Electronic Supplementary Information

The Oxidation of Ni(II) N-Confused Porphyrins (NCPs) with Azo Radical Initiators and an Unexpected Intramolecular Nucleophilic Substitution Reaction via a Proposed Ni(III) NCP Intermediate

Hua –Wei Jiang, ^a Qing –Yun Chen, ^a Ji –Chang Xiao*^a and Yu –Cheng Gu^b

^a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China. Fax: (+86) 21-64166128; E-mail: jchxiao@mail.sioc.ac.cn

^bSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK

Contents

- Page 2-6: Experimental details and characterization data for the products Ni1a-c, Ni2a-c, 1a-c.
- Page 7-11: Copies of ¹H NMR spectra of Ni1a-c, Ni2a-c, 1a-c.
- Page 12-13: Copies of the MS spectrum and HRMS report of the proposed Ni(III) intermediates.

General: ¹H (300MHz) and ¹⁹F (282MHz) NMR spectra were recorded with a Brucker AM-300 or Varian-VXR (300MHz) spectrometer. Chemical shifts are reported in parts per million (ppm)

relative to TMS as an internal standard ($\delta_{TMS} = 0$ ppm) for ¹H NMR spectra. MS and HRMS were recorded on a Hewlett-Packard HP-5989A spectrometer and a Finnigan MAT-8483 mass spectrometer. UV/Vis spectra were measured with a Varian Cary 100 spectrophotometer. Elementary analyses were obtained on a Perkin Elmer 2400 Series Elemental Analyzer. TLC analysis were performed on silica gel plate and column chromatography over silica gel (mesh 300-400).Unless otherwise noted, reagents were commercial available and used as received. The solvent toluene was treated with Na and redistilled before using. The starting N-confused porphyrins and Ni(II) N-Confused Porphyrins were synthesized according to the literatures (G. Richard Geier III, Denise M. Haynes, Jonathan S. Lindsey. **1999**, *9*, 1455, and Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K.; Głowiak, T. *Angew. Chem.* **1994**, *104*, 805; *Angew. Chem. Int. Ed.* **1994**, *33*, 779.).

Typical procedure for synthesis of 21-C cyano- or alkoxycarbonyl-substituted Ni(II) N-confused porphyrins. A mixture of Ni1 (67 mg, 0.1 mmol) and AIBN (66 mg, 0.4 mmol) was stirred in 10 mL anhydrous toluene at 60 °C for about 4 hours. The reaction course was monitored by TLC. When Ni1 was totally consumed, the reaction mixture was cooled. After chromatography on silica gel column using CH_2Cl_2 as an eluent (the first yellow-greenish band was collected) and crystallization from $CH_2Cl_2/MeOH$, a purple solid Ni1a was obtained.

Ni1a: yield 45%. ¹H NMR (300 MHz, CDCl₃): $\delta = 10.07$ (s, 1H), 8.73 (d, J = 5.0 Hz, 1H), 8.70 (d, J = 5.0 Hz, 1H), 8.51 ~ 8.62 (m, 4H), 7.65 ~ 8.20 (m, 20H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 430 (18.0), 714 (1.0) nm. HRMS (MALDI): Calcd. for $[C_{45}H_{27}N_5Ni+H]^+$: 696.16927. Found: 696.1691.

Ni1b: yield 38%. ¹H NMR (300 MHz, CDCl₃): $\delta = 9.99$ (s, 1H), 8.69 (d, J = 5.1 Hz, 1H), 8.66 (d, J = 5.1 Hz, 1H), 8.52 ~ 8.56 (m, 2H), 8.49 (d, J = 5.0 Hz, 1H), 8.44 (d, J = 5.0 Hz, 1H), 7.63 ~ 8.22 (m, 20H), 1.60 (s, 3H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 434 (6.5), 699 (1.0) nm. MS (MALDI): m/z 729.2 ([C₄₆H₃₀N₄NiO₂+H]⁺). Anal. Calcd. for C₄₆H₃₀N₄NiO₂·CH₂Cl₂·H₂O: C, 67.28; H, 4.12; N, 6.73. Found: C, 67.35; H, 4.16; N, 6.67.

Ni1c: yield 37%. ¹H NMR (300 MHz, CDCl₃): $\delta = 10.00$ (s, 1H), 8.69 (d, J = 5.0 Hz, 1H), 8.66 (d, J = 5.0 Hz, 1H), 8.54 (d, J = 5.0 Hz, 2H), 8.49 (d, J = 4.8 Hz, 1H), 8.45 (d, J = 4.8 Hz, 1H), 7.64 ~ 8.24 (m, 20H), 2.00 (q, J = 7.1 Hz, 2H), -0.41 (t, J = 7.1 Hz, 3H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 435 (11.0), 696 (1.0) nm. MS (MALDI): m/z 743.2 ([C₄₇H₃₂N₄NiO₂+H]⁺). Anal. Calcd. for C₄₇H₃₂N₄NiO₂·CH₃OH: C, 74.34; H, 4.68; N, 7.22. Found: C, 74.10; H, 5.10; N, 6.82.

Ni2a: yield 42%. ¹H NMR (300 MHz, CDCl₃): $\delta = 10.02$ (s, 1H), 8.68 ~ 8.73(m, 2H), 8.50 ~ 8.61(m, 4H), 7.46 ~ 8.05 (m, 16H), 2.61 ~ 2.71 (m, 12H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 434 (15.5), 716 (1.0) nm. MS (MALDI): m/z 752.2 ([C₄₉H₃₅N₅Ni+H]⁺). Anal. Calcd. for C₄₉H₃₅N₅Ni·H₂O: C, 76.38; H, 4.84; N, 9.09. Found: C, 76.59; H, 5.07; N, 8.89.

Ni2b: yield 40%. ¹H NMR (300 MHz, CDCl₃): $\delta = 9.97$ (s, 1H), 8.65 ~ 8.71 (m, 2H), 8.43 ~ 8.58 (m, 4H), 7.45 ~ 8.16 (m, 16H), 2.60 ~ 2.69 (m, 12H), 1.60 (s, 3H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 436 (10.9), 700 (1.0) nm. MS (MALDI): m/z 785.2 ([C₅₀H₃₈N₄NiO₂+H]⁺). Anal. Calcd. for C₅₀H₃₈N₄NiO₂·1.5H₂O: C, 73.90; H, 5.09; N, 6.89. Found: C, 73.93; H, 5.15; N, 6.75.

Ni2c: yield 39%. ¹H NMR (300 MHz, CDCl₃): $\delta = 9.96$ (s, 1H), 8.63 ~ 8.70 (m, 2H), 8.51 ~ 8.56 (m, 2H), 8.48 (d, J = 5.0 Hz, 1H), 8.44 (d, J = 5.0Hz, 1H), 7.40 ~ 8.19 (m, 16H), 2.60 ~ 2.68 (m, 12H), 1.97 (q, J = 7.6 Hz, 2H), -0.43 (t, J = 7.6 Hz, 3H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 437 (32.5), 727 (1.0) nm. MS (MALDI): m/z 799.3 ([C₅₁H₄₀N₄NiO₂+H]⁺). Anal. Calcd for C₅₁H₄₀N₄NiO₂·2H₂O: C, 73.30; H, 5.31; N, 6.70. Found: C, 73.41; H, 5.07; N, 6.27.

Typical Procedure for the demetallation of 21-C cyano- or alkoxycarbonyl-substituted Ni(II) N-confused porphyrins. Solution of Ni1a (20 mg, 0.029 mmol) in 5 mL of dichloromethane was shaken with 5 mL concentrated hydrochloric acid for 5 min. Then the water layer was removed, and organic layer was washed with water and dried with sodium carbonate. Chromatography on a silica gel column with dichloromethane/methanol 100:1 (V/V) as an eluent (green band was collected) and crystallization from $CH_2Cl_2/MeOH$, gave 1a.

1a: yield 75%. ¹H NMR (300 MHz, CDCl₃): $\delta = 9.12$ (d, J = 5.0 Hz, 1H), 9.07 (d, J = 5.0 Hz, 1H), 8.68 ~ 8.76 (m, 2H), 8.60 ~ 8.65 (m, 2H), 8.43 ~ 8.52 (m, 4H), 8.15 ~ 8.30 (m, 4H), 7.73 ~ 7.98 (m, 13H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 454 (18.6), 554 (1.0), 601 (1.2), 710 (1.6) nm. MS (MALDI): m/z, 640.2 ([C₄₅H₂₉N₅+H]⁺). Anal. Calcd for C₄₅H₂₉N₅·CH₂Cl₂·CH₃OH: C, 74.60; H, 4.66; N, 9.25. Found: C, 74.80; H, 4.83; N, 8.89.

1b: yield 74%. ¹H NMR (300 MHz, CDCl₃): $\delta = 9.17$ (d, J = 5.0 Hz, 1H), 9.12 (d, J = 5.0 Hz, 1H), 8.68 ~ 8.74 (m, 2H), 8.52 ~ 8.56 (m, 2H), 8.39 ~ 8.49 (m, 4H), 8.19 ~ 8.28 (m, 2H), 8.05 ~ 8.13 (m, 2H), 7.69 ~ 7.93 (m, 13H), 0.29 (s, 3H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 463 (15.1), 566 (1.0), 617 (1.3), 717 (1.3) nm. HRMS (MALDI): Calcd. for $[C_{46}H_{32}N_4O_2+H]^+$: 673.25980. Found: 673.2615.

1c: yield 76%. ¹H NMR (300 MHz, CDCl₃): δ = 9.16 (d, *J* = 5.0 Hz, 1H), 9.11 (d, *J* = 5.0 Hz, 1H), 8.70 ~ 8.75 (m, 2H), 8.50 ~ 8.56 (m, 2H), 8.40 ~ 8.47(m, 4H), 8.15 ~ 8.27 (m, 2H), 8.03 ~ 8.14 (m, 2H), 7.68 ~ 7.94 (m, 13H), 0.87 (q, *J* = 6.9 Hz, 2H), -1.51 (t, *J* = 6.9 Hz, 3H). UV/Vis (CH₂Cl₂): λ_{max} (relative intensity) = 463 (16.2), 565 (1.0), 616 (1.3), 717 (1.3) nm. HRMS (MALDI): Calcd. for [C₄₇H₃₄N₄O₂+H]⁺: 687.27545. Found: 687.2781

Copies of ¹H NMR spectra

Extra peaks at 1.5 ppm in the ¹H NMR spectra of most of the products are the signals of water. And the small signals at 1.3 ppm in some of the ¹H NMR spectra are the singals of small amount of impurities.

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2009

Copies of the MS spectrum of the proposed Ni(III) intermediates.

Copies of the HRMS report of the proposed Ni(III) intermediates.

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

IonSpec 4.7 Tesla FTMS

Card Serial Number: 1082633

Sample Serial Number: Inter3

Operator : HuaQin Date: 2008/10/21

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Instrument:

Target Mass: Target m/z = 827.2880 ± 0.004 Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	100
N	14.003074	0	5
0	15.994915	0	5
Ni	57.935348	0	1

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer Minimum DBE = 0

Search Results:

Number of Hits = 5

m/z	Delta m/z	DBE	Formula
827.28905	-0.00105	33.5	C ₅₃ H ₄₅ N ₄ O ₂ Ni ⁺¹
827.28909	-0.00109	41.0	C ₅₆ H ₃₇ N ₅ O ₃ ⁺¹
827.28637	0.00163	29.0	C ₅₀ H ₄₇ N ₃ O ₅ Ni ⁺¹
827.29039	-0.00239	33.0	C55H47NO3Ni+1
827.29043	-0.00243	40.5	C ₅₈ H ₃₉ N ₂ O ₄ ⁺¹