesylated compounds 11a and 11b (both in 25\%). Subjecting compound 11a to NaN_{3} at a temperature of $60{ }^{\circ} \mathrm{C}$ resulted in mesyl substitution and in situ deprotection generating azido-ClickGreen 6 (27\%).

Scheme S1. Synthesis of alkyne and azido fluorophores. Reagent and conditions: i) $\mathrm{K}_{2} \mathrm{CO}_{3}$, toluene, Ar-atm., $115^{\circ} \mathrm{C}, 24 \mathrm{~h}$; ii) TBDMS-Cl, DMF, imidazole, r.t. 2 h ; iii) a) $\mathrm{Mg}, \mathrm{EtBr}_{2}, \mathrm{Et}_{2} \mathrm{O}$, r.t., $2 \mathrm{~h}, \mathrm{~b}$) \mathbf{A} (at $0^{\circ} \mathrm{C}$), THF, r.t., $1.5 \mathrm{~h}, \mathrm{c}$) $\mathrm{MeOH}, \mathrm{TFA}$, r.t., 30 min ; iv) $\mathrm{Ms}-\mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMAP, $0{ }^{\circ} \mathrm{C}$ to r.t., 4 h ; v) NaN , DMF, $60^{\circ} \mathrm{C}, 36 \mathrm{~h}$; vi) $\mathrm{DiAD}, \mathrm{PPh}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t. 48 h ; vii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 18 h .

Introduction of the TMS-protected propynol onto 4-bromo-3-methylphenol was achieved via a Mitsunobu reaction yielding 12 in a good yield (72\%). Performing the Grignard reaction with $\mathbf{1 2}$ and xanthone \mathbf{A} and subsequent hydrolysis of the TBDMS group gave TMS-protected compound 7. In the final step the TMS group was removed resulting in acetylene-ClickGreen $\mathbf{8}$ in quantitative yield.

Materials

All chemicals were obtained from commercial sources and used without further purification, unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on Merck precoated silica gel 60 F-254 plates (layer thickness 0.25 mm) with the indicated eluent and visualization by ultraviolet (UV) irradiation at $\lambda=254 \mathrm{~nm}$ and/or $\lambda=366 \mathrm{~nm}$. Preparative thin layer chromatography (Prep-TLC) was performed on Merck precoated silica gel 60 F-254 plates (layer thickness 1.00 mm) with concentration zone
and visualization by UV irradiation at $\lambda=254 \mathrm{~nm}$ and $/$ or $\lambda=366 \mathrm{~nm}$. Purification by silica gel chromatography was carried out using $\operatorname{Acros}(0.035-0.070 \mathrm{~mm}$, pore diameter ca. 6 nm) silica gel. THF was distilled under nitrogen from sodium/benzophenone. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled under nitrogen from CaH_{2}.

General analytical techniques
NMR spectra were recorded on Bruker DMX300 (300 MHz and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) and Varian Inova $400\left(400 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$ spectrometers. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts (δ) are reported in parts per million (ppm) relative to a residual proton peak of the solvent; $\delta=7.26$ for CDCl_{3} or $\delta=3.31$ for $\mathrm{CD}_{3} \mathrm{OD}$. Multiplicities are reported as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), or m (multiplet). Broad peaks are indicated by the addition of br. Infrared (IR) spectra were recorded on an ATI Matson Genesis Series FTIR spectrometer fitted with an ATR cell. The vibrations (v) are given in cm^{-1}. Matrix assisted laser desorption/ionisation time-of-flight (MALDIToF) spectra were measured on a Bruker Biflex III spectrometer and samples were prepared from MeOH solutions using indoleacrylic acid (IAA) ($20 \mathrm{mg} / \mathrm{mL}$) as a matrix. LCQ/MS analysis was performed using Thermo scientific Advantage LCQ LineairIontrap Electrospray (ESI-MS). Electrospray ionisation time-of-flight (ESI-ToF) spectra were measured with a JEOL AccuToF.

3,6-bis(tert-butyldimethylsilyloxy)-9H-xanthen-9-one (A)

3,6-Dihydroxy-9H-xanthen-9-one ($0.500 \mathrm{~g}, 2.20 \mathrm{mmol}$) was dissolved in dry DMF (45 mL) where after TBDMS chloride ($1.99 \mathrm{~g}, 13.2 \mathrm{mmol}$) and imidazole (1.50 g , 22.0 mmol) were added. After stirring at room temperature for 2 h , the reaction mixture was diluted with toluene, washed extensively three times with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo left a light brown solid, which was recrystallized from ethanol to give \mathbf{A} as off white needle crystals $\left(0.841 \mathrm{~g}, 84 \%\right.$ yield). $R_{\mathrm{F}}=0.90$ (n-heptane/EtOAc, 1:2); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 8.20(\mathrm{td}, J=9.1,1.2,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 18 \mathrm{H}), 0.29(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 161.3,159.1,157.7,128.2,117.6,116.4,107.3,25.5$, 18.3, -4.4 ppm. FT-IR $v_{\max }: 2924,16.15,1279,1270,850,840 \mathrm{~cm}^{-1}$. HRMS (CI+) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}_{2} 457.2234$, found $457.2230[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-Bromo-3-methoxyphenoxy)ethanol (9)
HO Modified literature procedure ${ }^{8}$: Under an Ar-atmosphere, $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}$, 1.50 mmol) was added to a solution of 3-methyl-4-bromophenol (134 mg , 0.75 mmol) and ethylene carbonate ($264 \mathrm{mg}, 3.00 \mathrm{mmol}$) in dry toluene $(5 \mathrm{~mL})$. The mixture was heated to $115^{\circ} \mathrm{C}$ and stirred for 24 hours. After completion, water (20 mL) was added and the emulsion was extract with EtOAc ($2 \times$ 25 mL). The organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. Further purification was accomplished by column chromatography (n-heptane/EtOAc, 2:1) to afford 9 as an off-white semisolid ($169 \mathrm{mg}, 98 \%$). $R_{\mathrm{F}}=0.48$ (n-heptane/EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.7,138.9,132.8,117.1,115.8,113.5,69.3,61.3$, 23.1 ppm . FT-IR $v_{\max }$ film: $3382(\mathrm{br}), 2911,2358,2336,1476(\mathrm{~s}), 1238,1027 \mathrm{~cm}^{-1}$. HRMS (EI+) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}]^{\bullet \bullet} 229.9942$, found 229.9945 .
(2-(4-Bromo-3-methylphenoxy)ethoxy)(tert-butyl)dimethylsilane (10)
 2:1) afforded \mathbf{C} as a colorless oil ($1.48 \mathrm{~g}, 99 \%$). $R_{\mathrm{F}}=0.86$ (n-heptane/EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=3.0,1 \mathrm{H}), 6.62(\mathrm{dd}$, $J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 158.2,138.7,132.7,117.2,115.4,113.6,69.5,62.0$, 25.9, 23.1, 18.4, -5.2 ppm . FT-IR $v_{\max }$ film: 2923, 1473 (s), 1241, $1128,828,776 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{BrSi}[\mathrm{M}+\mathrm{H}]^{+}$345.0885, found 345.0907.

6-Hydroxy-9-(4-(2-hydroxyethoxy)-2-methylphenyl)-3H-xanthen-3-one (5)
Modified literature procedure ${ }^{9}$: In a flame-dried Schlenk tube under
 an Ar-atmosphere, dried magnesium powder ($36.5 \mathrm{mg}, 1.50 \mathrm{mmol}$) was suspended in a minute quantity of dry $\mathrm{Et}_{2} \mathrm{O}$. After activation of the Mg with a drop of 1,2-dibromoethane, compound $\mathbf{1 0}$ (329 mg , $0.96 \mathrm{mmol})$ dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was slowly added to the mixture while gas formation was maintained by interval warming with a heat gun. When no more gas formation was observed, the mixture was stirred for 30 min at room temperature and was then cooled to $0^{\circ} \mathrm{C}$. Compound \mathbf{A} ($325 \mathrm{mg}, 0.71 \mathrm{mmol}$) dissolved in dry THF (4 mL) was added drop wise to the reaction mixture. Upon warming to room temperature, the color changed from yellow to brownish to deep purple in 1.5 hours. The mixture was quenched with $\mathrm{CH}_{3} \mathrm{OH}$ and the remaining Mg was filtered off. Deprotection of the TBDMS groups with aqueous $\mathrm{HCl}(2 \mathrm{M}, 8 \mathrm{~mL})$ took 10 min and was followed by TLC. After complete deprotection, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and further purification was performed by column chromatography over silica gel $\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 19\right)$. The resulting orange sticky oil was lyophilized to obtain compound $\mathbf{5}$ as a red-orange fluffy solid (211 mg , 82%). $R_{\mathrm{F}}=0.30\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 7.24(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.94-$ $3.92(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 161.8,159.7$ (2C), $158.6,158.5,139.1,132.9$ (2C), 131.6, 125.6, 122.5, 122.5, 117.8, 117.2 (2C), 113.5, 104.2 (2C), 70.8, 61.7, 20.1 ppm . FT-IR $v_{\text {max }}$ film: 3377 (br), 2915, 1592 (s), 1461, 1382, 1244, 1207, 1109, 621, $609 \mathrm{~cm}^{-1}$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 385.1052, found 385.1024 .

9-(4-(2-Hydroxyethoxy)-2-methylphenyl)-6-(mesylate)-3H-xanthen-3-one (11a) and 9-(4-(2-hydroxyethyl mesylate)-2-methylphenyl)-6-(mesylate)-3H-xanthen-3-one (11b)

Compound 5 ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$) was suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ in a flame-dried Schlenk tube under an N_{2}-atmosphere. The suspension was cooled to $0^{\circ} \mathrm{C}$ and DMAP ($135 \mathrm{mg}, 1.10 \mathrm{mmol}$) was added. After 5 min methanesulfonyl chloride ($\mathrm{MsCl}, 85.4 \mu \mathrm{~L}, 1.10 \mathrm{mmol}$) was added. The suspension was stirred for 30 min at $0^{\circ} \mathrm{C}$, warmed to room temperature and then stirred for an additional 16 hours to obtain a clear solution. Additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ was added and the solution was washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The crude mixture was purified by gradient column chromatography over silica gel $\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 40\right.$ to 1:15) and afforded 11a and 11b separately as orange sticky oils ($30 \mathrm{mg}(25 \%)$ and 35 mg (25%), respectively).

Analytical data for compound 11a: $R_{\mathrm{F}}=0.55\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$: $7.40(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.94$ (dd, $J=8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (dd, $J=$ $9.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}$, 3 H), $2.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. LRMS (ESI +) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 441.1$, found 441.2.

Analytical data for compound 11b: $R_{\mathrm{F}}=0.60\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8: 7.41-7.40 (m, 1H), 7.18-7.13 (m, 1H), 7.13-7.12 (m, 1H), 7.09 (d, J=8.2 Hz, $1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=9.5,1.9 \mathrm{~Hz}), 6.44(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm}$. LRMS (ESI+) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{9} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 519.1$, found 519.1.

9-(4-(2-Azidoethoxy)-2-methylphenyl)-6-hydroxy-3H-xanthen-3-one (6)

Compound 11a ($30 \mathrm{mg}, 0.068 \mathrm{mmol}$) and sodium azide (22 mg , $0.338 \mathrm{mmol})$ were dissolved in DMF (8 mL). The reaction mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for 36 hours. A similar workup procedure utilized for the previous methods afforded azidoClickGreen 6 as an orange-red solid after lyophilization from
dioxane and $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{mg}, 27 \%) . R_{\mathrm{F}}=0.35\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03 (dd, $J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{ddd}, J=9.7,2.2,0.4 \mathrm{~Hz}$, 2H), $4.29(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 184.5,161.0,159.5$ (2C), 156.1 (2C), 139.2, 132.3 (2C) 131.6, 126.5, 123.11 (2C), 117.7, 116.2 (2C), 104.5 (2C), 68.6, 51.4, 20.0 ppm. FT-IR $v_{\max }$ film: 3317 (br), 2915, 2107, 1593 (s), 1502, 1462 (s), 1282, 1242, 1204, 1104, $845,616 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 388.1295$, found 388.1297.
(3-(4-bromo-3-methylphenoxy)prop-1-ynyl)trimethylsilane (12)
 Under an N_{2}-atmosphere, 3-methyl-4-bromophenol ($93 \mathrm{mg}, 0.50 \mathrm{mmol}$), propargyl alcohol ($64 \mathrm{mg}, 73.1 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(137.6 \mathrm{mg}$, $0.525 \mathrm{mmol})$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate (DiAD, $107 \mu \mathrm{~L}$, 0.55 mmol) was added drop wise. The reaction was allowed to warm to r.t. and was subsequently stirred for 48 h . After completion, $\mathrm{HCl}(1 \mathrm{M}, 5 \mathrm{~mL})$ was added. The water layer was washed once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the combined organic layers were subsequently washed with aq. NaHCO_{3} (sat. 10 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. Further purification was accomplished by column chromatography (n-heptane/EtOAc, 3:1) to afford $\mathbf{1 2}$ as colorless oil (106 mg , 72%). $R_{\mathrm{F}}=0.78$ (n-heptane/EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.41(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.9,138.8,117.6,116.2$, 113.9, 99.7, 93.0, 56.8, 23.1, -0.3 (3C) ppm. Both HRMS and LRMS techniques were employed to acquire the mass of the described compound. Unfortunately, none of the techniques used gave a comprehensible mass spectrum.

9-(4-(3-(TMS)-prop-2-ynyloxy)-2-methylphenyl)-6-hydroxy-3H-xanthen-3-one (7)
In a flame-dried Schlenk tube under an Ar-atmosphere, dried
 magnesium powder ($8.6 \mathrm{mg}, 0.36 \mathrm{mmol}$) was suspended in a
minute quantity of dry $\mathrm{Et}_{2} \mathrm{O}$. After activation of the Mg with a drop of 1,2dibromoethane, compound $\mathbf{1 2}(106 \mathrm{mg}, 0.36 \mathrm{mmol})$ dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was slowly added to the mixture while gas formation was maintained by interval warming with a heat gun. When no more gas formation was observed, the mixture was stirred for 30 min at $\mathrm{r} . \mathrm{t}$. and then cooled to $0{ }^{\circ} \mathrm{C}$. Compound $\mathbf{A}(114 \mathrm{mg}, 0.25 \mathrm{mmol})$ dissolved in dry THF (2 mL) was added drop wise to the reaction mixture. Upon warming to room temperature, the color changed from yellow to brownish to deep purple during 1.5 hours. The mixture was quenched with $\mathrm{CH}_{3} \mathrm{OH}$ and the remaining Mg was filtered off. Deprotection of the TBDMS groups with aqueous $\mathrm{HCl}(2 \mathrm{M}, 5 \mathrm{~mL})$ took approximately 10 min and was followed by TLC. After complete deprotection, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and further purification was performed by gradient column chromatography over silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5 / 9: 1\right)$. The resulting orange sticky oil (i.e. compound \mathbf{G}, $(35 \mathrm{mg}$, $33 \%)$) was taken trough to the next step without extensive characterization. $R_{\mathrm{F}}=0.46$ $\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right)$. LRMS (ESI+) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 429.6$, found 429.3.

6-Hydroxy-9-(2-methyl-4-(prop-2-ynyloxy)phenyl)-3H-xanthen-3-one (8)

Compound 7 ($35 \mathrm{mg}, 0.08 \mathrm{mmol}$) was dissoveld in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ followed by the addition $\mathrm{K}_{2} \mathrm{CO}_{3}(40 \mathrm{mg}, 0.29 \mathrm{mmol})$. The reaction mixture was stirred for 18 hours at r.t. Since no R_{F} difference was observered for the product and the starting material, the reaction was followed by MS-analysis. The crude reaction mixture was purified by preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 9: 1\right)$ resulting in the acetylene-ClickGreen 8 as a orange fluffy solid after lyophilization from $\mathrm{H}_{2} \mathrm{O} /$ dioxane ($10 \mathrm{~mL}, 1: 0.5 \mathrm{v} / \mathrm{v}$) ($28 \mathrm{mg}, 99 \%$). $R_{\mathrm{F}}=0.46\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.11-$ $7.09(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 178.4,160.2,159.6$ (2C), 156.1, 139.1, 132.3 (2C), 131.5, 126.7, 123.2 (2C),
118.0 (2C), 115.9, 113.7 (2C), 104.5, 79.5, 77.2, 56.8, 14.5. HRMS (ESI+) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 357.1127$, found 357.1118.

Click conditions for AHA-ELP and acetylene-ClickGreen

To a mixture of AHA-ELP ($10 \mu \mathrm{~L}, 0.37 \mathrm{mg} / \mathrm{mL}$ in PBS buffer, $\mathrm{pH}=7.4$) and acetyleneClickGreen $8(1.8 \mu \mathrm{~L}, 1 \mathrm{mM}$ in PBS buffer, $\mathrm{pH}=7.4)$ was added $2 \mu \mathrm{~L}$ of $\mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture. $\mathrm{The} \mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture contained CuBr in $\mathrm{MeCN}(40 \mathrm{mM})$ and $4(80 \mathrm{mM})$ in mixed in a $1: 1 \mathrm{v} / \mathrm{v}$ ratio. MiliQ $(6.2 \mu \mathrm{~L})$ was added to obtain a total reaction volume of 20 $\mu \mathrm{L}$. The reaction mixture was gently shaken at r.t. for 16 hours. The reaction mixture was analyzed by SDS-PAGE analysis in combination with fluorescence imaging.

Click conditions for HPG-ELP and azido-ClickGreen

To a mixture of HPG-ELP ($10 \mu \mathrm{~L}, 0.58 \mathrm{mg} / \mathrm{mL}$ in PBS buffer, $\mathrm{pH}=7.4$) and azidoClickGreen $6(1.8 \mu \mathrm{~L}, 1 \mathrm{mM}$ in PBS buffer, $\mathrm{pH}=7.4)$ was added $2 \mu \mathrm{~L}$ of $\mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture. The $\mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture contained CuBr in $\mathrm{MeCN}(40 \mathrm{mM})$ and $4(80 \mathrm{mM})$ in mixed in a $1: 1 \mathrm{v} / \mathrm{v}$ ratio. MiliQ $(6.2 \mu \mathrm{~L})$ was added to obtain a total reaction volume of 20 $\mu \mathrm{L}$. The reaction mixture was gently shaken at r.t. for 16 hours. The reaction mixture was analyzed by SDS-PAGE analysis in combination with fluorescence imaging.

Click conditions HPG-ELP and \mathbf{N}_{3}-Coumarin-PEG2000

To a mixture of HPG-ELP ($20 \mu \mathrm{~L}, 0.58 \mathrm{mg} / \mathrm{mL}$ in PBS buffer, $\mathrm{pH}=7.4$) and azido-coumarin-PEG2000 ($20 \mu \mathrm{~L}, 2.1 \mathrm{mg} / \mathrm{mL}$ in PBS buffer, $\mathrm{pH}=7.4$) was added $3 \times 2 \mu \mathrm{~L}$ of $\mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture over a period of 15 minutes. $\mathrm{The} \mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture contained CuBr in $\mathrm{MeCN}(40 \mathrm{mM})$ and $\mathbf{4}(80 \mathrm{mM})$ in mixed in a $1: 1 \mathrm{v} / \mathrm{v}$ ratio. MiliQ $(4.0 \mu \mathrm{~L})$ was added to obtain a total reaction volume of $50 \mu \mathrm{~L}$. The reaction mixture was gently shaken at r.t. for 16 hours. The excess copper and 4 was removed by spin-filtration using a Millipore 10 kDa NMWL membrane. The reaction mixture was analyzed by SDS-PAGE analysis in combination with fluorescence imaging.

Click conditions HPG-ELP and AHA-CalB

To a mixture of HPG-ELP ($20 \mu \mathrm{~L}, 0.587 \mathrm{mg} / \mathrm{mL}$ in PBS buffer, $\mathrm{pH}=7.4$) and AHACalB ($20 \mu \mathrm{~L}, 2.61 \mathrm{mg} / \mathrm{mL}$ in PBS buffer, $\mathrm{pH}=7.4$) was added $3 \times 2 \mu \mathrm{~L}$ of $\mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture over a period of 15 minutes. The $\mathrm{Cu}(\mathrm{I}) \mathrm{Br} / 4$ mixture contained CuBr in MeCN $(40 \mathrm{mM})$ and $4(80 \mathrm{mM})$ in a $1: 1 \mathrm{v} / \mathrm{v}$ ratio. MiliQ $(4 \mu \mathrm{~L})$ was added to obtain a total reaction volume of $50 \mu \mathrm{~L}$. The reaction mixture was gently shaken at r.t. for 16 hours. The excess copper and 4 was removed by spin-filtration using a Millipore 10 kDa NMWL membrane. Next, the mixture was subjected to aqueous $\mathrm{NaCl}(66 \mu \mathrm{~L}, 5 \mathrm{M})$ whereupon the CalB-ELP conjugate precipitated from solution. Removal of remaining HPG-ELP in the precipitate was achieved by FPLC (Pharmacia SMART system, Superdex 75 PC 3.2/30 column, eluent: PBS buffer $\mathrm{pH}=7.4$).

Figure S5. FPLC trace of removal of HPG-ELP (F29-F33) from CalB-ELP conjugate (F24), measured at 280 and 254 nm .

Enzyme activity assay

Lipase activity was analyzed by the hydrolysis of para-nitrophenol butyrate (p-NPB, Sigma). The reaction mixture ($50 \mu \mathrm{~L}, \mathrm{pH} 7$) was composed of $50 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, 150 \mathrm{mM}$ NaCl , enzyme (100 nM), isopropanol (5%), Triton (0.1%) and p-NPB (1 mM). The production of para-nitrophenol was monitored at $25^{\circ} \mathrm{C}$ for 2 h with 2 minute intervals by
measuring absorbance at 405 nm in a Multicounter Wallac Victor2 (PerkinElmer Life Science). This experiment was carried out in triplo. The slope of the curve was taken as a measure of hydrolytic activity.

References

1 D. E. Meyer and A. Chilkoti, Biomacromolecules, 2004, 5, 846.
2 S. P. Chambers, S. E. Prior, D. A. Barstow and N. P. Minton, Gene, 1988, 68, 139.

3 S. Schoffelen, M. H. Lambermon, M. B. van Eldijk and J. C. M van Hest, Bioconjug. Chem., 2008, 19, 1127.
4 D. E. Meyer and A. Chilkoti, Nat. Biotechnol., 1999, 17, 1112.
5 T. Wenzel, K. Sparbier, T. Mieruch and M. Kostrzewa, Rapid Commun. Mass Spectrom., 2006, 20, 785.
6 T. H. Chen, Y. Bae and D. Y. Furgeson, Pharm. Res., 2008, 25, 683.
7 A. Wang, N. Winblade Nairn, R. S. Johnson, D. A. Tirrell and K. Grabstein, Chembiochem, 2008, 9, 324.
8 M. Pallavicini, L. Fumagalli, M. Gobbi and C. Bolchi, Eur. J. Med. Chem., 2006.
9 L. F. Mottram, S. Boonyarattanakalin, R. E. Kovel and B. R. Peterson, Org. Lett., 2006, 8, 581.

