Organocatalytic Asymmetric Allylic Alkylation of Oxindoles with Morita-Baylis-Hillman Carbonates

Kun Jiang,^a Jing Peng,^a Hai-Lei Cui,^a and Ying-Chun Chen*^{a,b}

^a Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Fax: 86 28 85502609; E-mail: ycchenhuaxi@yahoo.com.cn.

^b State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Supplementary Information

Table of Contents

- 1. General methods
- 2. General procedure for the asymmetric allylic alkylation
- 3. HPLC and NMR spectra

1. General Methods

NMR spectra were recorded with tetramethylsilane as the internal standard. Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. Optical rotations were measured at 589 nm at 20 °C. Enantiomeric excess was determined by HPLC analysis on Chiralpak AD, IC and Chiralcel OD columns. DCE was distilled from CaH₂. All other chemicals were used without purification as commercially available. Cinchona alkaloids catalysts **1a–1d** were purchased from Aldrich Chemical Company. The substrates 3-substituted oxindoles¹ **2** and Morita-Baylis-Hillman carbonates² **3** were prepared according to the procedures previously reported.

2. General procedure for the asymmetric allylic alkylation of oxindoles with Morita-Baylis-Hillman carbonates:

N-Boc-3-substituted oxindole **2** (0.1 mmol), Morita-Baylis-Hillman carbonate **3** (0.2 mmol) and catalyst (DHQD)₂AQN **1a** (8.6 mg, 10 mol %) were stirred in dry DCE (1 mL) at 35 °C for a specified reaction time. When the reaction was complete, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 50:1) to give compound **4**. The analytic data were related to the major diastereomer.

4a 98% yield; $[\alpha]_D^{20} = -134.0$ (c = 1.45 in EtOAc); 85:15 dr, **b** determined by ¹H NMR; 93% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ mm, t_{major} = 10.06 min, t_{minor} = 17.21 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72-7.61$ (m, 2H), 7.50-7.47 (m, 2H), 7.35-7.22 (m, 6H), 7.07-7.03 (m, 2H), 6.94-6.90 (m, 2H), 6.22 (s, 1H), 5.52 (d, J = 1.2 Hz, 1H), 5.42 (s, 1H), 3.43 (s, 3H), 1.52 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.4$, 166.1, 146.8, 140.2, 140.1, 137.4, 137.2, 129.8, 128.8, 128.3, 127.9, 127.2, 127.0, 123.7, 115.0, 84.1, 60.4, 53.9, 51.9, 28.0 ppm; ESI-HRMS: calcd. for C₃₀H₂₉NO₅+Na 506.1943, found 506.1951.

4b 91% yield; $[\alpha]_D^{20} = -15.23$ (c = 0.35 in EtOAc); 79:21 dr, determined by ¹H NMR; 94% ee, determined by HPLC analysis [Daicel chiralpak IC, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 32.78 min, t_{minor} = 10.98 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (d, *J* = 7.6 Hz, 1H), 7.62-7.59 (m, 2H), 7.32-7.22 (m, 4H), 7.14-6.93 (m, 9H), 6.70 (d, *J* = 6.4 Hz, 2H), 6.53 (d, *J* = 8.0 Hz, 1H), 6.21 (s, 1H), 5.57 (d, *J* = 1.2 Hz, 1H), 5.51 (s, 1H), 4.81 (d, *J* = 16.0 Hz, 1H), 4.48 (d, *J* = 16.0 Hz, 1H), 3.41 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 176.9, 168.3, 143.4, 140.6, 138.3, 138.0, 137.9, 136.3, 135.3, 130.1, 128.5, 128.3, 128.1, 127.9, 127.7, 127.5, 127.4, 127.2, 126.9, 121.9, 109.6, 60.1, 53.1, 51.8, 43.9, 29.7 ppm; ESI-HRMS: calcd.forC₃₂H₂₇NO₃+Na 496.1889, found 496.1883.

 $\begin{array}{c} F \\ by 1 \\ OD, \\ Ph \\ \hline \\ N \\ Boc \\ \end{array} \\ \begin{array}{c} F \\ OD, \\ \hline \\$

4c 94% yield; $[\alpha]_D^{20} = -85.8$ (c = 0.61 in EtOAc); 81:19 dr, determined by ¹H NMR; 96% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 98/2, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 6.97 min, t_{minor} = 27.35 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.71$ (d, J =7.6 Hz, 1H), 7.62 (dd, J = 1.2, 7.6 Hz, 1H), 7.47-7.42 (m, 2H), 7.31-7.23 (m, 4H), 6.92-6.87 (m, 2H), 6.77-6.71 (m, 3H), 6.22 (s, 1H),

5.52 (d, J = 1.6 Hz, 1H), 5.40 (s, 1H), 3.45 (s, 3H), 1.54 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.3$, 167.9, 164.2, 159.4, 146.7, 140.1, 139.9, 137.2, 133.0, 131.5, 131.4, 128.9, 128.4, 128.1, 127.7, 127.6, 127.1, 123.8, 115.1, 114.7, 114.3, 84.3, 60.4, 53.1, 51.9, 28.0 ppm; ESI-HRMS: calcd. for C₃₀H₂₈FNO₅+Na 524.1849, found 524.1844.

4d 90% yield; $[\alpha]_D^{20} = -155.2$ (*c* = 0.46 in EtOAc); 81:19 dr, determined by ¹H NMR; 94% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 5.24 min, t_{minor} = 17.94 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.73$ (d, *J* = 7.6 Hz, 1H), 7.60 (dd, *J* = 1.2, 7.6 Hz, 1H), 7.45-7.42 (m, 2H), 7.30-7.21 (m, 5H), 7.07-6.80 (m, 3H), 6.78-6.77 (m, 1H),

6.26 (s, 1H), 5.54 (d, J = 1.2 Hz, 1H), 5.39 (s, 1H), 3.47 (s, 3H), 1.55 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 171.2$, 163.7, 163.0, 144.7, 136.0, 135.4, 135.1, 134.5, 134.0, 133.9, 133.1, 129.5, 125.9, 125.0, 124.8, 124.6, 124.4, 124.1, 123.8, 123.7, 123.2, 123.0, 119.8, 111.1, 80.4, 56.5, 49.4, 48.0, 23.9 ppm; ESI-HRMS: calcd. for C₃₀H₂₈ClNO₅+Na 540.1554, found 540.1551.

4e 50% yield; $[\alpha]_D^{20} = +69.8$ (c = 0.40 in EtOAc); 92:8 dr, determined by ¹H NMR; 92% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 10.50 min, t_{minor} = 8.79 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.77$ (d, J = 8.4 Hz, 1H), 7.70-7.53 (m, 3H), 7.39-7.18 (m, 9H), 6.25 (s, 1H), 6.11 (s, 1H), 5.44 (s, 1H), 3.35 (s, 3H), 1.57 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 175.1, 167.0, 150.5, 148.8, 139.5, 139.0, 136.8, 132.4, 132.1, 131.5, 129.0, 128.9, 128.4, 128.1, 127.9, 127.7, 126.5, 124.4, 124.2, 115.0, 84.6, 59.8, 51.9, 47.1, 28.0 ppm; ESI-HRMS: calcd. for C₃₀H₂₈N₂O₇+Na 551.1794, found 551.1798.

4f 85% yield; $[\alpha]_D^{20} = -192.9$ (*c* = 0.81 in EtOAc); 83:17 dr, determined by ¹H NMR; 92% ee, determined by HPLC analysis [Daicel chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 8.33 min, t_{minor} = 9.97 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.66$ (d, *J* = 8.0 Hz, 1H), 7.45-7.41 (m, 3H), 7.36-7.28 (m, 4H), 7.17-7.10 (m, 3H), 7.02-6.94 (m, 2H), 6.48 (s, 1H), 5.97 (s, 1H), 5.32 (s, 1H), 3.65 (s, 3H),

1.59 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 175.4, 166.8, 139.0, 138.2, 137.8, 137.3, 134.3, 133.3, 131.0, 130.5, 129.3, 129.0, 128.8, 128.3, 127.8, 127.6, 125.4, 125.0, 124.3, 116.6, 115.0, 111.7, 84.7, 60.4, 53.1, 52.3, 28.0 ppm; ESI-HRMS: calcd. for C₃₁H₂₈N₂O₅+Na 531.1896, found 531.1896.

4g 84% yield; $[\alpha]_D^{20} = -117.26$ (*c* = 0.45 in EtOAc); 85:15 dr, determined by ¹H NMR; 95% ee, determined by HPLC analysis [Daicel chiralpak AD, *n*-hexane/*i*-PrOH = 98/2, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 13.41 min, t_{minor} = 20.24 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.73$ (d, *J* = 8.0 Hz, 1H), 7.59 (dd, *J* = 0.8, 7.6 Hz, 1H), 7.44-7.23 (m, 8H), 7.18-7.06 (m, 2H), 6.79 (dd, *J* = 2.0, 8.4 Hz, 1H), 6.27 (s, 1H),

5.54 (d, J = 1.6 Hz, 1H), 5.36 (s, 1H), 3.48 (s, 3H), 1.56 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.3$, 167.6, 146.7, 140.1, 139.2, 137.7, 137.1, 132.0, 131.3, 130.5, 130.1, 129.6, 129.3, 128.6, 128.1, 128.0, 127.0, 124.1, 115.3, 84.7, 60.3, 52.9, 52.2, 26.1 ppm; ESI-HRMS: calcd. for C₃₀H₂₇Cl₂NO₅+Na 574.1164, found 574.1158.

4h 96% yield; $[\alpha]_D{}^{20} = -71.2$ (*c* = 0.87 in EtOAc); 86:14 dr, determined by ¹H NMR; 95% ee, determined by HPLC analysis [Daicel chiralpak AD, *n*-hexane/*i*-PrOH = 98/2, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 8.61 min, t_{minor} = 13.04 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.71$ (dd, *J* = 1.2, 8.4 Hz, 1H), 7.62 (dd, *J* = 1.2, 8.0 Hz, 1H), 7.51-7.46 (m, 2H), 7.35-7.22 (m, 5H), 6.95-6.87 (m, 2H), 6.71-6.66 (m, 2H), 6.21 (s, 1H), 5.51 (d, J = 1.2 Hz, 1H), 5.38 (s, 1H), 3.43(s, 3H), 2.13 (s, 3H), 1.52 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.4$, 166.2, 146.8, 140.3, 140.1, 137.3, 137.2, 137.0, 130.6, 128.7, 128.3, 127.7, 127.6, 127.5, 127.3, 126.7, 126.1, 123.6, 115.0, 84.0, 60.4, 53.9, 51.9, 28.0, 21.2 ppm; ESI-HRMS: calcd. for C₃₁H₃₁NO₅+Na 520.2100, found 520.2108.

4i 71% yield; $[\alpha]_D^{20} = -135.4(c = 0.86 \text{ in EtOAc})$; 90:10 dr, determined by ¹H NMR; 97% ee, determined by HPLC analysis [Daicel chiralpak IC, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 8.55 min, t_{minor} = 9.96 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72$ (d, J =7.2 Hz, 1H), 7.62 (dd, J = 0.8, 7.6 Hz, 1H), 7.49-7.46 (m, 2H), 7.30-7.21 (m, 5H), 6.83-6.80 (m, 2H), 6.60-6.55 (m, 2H), 6.17 (s, 1H),

5.49 (d, J = 1.2 Hz, 1H), 5.36 (s, 1H), 3.69 (s, 3H), 3.43 (s, 3H), 1.52 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.4$, 166.2, 158.4, 146.8, 140.4, 140.2, 137.3, 130.9, 129.1, 128.7, 128.2, 127.6, 127.2, 123.6, 115.0, 113.0, 84.0, 60.4, 55.0, 53.2, 51.8, 27.9; ESI-HRMS: calcd. for C₃₁H₃₁NO₆+Na 536.2049, found 536.2058.

4j 94% yield; $[\alpha]_D^{20} = +14.33$ (*c* = 0.33 in EtOAc); 79:21 dr, determined by ¹H NMR; 90% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 27.17 min, t_{minor} = 10.41 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.85$ (t, *J* = 8.4 Hz, 1H), 7.64-7.55 (m, 2H), 7.44-7.34 (m, 5H), 7.08-7.02 (m, 1H), 6.80-6.78

(m, 1H), 6.620-6.61 (m, 1H), 6.39-6.38 (m, 1H), 6.24 (s, 1H), 5.74 (s, 1H), 5.62 (s, 1H), 3.41 (s, 3H), 1.58 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 175.0, 166.8, 149.0, 140.6, 140.2, 138.1, 129.0, 128.4, 128.3, 128.2, 127.9, 127.6, 126.7, 126.6, 126.2, 125.2, 123.9, 115.1, 84.4, 72.1, 60.5, 52.4, 47.6, 28.0 ppm; ESI-HRMS: calcd. for C₂₈H₂₇NO₅S+Na 512.1508, found 512.1517.

4k 75% yield; $[\alpha]_D^{20} = -96.31$ (*c* = 0.39 in EtOAc); 82:18 dr, determined by ¹H NMR; 88% ee, determined by HPLC analysis [Daicel chiralpak AD, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 6.74 min, t_{minor} = 17.23 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.70$ (d, J = 8.4 Hz, 1H), 7.61 (dd, J = 0.8, 7.6 Hz, 2H), 7.36-7.19 (m, 4H), 7.14-6.94 (m, 5H), 6.92-6.90 (m, 2H), 6.22 (s, 1H), 5.54 (d, J

= 1.2 Hz, 1H), 5.38 (s, 1H), 3.44 (s, 3H), 2.30 (s, 3H), 1.52 (s, 9H) ppm; ¹³C NMR (50 MHz,

CDCl₃): $\delta = 175.5$, 166.1, 140.1, 137.3, 134.4, 129.8, 129.0, 128.7, 128.3, 128.1, 127.7, 127.4, 127.2, 127.0, 126.8, 123.7, 115.0, 84.0, 60.2, 53.8, 51.9, 28.0, 20.9 ppm; ESI-HRMS: calcd. for $C_{31}H_{31}NO_5+Na$ 520.2100, found 520.2100.

4I 90% yield; $[\alpha]_D^{20} = -166.0$ (*c* = 0.75 in EtOAc); 81:19 dr, determined by ¹H NMR; 93% ee, determined by HPLC analysis [Daicel chiralpak AD, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 6.53 min, t_{minor} = 9.86 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.71$ (d, *J* = 7.6 Hz, 1H), 7.60 (dd, *J* = 0.8, 7.6 Hz, 1H), 7.50-7.44 (m, 2H), 7.37-7.33 (m, 1H), 7.27-7.25 (m, 1H), 7.10-6.93 (m, 7H), 6.23 (s, 1H),

5.52 (d, J = 1.6 Hz, 1H), 5.35 (s, 1H), 3.46 (s, 3H), 1.52 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.4, 166.0, 164.8, 146.7, 140.2, 140.0, 137.0, 133.0, 130.2, 130.0, 129.8, 129.0, 128.7, 127.8, 127.2, 127.1, 126.1, 123.6, 115.3, 115.2, 114.7, 84.3, 59.8, 54.1, 52.0, 28.0 ppm; ESI-HRMS: calcd. for C₃₀H₂₈FNO₅+Na 524.1849, found 524.1836.$

4m 82% yield; $[\alpha]_D^{20} = -117.45$ (c = 0.47 in EtOAc); 89:11 dr, determined by ¹H NMR; 94% ee, determined by HPLC analysis [Daicel chiralpak AD, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 5.58 min, t_{minor} = 8.28 min]; ¹H NMR (300 MHz,

CDCl₃): δ = 7.60-7.41 (m, 4H), 7.30-6.91 (m, 9H), 6.22 (s, 1H), 5.53 (s, 1H), 5.40 (s, 1H), 3.44 (s, 3H), 2.43 (s, 3H), 1.52 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 175.5, 168.1, 148.8, 140.2, 137.8, 137.5, 137.4, 133.2, 129.8, 129.3, 128.5, 128.2, 127.8, 127.7, 127.6, 127.5, 127.0, 114.8, 83.9, 60.5, 53.8, 51.9, 28.1, 21.4 ppm; ESI-HRMS: calcd. for C₃₁H₃₁NO₅+Na 520.2100, found 520.2106.

4n 80% yield; $[\alpha]_D^{20} = -117.8$ (c = 0.54 in EtOAc); 87:13 dr, determined by ¹H NMR; 95% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 7.58$ min, $t_{minor} = 11.63$ min]; ¹H NMR (400 MHz,

CDCl₃): $\delta = 7.71$ (q, J = 4.8 Hz, 1H), 7.47-7.44 (m, 2H), 7.37-7.24 (m, 4H), 7.09-7.01 (m, 4H), 6.94-6.91 (m, 2H), 6.23 (s, 1H), 5.48 (d, J = 1.2 Hz, 1H), 5.41 (s, 1H), 3.44 (s, 3H), 1.52 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.0$, 167.9, 161.7, 156.9, 146.7, 139.7, 136.9, 136.2, 129.7, 128.5, 128.0, 127.9, 127.6, 127.4, 127.2, 116.4, 116.2, 115.6, 115.2, 114.9, 114.4, 84.3, 60.7, 53.8, 51.9, 28.0 ppm; ESI-HRMS: calcd. for C₃₀H₂₈FNO₅+Na 524.1849, found 524.1844.

4o 79% yield; $[\alpha]_D^{20} = +6.4$ (c = 0.75 in EtOAc); 63:37 dr, determined by the isolated yields of two isomers; 86% ee, determined by HPLC analysis [Daicel chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 9.34 min, t_{minor} = 11.52 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.50-7.43$ (m, 2H), 7.27-7.17 (m, 7H), 7.01-6.92 (m, 3H), 6.69 (d, J = 7.2 Hz, 2H), 6.36 (s, 1H), 5.75 (s, 1H), 4.97 (s, 1H), 3.70 (s, 3H), 3.35 (d, J = 12.8 Hz, 1H), 2.94 (d, J = 12.8Hz, 1H), 1.46 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 176.2$, 167.9, 148.5, 140.1, 139.8, 138.1, 134.8, 130.2, 129.9, 128.9, 128.4, 128.2, 128.1, 127.5, 127.3, 126.5, 124.0, 123.7, 114.7, 83.7, 57.7, 52.3, 51.9, 44.4, 27.9 ppm; ESI-HRMS: calcd. for C₃₁H₃₁NO₅+Na 520.2100, found 520.2105.

Synthesis of N-Tos derivative 6

Compound **4a** (100 mg, 0.21 mmol) was dissolved in DCM (5 mL) and TFA (46 uL, 0.63 mmol) was added at room temperature. After 5 h, the reaction was diluted with DCM (5 mL), washed successively with saturated Na₂CO₃ and brine. The organic layer was dried over Na₂SO₄, concentrated. Then the product was purified by chromatography to yield the pure **5** as a white solid (64 mg, 80%).

NaH (8 mg, 0.324 mmol) was suspended in THF (3 mL), and the above compound **5** (64 mg, 0.16 mmol) in THF (2 mL) was added at 0 °C. Then TosCl (37 mg, 0.194 mmol) was added. After 6 h, the reaction was quenched with water (0.5 mL). The mixture was diluted with EtOAc (5 mL), washed with brine. The organic layer was dried (Na₂SO₄), and concentrate. The crude product was purified by flash chromatography PE/EA (10:1) to afford **6** as a white solid (80 mg, 90%). $[\alpha]_D^{20} =$ -79.2 (*c* = 0.63 in EtOAc); 99% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 17.55 min, t_{minor} = 11.61 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89$ (d, *J* = 8.4Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.41-7.17 (m, 10H), 6.96-6.72 (m, 5H), 6.02 (s, 1H), 5.31 (s, 1H), 5.25 (s, 1H), 3.35 (s, 3H), 2.42 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 175.2$, 167.9, 145.2, 140.2, 139.2, 137.3, 136.5, 134.8, 129.6, 129.2, 128.6, 128.3, 128.1, 127.9, 127.8, 127.4, 126.7, 124.1, 113.7, 59.9, 53.3, 52.6, 51.9, 21.7 ppm; ESI-HRMS: calcd. for C₃₂H₂₇NO₅S+Na 560.1508, found 560.1526.

Synthesis of compound 7

Compound **5** (40 mg, 0.11 mmol) and benzaldoxime bromide (32.2 mg, 0.16 mmol) were dissolved in DCM (2 mL), then Et₃N (22.6 uL, 0.16 mmol) was added at room temperature. After 60 h, the mixture was concentrated and purified by flash column chromatography on silica gel (PE/EA = 15:1) to afford diastereomerically pure product **7** as a white solid (45.6 mg, 80%). $[\alpha]_D^{20}$ = -7.8 (*c* = 0.812 in EtOAc); 98% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ = 254 nm, t_{major} = 6.18 min, t_{minor} = 7.60 min]; ¹H NMR (400 MHz, CDCl₃): δ = 8.30-8.28 (m, 1H), 7.88-7.71 (m, 3H), 7.37-6.98 (m, 14H), 6.68-6.65 (m, 1H), 4.81 (s, 1H), 3.36 (d, *J* = 17.6 Hz, 1H), 3.15 (d, *J* = 18.0 Hz, 1H), 3.14 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 178.2, 172.7, 157.3, 140.8, 136.6, 135.5, 130.5, 130.2, 128.6, 128.5, 128.4, 127.8, 127.4, 127.3, 126.6, 122.1, 109.8, 91.9, 60.6, 56.6, 53.4, 52.4, 43.1, 29.7 ppm; ESI-HRMS: calcd. for C₃₂H₂₆N₂O₄+K : 541.1530, found 541.1546.

Assignment of the absolute configuration of the newly generated chiral centre of 7

In order to assign the absolute configuration of the newly generated quaternary carbon centre, we investigated the NOE spectrum of compound **7** and also took advantage of the information on the diastereoselectivity in the cycloaddition by the previous literatures.

In an *Eur. J. Org. Chem.* paper (2008, 5446–5460), Batra et al. investigated the dipolar cycloaddition of Morita-Baylis-Hillman product with in situ generated nitrile *N*-oxide. As outlined in **Scheme A**, the *syn*-isomer was afforded from *re*-face attack owing to the hydrogen bonding between the nitrile oxide and the hydroxyl group of MBH product. Moreover, NOE effect was noted between the CH_2 signal of the five member ring and the benzylic proton.

Scheme A

In addition, in a *Chem. Eur. J.* paper (2008, **14**, 1464–1471), Jorgensen et al. reported the Diels-Alder reaction of aza-MBH product with a buta-1,3-diene. As outlined in **Scheme B**, the *anti*-isomer was obtained from the *si*-face attack. In this case, steric hindrance may account for the face selectivity.

Scheme B

In the dipolar cycloaddition reported in this paper, there is no hydrogen bonding between compound **5** and in situ generated nitrile *N*-oxide. Therefore, the *si*-face attack of the C=C bond might be favored, from which the *anti*-product **7** would be formed.

Moreover, in the NOE study of compound 7, there is no NOE effects observed between the CH_2 signal of the five member ring and the benzylic proton. Taking advantage of the information reported by Batra et al, in which NOE effect has been noted in the *syn*-isomer, we proposed that compound 7 might have an *anti*-structure.

Furthermore, we also conducted DFT computational calculations to supply some support for the face selectivity. As noted in **Scheme C**, we compared the transitional states for *si*-face and *re*-face attack in the dipolar cycloaddition. Indeed, the energy is lower in *si*-face attack in comparison with that of *re*-face attack. This study is in fine accordance with the above elucidations.³

Scheme C

Therefore, compound 7 might have the structure outlined above.

- (1) (a) H. Yamashima, T. Suzuki, H. Takano, Y. Simura and M. Sodeoka, J. Am. Chem. Soc., 2005, 127, 10164;
 (b) T. Ishimaru, N. Shibata, J. Nagai, S. Nakamura, T. Toru and S. Kanemasa, J. Am. Chem. Soc., 2006, 128, 16488.
- (2) J. Feng, X. Lu, A. Kong and X. Han, *Tetrahedron*, 2007, **63**, 6035.
- (3) All the calculations were carried out using the Gaussian 03 program. Geometries of the related ions and transition-state species were optimized at the B3LYP/6-31G(d) level, and there structures were verified by frequency calculations at the same level. Single-point energies on the optimized structures were computed with B3P86 and 6-311+G(d, p) basis set, which had been reported to be promising in energetic calculations. Zero-point energy was considered and scaled by 0.9806. Crucial bond lengths are shown in Å.

3. NMR and HPLC spectra

5.050	4005700	40.00	04000	10.00
5.956	1035762	12.66	81038	18.36
6.971	6797406	83.11	353992	80.20
21.838	224309	2.74	4462	1.01
27.354	121584	1.49	1914	0.43

Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2009

JK1233 H1 CDC13 2009-2-24 Pulse Sequence: s2pul

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.176	9490	0.39	478	1.26
2	11.605	1349	0.06	38	0.10
3	17.552	2424324	99.55	37379	98.64

