Electronic Supporting Information of the paper: Tailoring Carbon
 Nanotube Surface with Glyconanorings: New Bionanomaterials with Specific Lectin Affinity

Noureddine Khiar, ${ }^{* a}$ Manuel Pernía Leal, ${ }^{a}$ Rachid Baati, ${ }^{* b}$ Christine Ruhlmann, ${ }^{c}$ Charles Mioskowski, ${ }^{b}$ Patrick Schultz, ${ }^{\text {c }}$ and Inmaculada Fernández. ${ }^{d}$

Contribution from:

${ }^{a}$ Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, c/. Américo Vespucio, 4., Isla de la Cartuja, 41092 Sevilla, Spain. ${ }^{b}$ Laboratoire de Synthèse BioOrganique, Faculté de Pharmacie UMR 7175-LC1, Université Louis Pasteur de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France. ${ }^{c}$ Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP163, F-67404 Illkirch Cedex, C.U. de Strasbourg, France. ${ }^{d}$ Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.

General Methods.

All reactions were run under an atmosphere of dry argon using oven-dried glassware and freshly distilled and dried solvents. THF and diethyl ether were distilled from sodium benzophenone ketyl. Dichloromethane was distilled from calcium hydride. TLC was performed on Silica Gel GF_{254} (Merck) with detection by charring with phosphomolybdic acid/EtOH and sulphuric acid/EtOH. Reagents were obtained from commercial suppliers and used without further purification. For flash chromatography, silica Gel (Merck 230-400 mesh) was used. Columns were eluted with positive air pressure. Chromatographic eluents are given as volume to volume ratios (v/v). NMR spectra were recorded with a Bruker $\mathrm{AMX}_{500}\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}\right)$ and Bruker Avance DRX $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}\right)$ spectrometers. Chemical shifts are reported in ppm, and coupling constants are reported in Hz . Routine spectra were referenced to the residual proton or carbon signals of the solvent. High-resolution mass spectra were recorded on a Kratos MS-80RFA 241-MC apparatus. Optical rotations were determined with a Perkin-Elmer 341 polarimeter. Elemental analyses were recorded on a leco CHNS-932 apparatus. The organic extracts were dried over anhydrous sodium sulfate and concentrated under vacuum.

A) Synthesis of the neoglycolipids used in this study

The synthesis of (2'-ethylamino) per-O-acetylated-1-thio-glycosides 1, 2 and 3 was done in a one step manner from the corresponding peracetylated sugars and will be reported in due course. The 10,12-Pentacosadiynoic acid 4 was purchased from Aldrich and used as received. The hydrophilic spacers $\mathbf{5}$ and $\mathbf{6}$ were obtained from tetraethylene glycol in three steps using the scheme A. The photopolymerizable glycolipids Lac8 , and Cellob- 9 were obtained according to scheme B, while photopolymerizable glycolipid Man-11 with a more hydrophilic spacer was obtained according to scheme C.

Scheme A

Scheme B

Man-11c

Scheme C
Man-11

Synthesis of the spacer 5 (See scheme A),
To a solution of tetraethylene glycol ($22.7 \mathrm{~mL}, 140 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL})$ and THF (100 mL) was cooled to $0^{\circ} \mathrm{C}$. To this was added dropwise methanesulfonyl chloride solution ($10.8 \mathrm{~mL}, 140 \mathrm{mmol}$). The reaction mixture was then allowed to warm to room temperature and stirred vigorously overnight. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to give the crude product. The oily residue was purified by flash column chromatography, eluting with dichlorometane/methanol (20:1) to give 12.9 g of the mesylated compound $\mathbf{5 a}$ as an oil (37% yield): $\mathrm{R}_{\mathrm{f}}=0.5$ in dichloromethane/methanol ($9: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.41-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.60(\mathrm{~m}, 14 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 72.5,70.4,70.3,70.1,69.4,69.3,69.0,61.6,37.6$; HRMS (FAB) calcd. for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: m/z 273.1008. Found: 273.0997.

To a mixture of mesylated compound $5 \mathbf{5 a}(9.1 \mathrm{~g}, 33.4 \mathrm{mmol})$ and sodium azide $(2.4 \mathrm{~g}, 36.8 \mathrm{mmol})$ in ethanol $(50 \mathrm{~mL})$ was heated at reflux overnight, cooled to room temperature and concentrated in vacuo. The residue was diluted with ether (250 mL), washed with brine (50 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under vacuum to yield the crude product, which was purified by flash column chromatography, eluting with a gradient of hexane/ethyl acetate (1:1) to give 6.4 g of the azide $\mathbf{5 b}$ as an oil (97% yield): $\mathrm{R}_{f}=0.18$ in hexane/ethyl acetate ($1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.58(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.55-3.51(\mathrm{~m}, 10 \mathrm{H}), 3.46(\mathrm{t}, 2 \mathrm{H}, J=4.8$ Hz), 3.26 (t, 2H, $J=4.8 \mathrm{~Hz}$), 3.10 (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 72.5$, $70.6,70.5,70.4,70.2,69.9,61.5,50.5$; HRMS (FAB) calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: $\mathrm{m} / \mathrm{z} 220.1297$. Found: 220.1288 .

To a solution of azido alcohol $\mathbf{5 b}(2.4 \mathrm{~g}, 10 \mathrm{mmol})$ in acetone $(100 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. To this was added freshly prepared Jones reagent $(44 \mathrm{~mL})$. The reaction mixture was then allowed to warm to room temperature and stirred vigorously overnight. To the orange suspension was added dropwise propan- 2 -ol until the green colour was observed, then the reaction mixture was filtered over Celite ${ }^{\circledR}$ to remove chromium (IV) oxide and concentrated in vacuum to give the crude product. The oil residue was purified by flash column chromatography, eluting with dichloromethane/methanol (9:1) to give 1.8 g of $\mathbf{5}$ as an oil (75% yield): $\mathrm{R}_{\mathrm{f}}=0.4$ in dichloromethane/methanol ($9: 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.30$ (brs, 1 H), 4.15 (s, 2 H), $3.80-3.60(\mathrm{~m}, 10 \mathrm{H}), 3.29(\mathrm{t}, 2 \mathrm{H}, J=4.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $173.5,70.9,70.4,70.3,70.2,69.9,68.3,50.5$; HRMS (FAB) calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z}$ 234.1089. Found: 234.1085.

Synthesis of the spacer 6 (See scheme A),

To a solution of azido alcohol $\mathbf{5 b}(4.7 \mathrm{~g}, 0.022 \mathrm{~mol})$ in dichloromethane (30 mL) was added triphenylphosphine ($6.2 \mathrm{~g}, 0.024 \mathrm{~mol}$). The reaction mixture was stirred 12 h and aqueous ammonium hydroxide solution ($30 \% \mathrm{v} / \mathrm{v}$) was added. The reaction was
stirred for 1 h at room temperature. Solvents were removed under vacuum and the resulting crude product purified by flash chromatography, eluting with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{4} \mathrm{OH}(30: 2: 1) \rightarrow(10: 1: 1)$ to give 3.44 g of amine 5 c as an oil $(81 \%$ yield): $\mathrm{R}_{\mathrm{f}}=0.16 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{4} \mathrm{OH}(10: 1: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.70(\mathrm{t}$, $2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.65-3.60(\mathrm{~m}, 10 \mathrm{H}), 3.56(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz})$, $2.83(\mathrm{~s}, 2 \mathrm{H}), 2.27$ (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 73.0,70.6,70.3,70.2$, 69.9, 61.5, 41.5; HRMS (FAB) calcd for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$ 194.139844. Found: 194.139233.

To a solution of $\mathbf{5}(1.02 \mathrm{~g}, 4.4 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ was added sequentially at room temperature o-Benzotriazol-1-yl- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium tetrafluoroborate (TBTU) ($1.4 \mathrm{~g}, 4.4 \mathrm{mmol}$) and N, N diisopropylethylamine (DIPEA) $(0.8 \mathrm{~mL}, 6.7$ $\mathrm{mmol})$. The solution was stirred for 5 min before a solution of amine $5 \mathrm{c}(840.8 \mathrm{mg}, 4.4$ $\mathrm{mmol})$ and DIPEA ($0.8 \mathrm{~mL}, 6.7 \mathrm{mmol}$) in DMF (1 mL) was added slowly. The solution was stirred for 2 h before the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent, the crude product was purified by column chromatography eluting with dichloromethane/methanol $9: 1$ to give 1.08 g of an oil $\mathbf{6 a}$ (60% yield): $\mathrm{R}_{f}=0.48$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38$ (brs, 1 H), 4.70 (brs, 1 H), $3.90(\mathrm{~s}, 2 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 24 \mathrm{H}), 3.40(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.30(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,72.5,70.7,70.4,70.3,70.2,69.8,69.6,61.4,50.5$, 38.6; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z} 409.2280$. Found: 409.2298.

To a solution of azido alcohol $\mathbf{6 a}(1.08 \mathrm{~g}, 2.6 \mathrm{mmol})$ in acetone $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added freshly prepared Jones reagent $(11 \mathrm{~mL})$. The reaction mixture was then allowed to warm to room temperature and stirred vigorously overnight. To the orange suspension was added dropwise i-propanol until a green colour was observed, then the reaction mixture was filtered over Celite ${ }^{\circledR}$ to remove chromium (IV) oxide and concentrated in vacuum to give the crude product. The oil residue was purified by flash column chromatography, eluting with dichloromethane/methanol (9:1) to give 987 mg of 6 as an oil (90% yield): $\mathrm{R}_{\mathrm{f}}=0.2$ in dichloromethane/methanol ($9: 1$); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.6$ (brs, 2H), $4.14(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.74-3.56(\mathrm{~m}, 20 \mathrm{H}), 3.50-3.48$ $(\mathrm{m}, 2 \mathrm{H}), 3.39(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.7,170.8,70.8$, $70.7,70.6,70.3,70.2,70.1,70.0,69.9,69.0,50.9,39.0$; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z} 423.2113$. Found: 423.2091.

Synthesis of compound Lac-8a

To a solution of 5 ($68 \mathrm{mg}, 0.29 \mathrm{mmol}$) in DMF (0.5 mL) were added, sequentially at room temperature, TBTU ($93 \mathrm{mg}, 0.29 \mathrm{mmol}$) and DIPEA ($70 \mu \mathrm{~L}, 0.43$ mmol). The solution was stirred for 5 min before a solution of (2^{\prime} ethylamino)-hepta- O -acetyl-1-thio- β-D-lactoside $\mathbf{1}(223 \mathrm{mg}, 0.29 \mathrm{mmol})$ and DIPEA ($70 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$) in DMF (1 mL) was added slowly. The solution was stirred for 2 h before the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. After
drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent, the crude product was purified by silica gel chromatography eluting with dichloromethane/methanol $20: 1$ to give 225 mg of a yellow oil Lac-8a (85% yield): $\mathrm{R}_{f}=0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right.$); $[\alpha]_{\mathrm{D}}=-7.66$ (c 0.85 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.25(\mathrm{t}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}), 5.33(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 5.18$ $(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 5.08(\mathrm{dd}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}), 4.95-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.46$ $(\mathrm{m}, 3 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz})$, 3.69-3.61 (m, 11H), 3.54-3.44 (m, 2H), 3.38 (t, 2H, J=4.9 Hz), 2.89-2.69 (m, 2H), 2.13 (s, 3H), 2.09 (s, 3H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.3,170.1,170.0,169.6$ (2C), 169.0, 101.1, 83.7, 77.0, 76.8, $73.9,71.0,70.7,70.6,70.5,70.4,70.2,70.0,69.1,66.6,62.1,60.8,50.6,38.9,30.3$, 20.8, 20.7, 20.6; HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{21} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: m/z 933.2898. Found: 933.2853.

Synthesis of compound Cellob-9a

To a solution of $5(102 \mathrm{mg}, 0.44 \mathrm{mmol})$ in DMF (1.0 mL) were added, sequentially at room temperature, TBTU ($140 \mathrm{mg}, 0.44 \mathrm{mmol}$) and DIPEA ($105 \mu \mathrm{~L}$, 0.64 mmol). The solution was stirred for 5 min before a solution of (2^{\prime} ethylamino)-hepta- O-acetyl-1-thio- β-D-cellobioside 2 ($334 \mathrm{mg}, 0.44 \mathrm{mmol}$) and DIPEA ($105 \mu \mathrm{~L}$, $0.64 \mathrm{mmol})$ in DMF $(1.0 \mathrm{~mL})$ was added slowly. The solution was stirred for 2 h before the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent, the crude product was purified by silica gel chromatography eluting with dichloromethane/methanol 20:1 to give 304 mg of a yellow oil Cellob-9a (76% yield): $\mathrm{R}_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right.$); $[\alpha]_{\mathrm{D}}=-2.4$ (c $0.96, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 2 \mathrm{H})$, 5.06 (t, $1 \mathrm{H}, J=9.6 \mathrm{~Hz}$), 4.95-4.90 (m, 2H), 4.54-4.49 (m, 3H), 4.38 (dd, $1 \mathrm{H}, J=12.4$ $\mathrm{Hz}, J=4.3 \mathrm{~Hz}), 4.09-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.61(\mathrm{~m}, 13 \mathrm{H}), 3.55-3.37(\mathrm{~m}$, 4 H), 2.90-2.70 (m, 2H), $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}$, $3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,170.3,170.1$, 169.7, 169.6, 169.3, 169.1, 100.8, 83.7, 76.9, 76.4, 73.4, 72.9, 72.0, 71.6, 71.0, 70.7, 70.6, 70.4, 70.2, 70.1, 68.9, 67.7, 62.0, 61.5, 50.7, 38.9, 30.3, 20.8, 20.7, 20.6; HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{21} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z} 933.2898$. Found: 933.2911.

Synthesis of compound Man-11a

To a solution of $\mathbf{6}(685 \mathrm{mg}, 1.70 \mathrm{mmol})$ in DMF (3.0 mL) were added, sequentially at room temperature, TBTU ($540 \mathrm{mg}, 1.70 \mathrm{mmol}$) and DIPEA ($415 \mu \mathrm{~L}, 2.55 \mathrm{mmol}$). The
solution was stirred for 5 min before a solution of $\mathbf{3}(715 \mathrm{mg}, 1.70 \mathrm{mmol})$ and DIPEA $(415 \mu \mathrm{~L}, 2.55 \mathrm{mmol})$ in DMF $(3.0 \mathrm{~mL})$ was added slowly. The solution was stirred for 2 h before the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine (20 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent, the crude product was purified by silica gel chromatography eluting with dichloromethane/methanol 20:1 to give 726 mg of a yellow oil Man-11a (53% yield): $\mathrm{R}_{f}=0.18\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) ;[\alpha]_{\mathrm{D}}$ $=+57.2\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.15$ $(\mathrm{m}, 1 \mathrm{H}), 5.32-5.26(\mathrm{~m}, 3 \mathrm{H}), 5.21(\mathrm{dd}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}), 4.37-4.34(\mathrm{~m}, 1 \mathrm{H})$, $4.28(\mathrm{dd}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}), 3.99(\mathrm{~s}$, $4 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 18 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 6 \mathrm{H}), 3.38(\mathrm{t}, 2 \mathrm{H}, J=4.9 \mathrm{~Hz}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $170.6,170.1,170.0,169.9,169.8,169.7,82.5,70.9$ (2C), 70.8, 70.7, 70.6, 70.5 (2C), $70.4,70.3,70.2,70.1,69.8,69.4,69.1,66.3,62.4,50.7,38.6,38.1,31.1,20.9,20.7$, 20.6; HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: m/z 834.3054. Found: 834.3071 .

Synthesis of compound Lac-8b

To a solution of Lac-8a ($103 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dichloromethane (3.0 mL) was added triphenylphosphine ($32 \mathrm{mg}, 0.13 \mathrm{mmol}$). The reaction mixture was stirred 12 h and aqueous ammonium hydroxide solution ($30 \% \mathrm{v} / \mathrm{v}$) was added. The reaction was stirred for 1 h at room temperature. Solvents were removed under vacuum and the resulting crude product purified by flash chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 2:1 1\% $\mathrm{Et}_{3} \mathrm{~N}$ to give 91 mg of $\mathbf{L a c - 8 b}$ as an oil (91% yield): $\mathrm{R}_{f}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 2:1 1\% $\mathrm{Et}_{3} \mathrm{~N}$); $[\alpha]_{\mathrm{D}}=-6.4\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.39(\mathrm{~m}$, $1 \mathrm{H}), 5.31(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 5.16(\mathrm{t}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 5.05(\mathrm{dd}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, J=8.1$ Hz), 4.93 (dd, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}), 4.88(\mathrm{t}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz})$, 4.53-4.47 (m, 3H), 4.38 (brs, 2H), 4.10-4.05 (m, 3H), $3.98(\mathrm{~s}, 2 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{t}, 1 \mathrm{H}, J=9.7$ $\mathrm{Hz}), 3.65-3.40(\mathrm{~m}, 13 \mathrm{H}), 3.00-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz, CDCl_{3}): $\delta 170.4,170.3,170,1,170.0,169.7,169.1,101.0,83.6,76.8,76.1,73.7,71.0$, $70.9,70.7,70.5,70.3,70.1,70.0,69.2,66.7,62.1,60.8,40.6,38.9,30.3,20.8,20.7$, 20.6, 20.5, 20.4; HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{21} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z} 907.2993$. Found: 907.3008.

Synthesis of compound Cellob-9b

To a solution of compound Cellob-9a ($200 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dichloromethane $(3.0 \mathrm{~mL})$ was added triphenylphosphine ($32 \mathrm{mg}, 0.13 \mathrm{mmol}$). The reaction mixture was stirred 12 h and aqueous ammonium hydroxide solution ($30 \% \mathrm{v} / \mathrm{v}$) was added. The reaction was stirred for 1 h at room temperature. Solvents were removed under vacuum and the resulting crude product purified by flash chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 2: 11 \% \mathrm{Et}_{3} \mathrm{~N}$ to give 86 mg of Cellob-9b as an oil (43% yield): $\mathrm{R}_{f}=0.40$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 2: 11 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;[\alpha]_{\mathrm{D}}=+23.2$ (c $0.9, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.92-4.85(\mathrm{~m}$, $2 \mathrm{H}), 4.50-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.56(\mathrm{~m}, 13 \mathrm{H})$, 3.53-3.47 (m, 2H), 2.90-2.60 (m, 4H), 2.07 (s, 3H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, $3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4$, 170.3, 170.1, 169.9, 169.7, 169.6, 169.3, 169.0, 100.8, 83.6, 76.7, 76.3, 73.4, 72.9, 72.0, $71.6,71.0,70.7,70.5,70.2,70.1,67.7,61.9,61.5,41.5,38.9,30.2,20.8,20.7,20.6$, 20.5; HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{21} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z}$ 907.2993. Found: 907.2983.

Synthesis of compound Man-11b

To a solution of Man-11a ($23 \mathrm{mg}, 0.028 \mathrm{mmol}$) in dichloromethane (1.0 mL) was added triphenylphosphine ($32 \mathrm{mg}, 0.13 \mathrm{mmol}$). The reaction mixture was stirred 12 h and aqueous ammonium hydroxide solution ($30 \% \mathrm{v} / \mathrm{v}$) was added. The reaction was stirred for 1 h at room temperature. Solvents were removed under vacuum and the resulting crude product purified by flash chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $2: 11 \% \mathrm{Et}_{3} \mathrm{~N}$ to give 16 mg of Man-11b as an oil (99% yield): $\mathrm{R}_{f}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 2:1 $1 \% \mathrm{Et}_{3} \mathrm{~N}$); $[\alpha]_{\mathrm{D}}=+54.1\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 5.32-5.27(\mathrm{~m}, 3 \mathrm{H}), 5.21(\mathrm{dd}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}), 4.38-4.34(\mathrm{~m}, 1 \mathrm{H})$, $4.28(\mathrm{dd}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}), 3.99(\mathrm{~s}$, 4 H), 3.67-3.47 (m, 24H), 2.86-2.65 (m, 4H), 2.28 (brs, 2H), $2.15(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,170.1,169.9,169.8$, $169.7,82.5,70.9,70.6,70.5,70.3,70.2,69.7,69.4,69.1,66.3,62.4,41.6,38.6,38.1$, 31.1, 20.9, 20.7, 20.6. HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{17} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z}$ 806.2993. Found: 806.3010.

Synthesis of compound Lac-8c

To a solution of $4(42.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in DMF $(0.5 \mathrm{~mL})$ were added, sequentially at room temperature in the dark, TBTU ($38 \mathrm{mg}, 0.12 \mathrm{mmol}$) and DIPEA ($20 \mu \mathrm{~L}, 0.12$ $\mathrm{mmol})$. The solution was stirred for 5 min before a solution of Lac-8b $(100 \mathrm{mg}, 0.12$
mmol) and DIPEA ($20 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) in DMF (1 mL) was added slowly. The solution was stirred for 2 h before the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine (20 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent, the crude product was purified by silica gel chromatography eluting with dichloromethane/methanol $20: 1$ to give 98 mg of an amorphous solid Lac-8c $(70 \%$ yield): $\mathrm{R}_{f}=0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) ;[\alpha]_{\mathrm{D}}=-5.6\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.24-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.24(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 5.19(\mathrm{t}, 1 \mathrm{H}, J$ $=9.2 \mathrm{~Hz}), 5.08(\mathrm{dd}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}), 4.95(\mathrm{dd}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, J=3.2 \mathrm{~Hz})$, $4.91(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 4.52-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.12-3.98(\mathrm{~m}, 5 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.77$ $(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.70-3.61(\mathrm{~m}, 11 \mathrm{H}), 3.55(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 3.44(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz})$, 2.88-2.71 (m, 2H), 2.22 (t, 4H, J=6.9 Hz), 2.18-2.13 (m, 5H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 4 \mathrm{H})$, $1.35-1.24(\mathrm{~m}, 26 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.5$, 170.4, 170.3, 170.2, 170.1, 170.0, 169.7, 169.6, 169.1, 101.1, 83.6, 77.6, 77.4, 76.9, $76.1,73.7,71.0,70.8,70.7,70.6,70.5,70.4,70.2,70.1,70.0,69.1,66.6,65.3,65.2$, $62.1,60.8,39.1,38.9,36.5,33.8,31.9,30.4,29.7,29.6,29.5,29.3,29.2,29.1,29.0$, 28.9, 28.8, 28.7, 28.4, 28.3, 25.7, 24.7, 22.7, 20.8, 20.7, 20.6, 20.5, 19.2, 14.1; HRMS (FAB) calcd for $\mathrm{C}_{61} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{22} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z} 1263.6073$. Found: 1263.6096.

Synthesis of compound Cellob-9c

To a solution of $4(22 \mathrm{mg}, 0.058 \mathrm{mmol})$ in DMF (0.5 mL) were added, sequentially at room temperature in the dark, TBTU ($19 \mathrm{mg} ., 0.058 \mathrm{mmol}$) and DIPEA $(10 \mu \mathrm{~L}, 0.058 \mathrm{mmol})$. The solution was stirred for 5 min before a solution of Cellob-9b ($51 \mathrm{mg}, 0.058 \mathrm{mmol}$) and DIPEA ($10 \mu \mathrm{~L}, 0.058 \mathrm{mmol}$) in DMF (1 mL) was added slowly. The solution was stirred for 2 h before the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (10 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent, the crude product was purified by silica gel chromatography eluting with dichloromethane/methanol $20: 1$ to give 44 mg of an amorphous solid Cellob-9c (62% yield): $\mathrm{R}_{f}=0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right.$); $[\alpha]_{\mathrm{D}}=+14.3$ (c $0.8, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.26(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.08-$ $5.06(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.38-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.95(\mathrm{~m}$, $4 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 13 \mathrm{H}), 3.58-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $2.15(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, $3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.24(\mathrm{~m}$, $26 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,170.4,170.3$, $170.2,170.1,169.7,169.6,169.0,100.8,83.6,77.6,77.4,76.7,76.3,73.4,72.9,72.0$, $71.6,70.9,70.8,70.7,70.5,70.2,69.8,67.7,65.3,65.2,62.0,61.5,39.1,38.9,36.5$, 31.9, 30.4, 29.6, 29.5, 29.3, 29.2, 29.1, 29.0, 28.9, 28.8, 28.7, 28.4, 28.3, 25.5, 24.7, 22.7, 20.8, 20.6, 20.5, 19.2, 14.1; HRMS (FAB) calcd for $\mathrm{C}_{61} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{22} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: m/z 1263.6073. Found: 1263.6079.

Synthesis of compound Man-11c

To a solution of $4(31 \mathrm{mg}, 0.084 \mathrm{mmol})$ in DMF (0.5 mL) were added, sequentially at room temperature in the dark, TBTU ($27 \mathrm{mg}, 0.084 \mathrm{mmol}$) and DIPEA $(14 \mu \mathrm{~L}, 0.084 \mathrm{mmol})$. The solution was stirred for 5 min before a solution of Man-11b $(66 \mathrm{mg}, 0.084 \mathrm{mmol})$ and DIPEA ($14 \mu \mathrm{~L}, 0.084 \mathrm{mmol}$) in DMF (1 mL) was added slowly. The solution was stirred for 2 h before the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (10 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent, the crude product was purified by silica gel chromatography eluting with dichloromethane/methanol 9:1 to give 70 mg of an amorphous solid Man-11c (73% yield): $\mathrm{R}_{f}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right.$); $[\alpha]_{\mathrm{D}}=+37.8$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.47-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.25$ (m, 3H), 5.21 (dd, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}), 4.35-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.2 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$), $4.09(\mathrm{dd}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H})$, $3.66-3.38(\mathrm{~m}, 26 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.15(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $2.13(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.48(\mathrm{~m}$, $4 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 26 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $173.6,170.6,170.3,170.2,170.0,169.9,169.8,169.7,82.4,77.6,77.4,70.9,70.6,70.5$, $70.4,70.3,70.2,70.1,69.9,69.8,69.4,69.1,66.2,65.3,65.2,62.4,39.2,38.6,38.1$, $36.5,31.9,31.1,29.7,29.6,29.5,29.3,29.2,29.1,29.0,28.9,28.8,28.4,28.3,25.7$, 22.7, 20.9, 20.7, 20.6, 19.2, 14.1; HRMS (FAB) calcd for $\mathrm{C}_{57} \mathrm{H}_{95} \mathrm{~N}_{3} \mathrm{O}_{18} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: m/z 1164.6229. Found: 1164.6276.

Synthesis of compound Lac-8

To a solution of Lac-8c ($98 \mathrm{mg}, 0.08 \mathrm{mmol}$) in dry methanol (1 mL) was added a NaOMe solution $1 \mathrm{M}(60 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$. The reaction was allowed to proceed at rt in the dark for 1 h at which time the reaction was judged complete by TLC analysis. The solution was neutralized with Amberlyst Ir-120 (plus) resin. The resin was removed by filtration and the solvent removed under vacuum. The crude product was purified by size-exclusion chromatography (sephadex® ${ }^{\circledR}$ G20) eluting with methanol. Lyophilization of the solvent gave 58 mg of a white solid Lac-8 (75% yield) $\mathrm{R}_{f}=0.4$ $\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{4} \mathrm{OH} 6: 1: 1\right) ;[\alpha]_{\mathrm{D}}=-2.38$ (c $\left.0.84, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,

MeOD): $\delta 4.43$ (d, 1H, $J=9.8 \mathrm{~Hz}$), 4.35 (d, 1H, $J=7.6 \mathrm{~Hz}$), 4.00 (s, 2H), 3.92 (dd, 1 H , $J=12.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}), 3.85-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.46(\mathrm{~m}, 19 \mathrm{H}), 3.36(\mathrm{t}, 2 \mathrm{H}, J=5.6$ $\mathrm{Hz}), 3.30-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.15(\mathrm{t}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 1.60(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.53-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 26 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.5$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz, MeOD): $\delta 176.4,172.8,105.1,87.0,80.6,80.4,77.9,77.1$, $74.8,74.1,72.5,72.0,71.5,71.4,71.3,71.2,70.7,70.3,66.4,62.5,62.1,40.5,40.3$, $37.1,33.1,30.7,30.6,30.5,30.4,30.3,30.2,30.1,30.0,29.9,29.8,29.6,27.0,23.7$, 19.7, 14.4; HRMS (FAB) calcd for $\mathrm{C}_{47} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z}$ 969.5333. Found: 969.5306 .

Synthesis of Compound Cellob-9

To a solution of Cellob-9c ($60 \mathrm{mg}, 0.048 \mathrm{mmol}$) in dry methanol $(1 \mathrm{~mL})$ was added NaOMe solution $1 \mathrm{M}(48 \mu \mathrm{~L}, 0.048 \mathrm{mmol})$. The reaction was allowed to proceed at rt in the dark for 1 h at which time the reaction was judged complete by TLC analysis. The solution was neutralized with Amberlyst Ir-120 (plus) resin. The resin was removed by filtration and the solvent removed under vacuum. The crude product was purified by size-exclusion chromatography (sephadex ${ }^{\circledR}$ G20) eluting with methanol. Lyophilization of the solvent gave 23 mg of a white solid Cellob-9 (51\% yield) $\mathrm{R}_{f}=0.4$ $\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{4} \mathrm{OH} 6: 1: 1\right) ;[\alpha]_{\mathrm{D}}=-10.4$ (c 0.3 , MeOH); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, MeOD): $\delta 4.43$ (d, $1 \mathrm{H}, J=9.8 \mathrm{~Hz}$), 4.41 (d, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}$), $4.00(\mathrm{~s}, 2 \mathrm{H}), 3.92-3.21$ (m, $26 \mathrm{H}), 2.92-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.18(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.63-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 26 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.7 $\mathrm{MHz}, \mathrm{MeOD}): ~ \delta 176.4,172.8,104.6,86.9,80.6,80.4,78.1,77.9,74.9,74.1,71.9,71.5$, $71.4,71.3,71.2,70.6,66.4,62.5,62.1,40.5,40.3,37.1,33.1,30.7,30.6,30.5,30.4$, $30.3,30.2,30.1,30.0,29.9,29.8,29.5,27.0,23.7,19.7,14.5$; HRMS (FAB) calcd for $\mathrm{C}_{47} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z} 969.5333$. Found: 969.5349.

Synthesis of compound Man-11

To a solution of Man-11c ($27 \mathrm{mg}, 0.023 \mathrm{mmol}$) in dry methanol (1 mL) was added NaOMe solution $1 \mathrm{M}(10 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$. The reaction was allowed to proceed at rt in the dark for 1 h at which time the reaction was judged complete by TLC analysis. The solution was neutralized with Amberlyst Ir-120 (plus) resin. The resin was removed by
filtration and the solvent removed under vacuum. The crude product was purified by size-exclusion chromatography (sephadex ${ }^{\circledR}$ G20) eluting with methanol. Lyophilization of the solvent gave 24 mg of a white solid Man-11 (99% yield) $\mathrm{R}_{f}=0.16$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) ;[\alpha]_{\mathrm{D}}=+43.5(\mathrm{c} 1.2, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right): \delta 5.30$ $(\mathrm{s}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 5 \mathrm{H}), 3.74-3.60(\mathrm{~m}, 19 \mathrm{H}), 3.57(\mathrm{t}, 2 \mathrm{H}$, $J=5.1 \mathrm{~Hz}), 3.55-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.72(\mathrm{~m}$, $2 \mathrm{H}), 2.21(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.18(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.47(\mathrm{~m}$, 4 H), 1.41-1.27 (m, 26H), $0.90(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$): δ $176.4,172.9,172.8,86.6,77.9,77.8,75.2,73.6,73.1,72.0,71.9,71.6,71.5,71.4,71.3$, $71.2,70.6,70.5,68.9,66.4,62.9,40.3,39.8,39.7,37.0,33.0,31.4,30.7,30.6,30.5$, $30.4,30.3,30.2,30.1,30.0,29.9,29.8,29.5,26.9,23.7,19.7,14.4$; HRMS (FAB) calcd for $\mathrm{C}_{49} \mathrm{H}_{87} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z} 996.5806$. Found: 996.5823.

B) General procedure for the self-assembly of neoglycolipids I (8, 9 and 11) on carbon nanotube and photopolymerization.

SWNT's were purchased from Mer Corporation company. In a typical experiment, 0.1 to 0.3 mg of neoglycolipid is dissolved in 1 ml of pure water. 1 mg of SWNT's is then added to the homogenous solution. The mixture is then sonicated using a simple waterbath sonicator for 30 min . Insoluble material and impurities (amorphous carbon and catalyst) are then removed by low-speed centrifugation at 2000 g for 5 min . The stable black aqueous suspension of functionalized SWNT-neoglycolipids is irradiated by a UV lamp at 254 nm for 2 h to initiate and complete the photopolymerization of the di-yne function to poldiacetylene. A second high-speed centrifugation at 14000 g for 30 min is then performed for the sedimentation of the stable polymerized functionalized SWNTneoglycolipids, and the elimination of excess neoglycolipids I (micelles) which remains in the supernatant solution. If needed, the stable polymerized functionalized SWNTneoglycolipids can be washed with pure water by resuspension, sonication and centrifugation, for the complete removal of unreacted glycolipids.

C) Control of stability of aggregates CNT-lipids.

After mixing the neutral lipid Lac-8 with SWCNTs in water, followed by sonication for 30 min , the obtained black solution remained stable for months before a sedimentation start (Figure 1, vial A). In contrast after photopolymerization, the black solution remained stable for the last 6 months (Figure 1, vial B). The stability of CNTneoglycolipids aggregates at high temperature and in high ionic force buffer environment (Hepes $20 \mathrm{mM}, \mathrm{pH} 7.5$) was assessed by the following experiments: 1 mL of a stable aqueous suspension of CNT-Lac-8 aggregates was heated at $70^{\circ} \mathrm{C}$ for one week (Figure 1, vial C). On the other hand, $250 \mu \mathrm{~L}$ of Hepes buffer ($20 \mathrm{mM}, \mathrm{pH} 7.5$) solution was added to $250 \mu \mathrm{~L}$ of a stable aqueous suspension of CNT-Lac-8 aggregates (Figure 1, vial D). In both cases, the SWCNT-Lac-8 aggregates remained remarkably stable. These results indicate that the nanoconstruct act as a single entity and rule out the dynamic nature of the association between SWCNT and Lac-8.

A

B

C

D

Figure 1. Stability of the aggregates: A) Aqueous solution of SWCNT-Lac-8 without polymerization after 6 months. B) Aqueous solution of Polymerized SWCNT-Lac-8 after 6 months. C) SWCNT-Lac-8 in water heated at $70^{\circ} \mathrm{C}$ during one week. D) SWCNT-Lac-8 in Hepes ($20 \mathrm{mM}, \mathrm{pH} 7.5$) buffer.

D) Transmission Electron Microscopy Analysis

TEM images of SWNT-neoglycolipids were obtained on a Philips CM120 transmission electron microscope operating at 100 kV with a LaB6 filament. Areas covered with molecules of interest were recorded under low dose condition, at a magnification of x 60.000 on a Pelletier cooled CCD camera (Model 794, Gatan, Pleasanton, CA).

E) Lectin Arachis hypogaea Peanut agglutinin (PNA) binding assay.

A $100 \mu \mathrm{l}$ stable aqueous suspension of functionalized SWNT-neoglycolipids is incubated for 1 h at room temperature in presence of a PNA lectine solution (20 mM Hepes aqueous buffer at $\mathrm{pH}=7.5$) diluted to different final concentrations: $1 \mu \mathrm{~g} / \mathrm{ml}$, $10 \mu \mathrm{~g} / \mathrm{ml}, 100 \mu \mathrm{~g} / \mathrm{ml}$. The mixture is then briefly centrifuged at low speed. $10 \mu \mathrm{l}$ of the supernatant is deposited on an air glow-discharged carbon-coated grid. After 2 min adsorption the sample was negatively stained with a 2% (w/v) uranyl acetate solution and observed by TEM microscopy.
a)

b)

Figure 2: IR spectrum of compound Lac-8 alone (a) and SWCNT-Lac-8 nanohybrids (b).
a)

b)

Figure 3: ${ }^{1} \mathrm{HNMR}\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right)$ spectra of Lac-8 (a), and SWCNT-Lac-8 aggregate.

Figure 4: Raman spectrum of Lac-8-SWCNT aggregate in solution excited by 568.2 nm laser. The absence of increase on D band (disorder mode at $\approx 1350 \mathrm{~cm}^{-1}$) indicates the purity of the prepared aggregate without damaging the SWCNT surface.

