Asymmetric Synthesis of 4H-1,3-Oxazines: Enantioselective Reductive Cyclization of \mathbf{N} Acylated $\boldsymbol{\beta}$-Amino Enones with Trichlorosilane Catalyzed by Chiral Lewis Bases
 Masaharu Sugiura, Mako Kumahara and Makoto Nakajima
 Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan

Supplementary Information

Table of Contents

General Methods S-1
Synthesis of β-Amino Enones S-2
Synthesis of N-Acylated β-Amino Enones S-3
NOESY Correlations of Selected Compounds S-6
The Reaction of N-Acylated β-Amino Enone with HSiCl_{3} S-7
Transformations of 4 H -1,3-Oxazine $2 \mathbf{2 e}$ S-13
Determination of the Absolute Configuration of $2 \mathbf{e}$ S-15
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $4 \mathrm{H}-1,3$-Oxazines S-16
HPLC Traces of Optically Active Compounds S-22
References S-31

General Methods

Melting points (mp) are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} with JEOL JNM-ECX400 spectrometer. Tetramethylsilane (TMS) ($\delta=0 \mathrm{ppm}$) and $\mathrm{CDCl}_{3}(\delta=$ 77.0 ppm) served as internal standards for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively. Infrared spectra were recorded on JEOL JIR-6500W. Mass spectra were measured with JEOL JMSDX303HF mass spectrometer. Optical rotations were recorded on JASCO P-1010 polarimeter. High-pressure liquid chromatography (HPLC) was performed on JASCO P-980 and UV-1575.

Thin-layer chromatography (TLC) analysis was carried out using Merck silica gel plates. Visualization was accomplished with UV light, phosphomolybdic acid and/or anisaldehyde. Column chromatography was performed using Kanto Chemical Silica Gel 60N (spherical, neutral, 63-210 $\mu \mathrm{m}$).

Dry dichloromethane (dehydrated) was purchased from Kanto Chemical and stored over $4 \AA$ MS prior to use. All other solvents were purified based on standard procedures.

Trichlorosilane was purchased from Tokyo Kasei Kogyo (TCI) and used without further purification. A dichloromethane solution (ca. 3 M) of this reagent was prepared and stocked in a screw-top test tube with a Teflon packing. (S)-BINAP dioxide (BINAPO) and other chiral phosphine oxides were prepared by oxidation of the corresponding phosphines with hydrogen peroxide in acetone. ${ }^{1}(R)$-BQNO was prepared according to the literature. ${ }^{2}$ All other chemicals were purified based on standard procedures.

All reactions using trichlorosilane were performed under argon atmosphere using ovenand heating gun-dried glassware equipped with a rubber septum and a magnetic stirring bar. All glassware and syringes used for trichlorosilane were rinsed with ethanol and soaked in aqueous NaOH (ca. 1 M) for several hours and washed as usual.

Synthesis of $\boldsymbol{\beta}$-Amino Enones

(Z)-3-Amino-1-phenylbut-2-en-1-one

The title compound was prepared according to the literature procedure with a slight modification. ${ }^{3}$ A solution of 1-phenylbutane-1,3-dione ($3.00 \mathrm{~g}, 18.5 \mathrm{mmol}$) and ammonium acetate $(7.14 \mathrm{~g}, 92.4 \mathrm{mmol})$ in dry methanol (30 mL) was refluxed for 2.5 h . After cooling to room temperature, water (15 mL) was added and the mixture was stirred well. Precipitated colorless crystals were collected by filtration and dried at $50^{\circ} \mathrm{C}$ under vacuum to give (Z)-3-amino-1-phenylbut-2-en-1-one ($2.76 \mathrm{~g}, 93 \%$). Spectroscopic data were consistent with the literature data. ${ }^{3}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.07$ (s, 3H), 5.17 (brs, 1H), 5.75 (s, 1H), 7.39-7.48 (m, 3H), 7.86-7.90 (m, 2H), 10.21 (brs, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.9,92.3,127.1,128.2$, 130.8, 140.2, 162.8, 189.5.

(Z)-3-Amino-4-methyl-1-phenylpent-2-en-1-one

A solution of 4-methyl-1-phenylpentane-1,3-dione ${ }^{4}(2.27 \mathrm{~g}, 12.0 \mathrm{mmol})$ and ammonium acetate ($4.62 \mathrm{~g}, 60 \mathrm{mmol}$) in dry methanol (23 mL) was refluxed for 3 h . After cooling to room temperature, water (15 mL) was added and the mixture was extracted with diethyl ether $(3 x)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
concentrated under vacuum. The residue was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=4 / 1$) to give the title compound $(0.948 \mathrm{~g}, 42 \%)$ and a 79:21 mixture of the title compound and (Z)-1-amino-4-methyl-1-phenylpent-1-en-3-one ($0.809 \mathrm{~g}, 36 \%$).

(Z)-3-Amino-4-methyl-1-phenylpent-2-en-1-one

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25$ (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$), 2.47 (sept, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.24$ (brs, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}) 7.40-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.87-7.89(\mathrm{~m}, 2 \mathrm{H}), 10.40$ (brs, 1H).

(Z)-1-Amino-4-methyl-1-phenylpent-1-en-3-one

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.61$ (sept, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.24$ (brs, $1 \mathrm{H}), 5.47$ (s, 1H) 7.40-7.46 (m, 3H), 7.52-7.62 (m, 2H), 9.98 (brs, 1H).

(Z)-3-Amino-1,3-diphenylprop-2-en-1-one

A solution of 1,3-diphenylpropane-1,3-dione ($2.00 \mathrm{~g}, 9.0 \mathrm{mmol}$) and ammonium formate $(2.80 \mathrm{~g}, 45 \mathrm{mmol})$ in dry ethanol (20 mL) was refluxed for 21.5 h . After cooling to room temperature, the mixture was concentrated under vacuum. Water was added to the residue and the mixture was extracted with $\operatorname{AcOEt}(3 x)$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times)$ and brine $(1 \times)$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to give crude (Z)-3-amino-1,3-diphenylprop-2-en-1-one $(2.017 \mathrm{~g})$ which was used without further purification. Spectroscopic data were consistent with the literature data. ${ }^{5}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.45(\mathrm{brs}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.60-7.70(\mathrm{~m}$, 2 H), 7.90-8.03 (m, 2H), 10.43 (brs, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 91.4,126.2,126.9$, 128.1, 128.7, 130.4, 130.8, 137.1, 140.1, 163.0, 189.7.

Synthesis of N -Acylated $\boldsymbol{\beta}$-Amino Enones

N-((Z)-4-Oxo-4-phenylbut-2-en-2-yl)benzamide (1a)
Typical Procedure A: Pyridine ($0.44 \mathrm{~mL}, 2$ equiv.) and benzoyl chloride ($0.62 \mathrm{~mL}, 2$ equiv.) were added successively to a solution of (Z)-3-amino-1-phenylbut-2-en-1-one ($436.7 \mathrm{mg}, 2.71$ $\mathrm{mmol})$ in dichloromethane (5.4 mL) at room temperature. After being stirred for 1 h , water was added and the mixture was extracted with AcOEt ($3 \times$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under vacuum to give crude
crystals which was purified by recrystallization from ethanol/water (4/1) to afford 1a as yellowish needles (the 1st crop: 554.4 mg , the 2 nd crop: 81.5 mg ; total 88%).
$\mathrm{mp} 108-110{ }^{\circ} \mathrm{C}$; IR (KBr, cm ${ }^{-1}$) 3059, 1691, 1622, 1616, 1589, 1583, 1269, 1063, 702; ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.69(\mathrm{~s}, 3 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.61(\mathrm{~m}, 6 \mathrm{H}), 7.93-7.98(\mathrm{~m}, 2 \mathrm{H})$, 8.09-8.13 (m, 2H), 13.82 (brs, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 22.8,102.5,127.7,128.0$, 128.6, 128.9, 132.4, 132.7, 133.7, 138.7, 158.2, 166.2, 191.9; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 76.96; H, 5.70; N, 5.28; Found: C, 76.72; H, 5.83; N, 5.33.

N-((Z)-4-Methyl-1-oxo-1-phenylpent-2-en-3-yl)benzamide (1b)

According to Typical Procedure A, the reaction of (Z)-3-amino-4-methyl-1-phenylpent-2-en1 -one ($473 \mathrm{mg}, 2.5 \mathrm{mmol}$), pyridine ($0.40 \mathrm{~mL}, 2$ equiv.), and benzoyl chloride ($0.56 \mathrm{~mL}, 2$ equiv.) in dichloromethane (5 mL) at rt for 2.5 h gave the crude product. The crude product was diluted with dry dichloromethane $(5 \mathrm{~mL})$ and treated with diethylamine $(0.45 \mathrm{~mL})$ at rt for 9 h to remove excess benzoyl chloride. The mixture was concentrated under vacuum and the residue was purified by silica gel chromatography (hexane/AcOEt $=15 / 1$) to afford $\mathbf{1 b}$ as yellowish crystals ($578 \mathrm{mg}, 78 \%$).
mp 80-81 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2964, 1693, 1618, 1591, 1257, 1236, 712, 687; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 4.24(\mathrm{sept}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}) 7.48-7.67$ $(\mathrm{m}, 6 \mathrm{H}), 7.93-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.20(\mathrm{~m}, 2 \mathrm{H}), 13.87(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 21.6,30.0,97.7,127.7,128.0,128.5,128.8,132.36,132.41,134.1,139.1,165.5,168.4$, 192.4; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 77.79; H, 6.53; N, 4.77; Found: C, 77.87; H, 6.45; N, 4.81 .

N-((Z)-3-Oxo-1,3-diphenylprop-1-en-1-yl)benzamide (1c)
According to Typical Procedure A, the reaction of (Z)-3-amino-1,3-diphenylprop-2-en-1-one ($970 \mathrm{mg}, 4.0 \mathrm{mmol}$), pyridine ($0.65 \mathrm{~mL}, 2$ equiv.), and benzoyl chloride ($0.92 \mathrm{~mL}, 2$ equiv.) in dichloromethane (8 mL) at rt for 18.5 h gave the crude product. The crude product was diluted with dry dichloromethane $(10 \mathrm{~mL})$ and treated with diethylamine $(0.83 \mathrm{~mL})$ at rt for 1.5 h to remove excess benzoyl chloride. The mixture was concentrated under vacuum and
the residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=15 / 1$) to afford $\mathbf{1 c}$ as yellowish oil which gradually crystallized on standing ($1.133 \mathrm{~g}, 91 \%$).
$\mathrm{mp} 118-119^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3057, 1687, 1624, 1583, 1564, 1464, 1290, 1225, 1045, 719; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.46(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.64(\mathrm{~m}, 11 \mathrm{H}), 7.97-8.04(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.13$ (m, 2H), 13.36 (brs, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 105.2,127.3,127.8,128.0$ (2C), 128.6, 128.8, 129.7, 132.66, 132.69, 133.2, 136.3, 138.4, 157.0, 165.1, 191.9; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 80.71; H, 5.23; N, 4.28; Found: C, 80.39; H, 5.35; N, 4.26.

4-Nitro- N -((Z)-4-oxo-4-phenylbut-2-en-2-yl)benzamide (1d)

According to Typical Procedure A, the reaction of (Z)-3-amino-1-phenylbut-2-en-1-one (322 $\mathrm{mg}, 2.0 \mathrm{mmol}$), pyridine ($0.32 \mathrm{~mL}, 2$ equiv.), and p-nitrobenzoyl chloride ($742 \mathrm{mg}, 2$ equiv.) in dichloromethane $(10 \mathrm{~mL})$ at rt for 1 h gave the crude product which was purified by recrystallization from AcOEt to afford $\mathbf{1 d}$ as orange needles (the 1st crop: $346 \mathrm{mg}, 56 \%$). mp 196-197 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3113, 1697, 1626, 1593, 1475, 1346, 1277, 710; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.67(\mathrm{~s}, 3 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.93-7.99(\mathrm{~m}, 2 \mathrm{H}), 8.24-$ $8.30(\mathrm{~m}, 2 \mathrm{H}), 8.35-8.42(\mathrm{~m}, 2 \mathrm{H}), 14.05(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.5,103.4$, 124.1, 127.8, 128.7, 129.2, 132.9, 138.3, 139.2, 150.1, 157.4, 164.0, 192.2; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 65.80; H, 4.55; N, 9.03; Found: C, 65.57; H, 4.57; N, 9.01.

4-Methoxy- N -((Z)-4-oxo-4-phenylbut-2-en-2-yl)benzamide (1e)

According to Typical Procedure A, the reaction of (Z)-3-amino-1-phenylbut-2-en-1-one $(1.612 \mathrm{~g}, 10.0 \mathrm{mmol})$, pyridine ($1.62 \mathrm{~mL}, 2$ equiv.), and p-methoxybenzoyl chloride (2.71 mL , 2 equiv.) in dichloromethane (20 mL) at rt for 4 h gave the crude product which was purified by recrystallization from ethanol to afford $\mathbf{1 e}$ as orange needles (the 1st crop: $2.1267 \mathrm{~g}, 72 \%$). mp 127-128 ${ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}) 3001, 2970, 2943, 2841, 1687, 1606, 1498, 1477, 1273, 1246, $1178,1061,1032,847,758$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.67(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 6.15(\mathrm{~s}$, $1 \mathrm{H}), ~ 6.99-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.92-7.98(\mathrm{~m}, 2 \mathrm{H}), 8.06-8.12(\mathrm{~m}, 2 \mathrm{H}), 13.82$ (brs, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.7,55.4,102.1,114.1,126.0,127.6,128.6,130.1$, 132.3, 138.8, 158.6, 163.2, 165.7, 191.8; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, $73.20 ; \mathrm{H}, 5.80$; N , 4.74; Found: C, 72.94; H, 5.82; N, 4.65.

N-((Z)-4-Oxo-4-phenylbut-2-en-2-yl)acetamide (1f)
According to Typical Procedure A, the reaction of (Z)-3-amino-1-phenylbut-2-en-1-one (806 $\mathrm{mg}, 5 \mathrm{mmol}$), pyridine ($0.81 \mathrm{~mL}, 2$ equiv.) and acetyl chloride ($0.71 \mathrm{~mL}, 2$ equiv.) in dichloromethane (10 mL) at rt for 20 h gave the crude product which was purified by recrystallization from ethanol/water (4/1) to afford $\mathbf{1 f}$ as yellowish prisms (the 1st crop: 512 mg, the 2nd crop: 171 mg ; total 67\%).
mp 98-99 ${ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}) 3072, 1711, 1616, 1585, 1560, 1502, 1473, 1439, 1308, 1261, 1200, 1086, 1065, 1003, 858, 777, 681; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}$, $3 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.93(\mathrm{~m}, 2 \mathrm{H}), 12.81(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 22.5,25.4,101.5,127.6,128.5,132.4,138.6,157.5,169.8,191.4$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C}, 70.92 ; \mathrm{H}, 6.45 ; \mathrm{N}, 6.89$; Found: C, 70.66 ; H, $6.50 ; \mathrm{N}, 6.83$.

NOESY Correlations of Selected Compounds

The geometry of selected β-amino enones was determined to be Z by observation of the NOESY correlations as shown below. That of other enones was determined by analogy.

The Reaction of \mathbf{N}-Acylated $\boldsymbol{\beta}$-Amino Enone with HSiCl_{3}

Typical Procedure B: To a solution of (S)-BINAPO ($16.4 \mathrm{mg}, 10 \mathrm{~mol} \%$) and 1a (66.2 mg , 0.25 mmol) in dry dichloromethane (1 mL) was added dropwise trichlorosilane (ca. 3 M $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 3 equiv.) at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at rt for 24 h and quenched with water (3 mL) and dichloromethane (5 mL). The mixture was stirred for 1 h , filtered through a Celite pad with dichloromethane and extracted with dichloromethane $(3 \times)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and purified by silica gel column chromatography (hexane/AcOEt $=20 / 1 \sim 2 / 1$) to give $4 H-1,3$-oxazine 2a [42.3 $\mathrm{mg}, 68 \%, 74 \%$ ee $(R)]$ and keto amide 3a $[11.5 \mathrm{mg}, 17 \%, 7 \%$ ee $(S)]$.

The sense of the enantioselectivity of $\mathbf{2 a}$ was found to be opposite to that of $\mathbf{3 a}$ by transforming 2a to 3a with hydrobromic acid in ethanol. Their absolute configurations were tentatively assigned by analogy.

(\boldsymbol{R})-4-Methyl-2,6-diphenyl-4H-1,3-oxazine (2a)

Viscous oil; TLC: $R_{f} 0.68$ (hexane/ $\mathrm{AcOEt}=3 / 1$); $[\alpha]^{28}{ }_{\mathrm{D}}+8.8\left(\mathrm{c} 0.600, \mathrm{CHCl}_{3}\right)$ for 72% ee (R); IR (neat, cm^{-1}) 3061, 2966, 1686, 1647, 1350, 1238, 1146, 1063, 760, 690; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.38(\mathrm{dq}, J=6.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 2 \mathrm{H}), 8.05-8.12(\mathrm{~m}, 2 \mathrm{H})$) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 25.0,48.1,102.3,124.1,127.3,128.2,128.5,128.7,130.8,132.5,133.0,146.7,152.0$; HRMS (FAB) calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 250.1232$, found 250.1250; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=19 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm) : $t_{R}=4.6 \mathrm{~min}(R$, major), $6.8 \mathrm{~min}(S$, minor $)$.

(S)-N-(4-Oxo-4-phenylbutan-2-yl)benzamide (3a)

Spectroscopic data were consistent with the literature data. ${ }^{6}$
Yellowish solid; TLC: $R_{f} 0.09$ (hexane/AcOEt $=3 / 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=17.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=17.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dddq}, J$ $=7.8,5.9,4.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{brd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.60$ (apparent t, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (apparent d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.99 (apparent d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$); HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=9 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=15.8 \mathrm{~min}(S$, major $), 17.2 \mathrm{~min}(R$, minor $)$.

According to Typical Procedure B , the reaction of $\mathbf{1 b}$ ($73.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and trichlorosilane (ca. $3 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 2 equiv.) with (S)-BINAPO ($16.6 \mathrm{mg}, 10 \mathrm{~mol} \%$) in dry dichloromethane (1 mL) at rt for 9 h gave $4 H-1,3$-oxazine $\mathbf{2 b}$ [$49.8 \mathrm{mg}, 72 \%, 47 \%$ ee (R)], keto amide 3b [17.1 mg, $23 \%, 42 \%$ ee (S)] and an allylic amide ($1.3 \mathrm{mg}, 2 \%, 55 \%$ ee).

The sense of the enantioselectivity of $\mathbf{2 b}$ was found to be same as that of $\mathbf{3 b}$ by transforming $\mathbf{2 b}$ to $\mathbf{3 b}$ with hydrobromic acid in ethanol. Their absolute configurations were tentatively assigned by analogy.

(\boldsymbol{R})-4-Isopropyl-2,6-diphenyl-4H-1,3-oxazine (2b)

Viscous oil, TLC: $R_{f} 0.71$ (hexane/ $\mathrm{AcOEt}=3 / 1$); $[\alpha]^{21}{ }_{\mathrm{D}}-1.2$ (c 1.115, CHCl_{3}) for 47% ee (R); IR (neat, cm^{-1}) 2962, 1691, 1495, 1448, 1261, 762, 692; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{~d} \mathrm{sept}, J=4.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=$ $4.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.72(\mathrm{~m}, 2 \mathrm{H}), 8.06-8.11(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.97,18.05,35.2,57.9,99.0,124.1,127.3,128.2,128.5$, 128.7, 130.8, 132.6, 133.1, 147.8, 152.1; HRMS (FAB) calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 278.1545, found 278.1581; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{cmø} \times 25 \mathrm{cmL}$, hexane/2propanol $=49 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm$): t_{R}=5.0 \mathrm{~min}(R$, major $), 7.0$ $\min (S$, minor $)$.

(S)-N-(4-Methyl-1-oxo-1-phenylpentan-3-yl)benzamide (3b)

Yellowish solid; mp $129-131{ }^{\circ} \mathrm{C} ; R_{f} 0.25$ (hexane/AcOEt $=3 / 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{~d}$ sept, $J=8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dd, $J=17.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (dd, $J=17.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.33 (dddd, $J=9.2,8.2,5.0,5.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.18 (brd, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.59$ (apparent $\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76-7.80 (m, 2H), 7.95-7.99 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.52,19.86,31.0,39.3$, 52.7, 126.9, 128.06, 128.51, 128.74, 131.3, 133.5, 134.7, 136.8, 166.9, 200.0; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=19 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=26.0 \mathrm{~min}$ (R, minor), 34.0 min (S, major).

(E)- N -(4-Methyl-1-phenylpent-1-en-3-yl)benzamide

Colorless solid; $R_{f} 0.38$ (hexane/ $\mathrm{AcOEt}=3 / 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}$), 2.02 (d sept, $J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.72 (ddd, $J=8.7,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(b r d, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.58(\mathrm{~m}, 8 \mathrm{H})$, 7.79-7.83 (m, 2H); HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane/2-propanol $=$ $12 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=16.8 \mathrm{~min}$ (minor), 21.6 min (major).

According to Typical Procedure B , the reaction of $\mathbf{1 c}(81.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and trichlorosilane (ca. $3 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 2 equiv.) with (S)-BINAPO ($16.4 \mathrm{mg}, 10 \mathrm{~mol} \%$) in dry dichloromethane (1 mL) at rt for 9 h gave 4 H -1,3-oxazine $\mathbf{2 c}$ [$58.5 \mathrm{mg}, 75 \%, 53 \%$ ee (S)], keto amide $\mathbf{3 c}[9.7 \mathrm{mg}, 12 \%, 51 \%$ ee (S)] and an allylic amide ($7.7 \mathrm{mg}, 10 \%, 4 \%$ ee).

The sense of the enantioselectivity of $\mathbf{2 c}$ was found to be same as that of $\mathbf{3 c}$ by transforming $\mathbf{2 c}$ to $\mathbf{3 c}$ with hydrobromic acid in ethanol. The absolute configuration of $\mathbf{3 c}$ was unequivocally determined on comparison with the literature data. ${ }^{7}$ Thus, that of $\mathbf{2 c}$ was also determined.

(S)-2,4,6-Triphenyl-4H-1,3-oxazine (2c)

Colorless solid; $\mathrm{mp} 96-97{ }^{\circ} \mathrm{C}$; TLC: $R_{f} 0.63$ (hexane/ $\mathrm{AcOEt}=3 / 1$); $[\alpha]^{19}{ }_{\mathrm{D}}-33.5$ (c 1.075, CHCl_{3}) for 53% ee (S); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3088,3061,3028,2862,1687,1647,1495,1450,1319$, $1240,1119,1070,1024,758,696 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.44(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.65(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.55(\mathrm{~m}, 10 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 2 \mathrm{H}), 8.10-8.17$ (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.6,100.8,124.2,127.28,127.36,127.48,128.23$, 128.51, 128.70, 128.95, 131.1, 132.4, 132.8, 144.4, 146.3, 152.2; HRMS (FAB) calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right)$312.1388, found 312.1383; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing$ 25 cmL , hexane $/ 2$-propanol $=29 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=10.5$ \min (S, major), $14.6 \min$ (R, minor).

(S)-N-(3-Oxo-1,3-diphenylpropyl)benzamide (3c)

Spectroscopic data were consistent with the literature data. ${ }^{7}$
Colorless solid; TLC: $R_{f} 0.15$ (hexane/AcOEt $=3 / 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.56$ (dd, $J=17.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=17.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{ddd}, J=7.8,6.0,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20-7.60 (m, 11H), 7.60 (brd, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.87$ (m, 2H), 7.91-7.95 (m, 2H); HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=4 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=21.5 \mathrm{~min}$ (R, minor), 28.7 min (S, major).

N-(1,3-Diphenylallyl)benzamide

Spectroscopic data were consistent with the literature data. ${ }^{8}$
Colorless solid; TLC: $R_{f} 0.39$ (hexane/ $\mathrm{AcOEt}=3 / 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.04$ (apparent $\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{brd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.54(\mathrm{~m}, 13 \mathrm{H}), 7.81-7.86(\mathrm{~m}, 2 \mathrm{H})$; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=6 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=18.2 \mathrm{~min}$ (minor), 20.2 min (major).

According to Typical Procedure B, the reaction of $1 d$ ($78.1 \mathrm{mg}, 0.25 \mathrm{mmol}$) and trichlorosilane (ca. $3 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 2 equiv.) with (S)-BINAPO ($16.6 \mathrm{mg}, 10 \mathrm{~mol} \%$) in dry dichloromethane (2 mL ; $\mathbf{1 d}$ was partially dissolved at the beginning) at rt for 24 h gave $4 H-1,3$-oxazine 2d [27.8 mg, 38\%, 50\% ee (R)] and keto amide 3d [15.7 mg, 20\%, 28\% ee $(S)]$. 1d was recovered in 37% (29.0 mg).

The sense of the enantioselectivity of $\mathbf{2 d}$ was found to be opposite to that of $\mathbf{3 d}$ by transforming 2d to 3d with hydrobromic acid in ethanol. Their absolute configurations were tentatively assigned by analogy.

(R)-4-Methyl-2-(4-nitrophenyl)-6-phenyl-4H-1,3-oxazine (2d)

Yellowish solid; mp 143-144 ${ }^{\circ} \mathrm{C}$; TLC: $R_{f} 0.61$ (hexane/AcOEt $=3 / 1$); $[\alpha]^{29}{ }_{\mathrm{D}}+5.8$ (c 1.170, CHCl_{3}) for 61% ee (R); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2974,2929,2848,1689,1649,1601,1522,1340$, 1244, 1146, 1093, 862, 760, 702; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $4.44(\mathrm{dq}, J=6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.68(\mathrm{~m}, 2 \mathrm{H})$, 8.20-8.32 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.0,48.5,102.2,123.4,124.1,128.3$, 128.6, 129.1, 132.5, 138.4, 146.7, 149.3, 150.3; HRMS (FAB) calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 295.1083, found 295.1073; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2-$ propanol $=29 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at 254 nm$): t_{R}=8.7 \mathrm{~min}(R$, major $), 11.1$ $\min (S$, minor $)$.

(S)-4-Nitro- N -(4-oxo-4-phenylbutan-2-yl)benzamide (3d)

Viscous oil; TLC: $R_{f} 0.11$ (hexane/AcOEt $=3 / 1$); IR (neat, cm^{-1}) 3307, 3070, 2976, 1684, $1645,1601,1525,1346,1213,1003,870,841,754,721,690 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=17.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=17.0,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.71 (dddq, $J=7.8,5.5,4.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (brd, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (apparent $\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.62 (apparent $\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (apparent d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.98 (apparent d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.28 (apparent d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.0,42.5$, 43.2 , 123.7, 128.09, 128.13, 128.81, 133.8, 136.7, 140.1, 149.5, 164.5, 199.8; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=9 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm) : $t_{R}=28.1 \mathrm{~min}(R$, minor $), 33.3 \mathrm{~min}(S$, major $)$.

According to Typical Procedure B , the reaction of $\mathbf{1 e}(73.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ and trichlorosilane (ca. $3 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 2 equiv.) with (S)-BINAPO ($16.4 \mathrm{mg}, 10 \mathrm{~mol} \%$) in dry dichloromethane (1 mL) at rt for 5 h gave $4 H$-1,3-oxazine $\mathbf{2 e}$ [$47.2 \mathrm{mg}, 68 \%, 81 \%$ ee (R)] and keto amide $3 \mathrm{e}[13.7 \mathrm{mg}, 18 \%, 14 \%$ ee (S)].

The sense of the enantioselectivity of $\mathbf{2 e}$ was found to be opposite to that of $\mathbf{3 e}$ by transforming $2 \mathbf{e}$ to $\mathbf{3 e}$ with hydrobromic acid in ethanol. The absolute configuration of $\mathbf{2 e}$ was unequivocally determined as described later.

(R)-2-(4-Methoxyphenyl)-4-methyl-6-phenyl-4H-1,3-oxazine (2e)

Viscous oil; TLC: $R_{f} 0.40$ (hexane/ $\mathrm{AcOEt}=3 / 1$); $[\alpha]^{30}{ }_{\mathrm{D}}+5.3\left(\mathrm{c} 1.295, \mathrm{CHCl}_{3}\right.$) for 78% ee (R); IR (neat, cm^{-1}) 2966, 2926, 2837, 1689, 1608, 1512, 1250, 1169, 1146, 1068, 1030, 839, 760, 690 ; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 1.43$ (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{dq}, J=6.9$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.68$ (m, $2 \mathrm{H}), 8.01-8.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.1,48.0,55.3,102.4,113.5,124.1$, 125.1, 128.45, 128.67, 128.93, 133.1, 146.7, 151.8, 161.7; HRMS (FAB) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$280.1338, found 280.1331; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times$ 25 cmL , hexane $/ 2$-propanol $=19 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at 254 nm$): t_{R}=8.7$ \min (R, major), 19.8 min (S, minor).

(S)-4-Methoxy- N-(4-oxo-4-phenylbutan-2-yl)benzamide (3e)

Yellowish solid; mp 119-121 ${ }^{\circ} \mathrm{C}$; TLC: $R_{f} 0.06$ (hexane/AcOEt $=3 / 1$); IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3321$, 3062, 2958, 1687, 1666, 1637, 1549, 1529, 756, 692; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=16.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=16.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 4.68 (dddq, $J=7.3,6.1,4.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (apparent d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (brd, $J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.48 (apparent $\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (apparent $\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (apparent d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.99 (apparent d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.1,42.8$, 43.3, 55.4, 113.7, 126.8, 128.1, 128.7 (2C), 133.5, 136.9, 162.1, 166.2, 199.7; HRMS (FAB) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$298.1443, found 298.1470; HPLC (CHIRALPAK AD-H, 0.46 $\mathrm{cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=19 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm$): t_{R}$ $=77.8 \mathrm{~min}(S$, major $), 82.8 \mathrm{~min}(R$, minor $)$.

To a solution of (S)-BINAPO ($16.3 \mathrm{mg}, 10 \mathrm{~mol} \%$) and $\mathbf{1 f}(50.9 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dry dichloromethane (2 mL) was added dropwise trichlorosilane (ca. $3 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 2 equiv.) at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at rt for 2 h and quenched with water (3 mL) and dichloromethane (5 mL). The mixture was stirred for 1 h , filtered through a Celite pad with dichloromethane and extracted with dichloromethane ($3 \times$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=1 / 1, \mathrm{AcOEt}$ only, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=10 / 1$) to give keto amide $\mathbf{3 f}[13.9 \mathrm{mg}, 27 \%, 22 \%$ ee $(S)]$. On the other hand, the acidic aqueous layer (pH ca .3) was basified with saturated aq. $\mathrm{NaHCO}_{3}(\mathrm{pH} c a .9)$ and extracted with dichloromethane ($3 \times$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give pure keto amide $\mathbf{3 f}$ [$29.8 \mathrm{mg}, 58 \%, 26 \%$ ee (R)].

The sense of the enantioselectivity of $\mathbf{3 f}$ extracted from the acidic aqueous layer was opposite to that of $\mathbf{3 f}$ extracted from the basic aqueous layer. The absolute configuration was assigned by analogy.

(R)- N-(4-Oxo-4-phenylbutan-2-yl)acetamide (3f)

Yellowish solid; mp 74-76 ${ }^{\circ} \mathrm{C}$; TLC: $R_{f} 0.20$ (hexane/ $\mathrm{AcOEt}=1 / 2$); $[\alpha]^{20}{ }_{\mathrm{D}}+15.5$ (c 0.995, CHCl_{3}) for 26% ee (R); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, $3.09(\mathrm{dd}, J=16.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{brd}, J=16.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (dddq$, J=7.1,6.9,6.4$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.32($ brd, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (apparent $\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (apparent $\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (apparent d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25-7.97 (m, 5 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz , CDCl_{3}) $\delta 19.9,23.4,42.4,43.4,128.04,128.65,133.4,136.7,169.4,199.2 ;$ HPLC (CHIRALPAK AS-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=29 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm) : $t_{R}=13.6 \mathrm{~min}$ (S, minor), 19.2 min (R, major).

The formation of oxazine $\mathbf{2 f}$ was confirmed by quenching the reaction mixture (another batch of the reaction) with deuterium oxide. After removal of the precipitates by filtration, the acidic deuterium oxide layer was washed with dichloromethane ($3 \times$) and checked directly by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analyses (for the spectra, see page S-21).

(R)-2-Methyl-4-methyl-6-phenyl-4H-1,3-oxazine (2f)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{dq}, J=9.6,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\mathrm{D}_{2} \mathrm{O}, \mathrm{MeOH}$ was used as an internal standard) $\delta 19.0,20.7,44.5,114.8,125.6,129.6,130.6$, 133.2, 149.9, 173.0.

Transformations of 4H-1,3-Oxazine $2 e$

Hydrolysis: To a solution of $\mathbf{2 e}$ [$28.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 81 \%$ ee (R)] in dry ethanol (1.0 mL) was added dropwise $47 \% \mathrm{HBr}(0.1 \mathrm{~mL})$ at rt . The reaction was stirred at rt for 3 h and quenched with saturated aqueous NaHCO_{3}. The mixture was extracted with dichloromethane ($3 \times$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and purified by silica gel column chromatography (hexane $/ \mathrm{AcOEt}=2 / 1$) to give keto amide $3 \mathrm{e}[23.3 \mathrm{mg}, 78 \%, 81 \%$ ee $(R)]$.

(\boldsymbol{R})-4-Methoxy- \boldsymbol{N}-(4-oxo-4-phenylbutan-2-yl)benzamide (3e)

For physical data, see page S-11. $[\alpha]^{30}{ }_{\mathrm{D}}-12.8$ (c $0.795, \mathrm{CHCl}_{3}$) for 81% ee (R); HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=19 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm) : $t_{R}=71.5 \mathrm{~min}(S$, minor $), 75.0 \mathrm{~min}(R$, major $)$.

Reduction: A suspension of $\mathbf{2 e}$ [$26.8 \mathrm{mg}, 0.096 \mathrm{mmol}, 81 \%$ ee $(R)]$ and $10 \% \mathrm{Pd} / \mathrm{C}(5.4 \mathrm{mg})$ in AcOEt (1.9 mL) was stirred at rt for 5 h under hydrogen atmosphere. The mixture was filtered through a Celite pad with AcOEt, evaporated, and purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=3 / 1 \sim 2 / 1$) to give amide $\mathbf{4 e}[24.5 \mathrm{mg}, 90 \%, 81 \%$ ee $(R)]$.

(\boldsymbol{R})-4-Methoxy- N -(4-phenylbutan-2-yl)benzamide (4e)

Colorless solid; $\mathrm{mp} 119-121^{\circ} \mathrm{C}$; TLC: $R_{f} 0.32$ (hexane/AcOEt $=2 / 1$); $[\alpha]^{21}{ }_{\mathrm{D}}-8.3$ (c 0.915, CHCl_{3}) for 81% ee (R); IR (KBr, cm ${ }^{-1}$) 3313, 2964, 2926, 2860, 1630, 1608, 1537, 1508, $1300,1254,1182,1028,843,702,700 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.89(\mathrm{dt}, J=6.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{dtq}, J=7.8$, $6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (brd, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (apparent d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.14-7.30 (m,

5 H), 7.65 (apparent d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1,32.5,38.6,45.6$, $55.4,113.6,125.9,127.1,128.32,128.46,128.54,141.8,162.0,166.3$; HRMS (FAB) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$284.1651, found 284.1628; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times$ 25 cmL , hexane $/ 2$-propanol $=9 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=19.5$ \min (R, major), 23.1 min (S, minor).

Oxidation: To a solution of $\mathbf{2 e}$ [$31.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 81 \%$ ee (R)] in dry dichloromethane $(1.1 \mathrm{~mL})$ was added dropwise bromine (0.76 M solution in dichloromethane, 0.3 mL) at rt . The reaction was stirred for 30 min and quenched with water. After being stirred for 5 min , the mixture was transferred to a separation funnel, basified with saturated aqueous NaHCO_{3}, and extracted with dichloromethane $(3 \times)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was then diluted with dichloromethane (2 mL) and ethanol (0.4 mL). Silica gel (ca .300 mg) was added to the solution. The mixture was stirred for 3 h , evaporated, and charged directly on a silica gel column for chromatography (hexane/AcOEt $=3 / 1 \sim 1 / 1$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=20 / 1$; 5e was partially crystallized in the silica gel column. Therefore, elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ was needed) to give trans-5e ($4.7 \mathrm{mg}, 14 \%, 81 \%$ ee) and cis-5e ($24.1 \mathrm{mg}, 72 \%, 81 \%$ ee).

The relative configurations were assigned based on the coupling constants between H 4 and H5 protons (trans-5e: 6.4 Hz , cis-5e: 10.5 Hz).

(4R,5S)-5-Benzoyl-2-(4-methoxyphenyl)-4-methyl-4,5-dihydrooxazole (trans-5e)

Viscous oil; TLC: $R_{f} 0.31$ (hexane/AcOEt $=2 / 1$); IR (neat, cm^{-1}) 2970, 2933, 2839, 1695, $1653,1608,1514,1257,1173,1028,841,692 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{dq}, J=6.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (apparent d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (apparent $\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 (apparent $\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93$8.02(\mathrm{~m}, 4 \mathrm{H})$; HRMS (FAB) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$296.1287, found 296.1292; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=4 / 1$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm$): t_{R}=46.0 \mathrm{~min}(4 S, 5 R$, minor $), 49.1 \mathrm{~min}(4 R, 5 S$, major).
(4R,5R)-5-Benzoyl-2-(4-methoxyphenyl)-4-methyl-4,5-dihydrooxazole (cis-5e)
Colorless solid; mp 127-129 ${ }^{\circ} \mathrm{C}$; TLC: $R_{f} 0.19$ (hexane/AcOEt $=2 / 1$); $[\alpha]_{\mathrm{D}}^{22}+210.2(\mathrm{c} 0.245$, CHCl_{3}) for 81% ee $(4 R, 5 R)$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2968, 1697, 1649, 1606, 1514, 1377, 1259, 1221, 1167, 1099, 1026, 960, 847, 694; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{dq}, J=10.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (apparent d, $J=$
$8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (apparent $\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 (apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-8.02$ (m, 4 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 17.5,55.4,65.1,83.2,113.7,119.4,128.0,129.0,130.3$, 133.9, 135.4, 162.4, 163.1, 194.5; HRMS (FAB) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$296.1287, found 296.1298; HPLC (CHIRALPAK AD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexane $/ 2$-propanol $=1 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm): $t_{R}=12.9 \mathrm{~min}(4 S, 5 S$; minor), 48.2 min ($4 R, 5 R$; major).

Determination of the Absolute Configuration of $2 e$

To a solution of $\mathbf{4 e}(17.9 \mathrm{mg}, 0.063 \mathrm{mmol}, 81 \%$ ee $)$ in dry THF (2.0 mL) was added LiAlH_{4} $(24.0 \mathrm{mg}, 0.63 \mathrm{mmol})$ at rt . The reaction was refluxed for 16 h and, after cooling to rt , carefully quenched with water and 4 M aq. NaOH . The mixture was extracted with dichloromethane $(3 \times)$. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, filtered, and evaporated to give crude $(R)-N$-(4-methoxybenzyl)-4-phenylbutan-2-amine. This crude amine was diluted with acetonitrile/water ($2 / 1,2 \mathrm{~mL}$) and treated with CAN ($173.1 \mathrm{mg}, 0.32$ mmol). The reaction was stirred at rt for 6 h and quenched with 1.0 M hydrochloric acid (5 mL). The mixture was filtered through a Celite pad with dichloromethane. The filtrate was washed with dichloromethane $(4 \times)$ and basified with 4 M aqueous NaOH . The aqueous layer was extracted with dichloromethane $(3 x)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, filtered, and evaporated to afford (R)-4-phenylbutan-2-amine (4.3 mg , 46% over 2 steps).

(\boldsymbol{R})- N -(4-Methoxybenzyl)-4-phenylbutan-2-amine

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{brd}, 1 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.76(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J$ $=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.85$ (apparent d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.29(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.3,32.3,38.7,50.7,51.9,55.2,113.7,125.7$, 128.31, 128.32, 129.3, 132.9, 142.4, 158.5.

(\boldsymbol{R})-4-Phenylbutan-2-amine

Spectroscopic data are consistent with the literature data. ${ }^{9}$
$[\alpha]^{20}{ }_{\mathrm{D}}-8.7\left(\mathrm{c} 0.215, \mathrm{CHCl}_{3}\right)$ for 81% ee $(R)\left[\mathrm{lit} .^{9}[\alpha]^{20}{ }_{\mathrm{D}}+6.4\left(\mathrm{c} 0.47, \mathrm{CHCl}_{3}\right)\right.$ for 98% ee (S)]; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.62\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.60-1.72(\mathrm{~m}$, $2 \mathrm{H}), 2.59-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{sext}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.31(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $4 \mathrm{H}-1,3-$ Oxazines

HPLC Traces of Optically Active Compounds

	2a CHIRALPAK AD-H Hexane/'PrOH = 19/1 $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

1. Racemic

2. Optically active (74% ee)
```
CH.1 C.S 2.50 ATT 6 0FFS 0 00%00.00 00:20
    4
0-2500 00/00/0日 00:20
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline NO . & RT & AREA & CONC & BC \\
\hline 1 & 4.62 & 174135 & 87.054 & BB \\
\hline 2 & 6.82 & 25895 & 12.946 & B8 \\
\hline \multicolumn{5}{|l|}{TOTAL} \\
\hline & & 200030 & 100.000 & \\
\hline PEAK & & G & & \\
\hline
\end{tabular}
```

Supplementary Material（ESI）for Chemical Communications
This journal is © The Royal Society of Chemistry 2009

2b
CHIRALPAK AD－H
Hexane／＇PrOH＝49／1
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

1．Racemic

D－250日 00／0日／00 00：45

METHOD：	TAG：	2 CH： 1
FILE： 1 EHLE－METHOD：AREA\％THBLE：		

HO．	RT	ARER	CONC	$B C$
1	4.92	694697	50.312	$B B$
2	6.98	685082	49.683	$B B$
TOTAL				
PEAK REJ $:$		0		

2．Optically active（ 47% ee）


```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{METHOO：} \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
NO． & RT & AREA & CONE & BC \\
1 & \(5.0 日\) & 646183 & 73.547 & \(8 B\) \\
2 & 6.99 & 232415 & 26.453 & BB \\
TOTAL & & & & \\
PEAK REJ： & & 078598 & \(100.00 日\) &
\end{tabular}
```

	2c CHIRALPAK AD-H Hexane $/$ ' $\mathrm{PrOH}=29 / 1$ $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

1. Racemic

2. Optically active [53\% ee (S)]
C-R8A CHROMATOPAC CH=1 Report No. $=3 \quad$ DATA=1:@CHRM1.C00. 09/02/20 $\quad 12: 48: 14$

| $* *$ | CALCULATION REPORT | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CH PKNO | TIME | AREA | HEIGHT MK IDNO CONC |

1

76.4374
23.5626
100

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2009

1. Racemic
C-R8A CHROMATOPAC CH=1 \quad Report No. $=8 \quad$ DATA=1:@CHRM1.C00 $\quad 09 / 02 / 09 \quad 18: 31: 18$

2. Optically active (50% ee)

3. Racemic

4. Optically active [81\% ee (R)]

1. Racemic

2. Optically active [81\% ee (R)]

1. Racemic

2. Optically active [81\% ee (R)]

(rans-5e
3. Racemic

4. Optically active [81\% ee $(4 R, 5 S)]$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2009

	cis-5e CHIRALPAK AD-H Hexane/'PrOH = 1/1 $0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

1. Racemic

2. Optically active [81\% ee $(4 R, 5 R)]$

References

(1) S. Kotani, S. Hashimoto and M. Nakajima, Tetrahedron 2007, 63, 3122.
(2) M. Nakajima, Y. Sasaki, M. Shiro and S. Hashimoto, Tetrahedron: Asymmetry 1997, 8, 341.
(3) Y. K. Ramtohul and A. Chartrand, Org. Lett. 2007, 9, 1029.
(4) Prepared from 4-methyl-2-butanone and methyl benzoate according to the literature procedure, see: T. Ishikawa, R. Kadoya, M. Arai, H. Takahashi, Y. Kaisi, T. Mizuta, K. Yoshikai, S. Saito, J. Org. Chem. 2001, 66, 8000.
(5) R. F. Klima, A. V. Jadhav, P. N. D. Singh, M. Chang, C. Vanos, J. Sankaranarayanan, M. Vu, N. Ibrahim, E. Ross, S. McCloskey, R. S. Murthy, J. A. Krause, B. S. Ault, and A. D. Gudmundsdóttir, J. Org. Chem. 2007, 72, 6372.
(6) Y.-D. Lin, J.-Q. Kao and C.-T. Chen, Org. Lett. 2007, 9, 5195.
(7) M. Terada, K. Machioka and K. Sorimachi, Angew. Chem. Int. Ed. 2006, 45, 2254.
(8) H.-H. Li, D.-J. Dong and S.-K. Tian, Eur. J. Org. Chem. 2008, 3623.
(9) (a) K. Masutani, T. Minowa, Y. Hagiwara and T. Mukaiyama, Bull. Chem. Soc. Jpn. 2006, 79, 1106. (b) J. González-Sabín, V. Gotor and F. Rebolledo, Tetrahedron: Asymmetry 2002, 13, 1315.

