Supporting information

Base and copper (I) catalyzed Mannich, alkyne hydroamination cascades for the direct synthesis of 2-methylenepyrrolidines

Hai-Fei Wang,^a Ting Yang,^b Peng-Fei Xu*^a and Darren J. Dixon*^c

Darren.Dixon@chem.ox.ac.uk and xupf@lzu.edu.cn

^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R.. China.

^b School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

^c Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.

Table of Contents

1. General Experimental1
2. Practical experimental
2.1 Cu(I) catalyzed cascade
2.1.1 Synthesis and characterization of intermediate 4
2.1.2 Synthesis and characterization of compound 3a
2.1.3 Synthesis and characterization of compound 3b
2.1.4 Synthesis and characterization of compound 3c
2.1.5 Synthesis and characterization of compound 3d
2.1.6 Synthesis and characterization of compound 3e
2.1.7 Synthesis and characterization of compound 3 <i>f</i> 7
2.1.8 Synthesis and characterization of compound 3g
2.1.9 Synthesis and characterization of compound 3h
2.1.10 Synthesis and characterization of compound 3i
2.1.11 Synthesis and characterization of compound 3 <i>j</i> 9
2.1.12 Synthesis and characterization of compound 3k
2.1.13 Synthesis and characterization of compound 31 11
2.1.14 Synthesis and characterization of compound 3m
2.1.15 Synthesis and characterization of compound 3n
2.1.16 Synthesis and characterization of compound 30
2.1.17 Synthesis and characterization of compound 3p
2.1.18 Synthesis and characterization of compound 3q 14
2.1.19 Synthesis and characterization of compound 5
3. References
4. Spectra
4.1 Spectra for compound 417
4.2 Spectra for compound 3a
4.3 Spectra for compound 3b

4.4 Spectra for compound 3c	20
4.5 Spectra for compound 3d	21
4.6 Spectra for compound 3e	22
4.7 Spectra for compound 3f	23
4.8 Spectra for compound 3g	24
4.9 Spectra for compound 3h	25
4.10 Spectra for compound 3i	26
4.11 Spectra for compound 3j	27
4.12 Spectra for compound 3k	28
4.13 Spectra for compound 31	29
4.14 Spectra for compound 3m	30
4.15 Spectra for compound 3n	31
4.16 Spectra for compound 30	32
4.17 Spectra for compound 3p	33
4.18 Spectra for compound 3q	34
4.19 Spectra for compound 5	35

1. General Experimental

All reactions were performed under an atmosphere of nitrogen unless otherwise stated. All glass apparatus was oven dried and cooled under vacuum before use.

1) Solvents and Reagents

Bulk solutions were evaporated under reduced pressure using a Büchi rotary evaporator. Reagents used were obtained from commercial suppliers or redistilled. Petroleum ether refers to distilled light petroleum of fraction (40-65 °C). Anhydrous dichloromethane, toluene were purified by distillation over calcium hydride. Anhydrous tetrahydrofuran was freshly distilled from sodium-benzophenone. Anhydrous MeOH was purified by distillation over magnesium power.

2) Chromatography

In all cases of chromatography, distilled solvents were used as eluents. Flash column chromatography was carried out using Merck Kiesegal 60 silica gel (230-400 mesh). Thin-layer chromatography (TLC) was carried out using Merck Kiesegal 60 F254 (230-400 mesh) fluorescent treated silica which were visualised under UV light (250nm) or by staining with aqueous potassium permanganate solutions as appropriate.

3) Spectra

All ¹H and ¹³C NMR spectra were recorded using a Bruker 400 MHz spectrometers and use ppm for measurement against a TMS internal standard. Chemical shifts (δ) are given in parts per million (ppm), and coupling constants (*J*) are given in Hertz (Hz). Melting points were determined on an XT-4 melting point apparatus and were uncorrected. HRMS were performed on Bruker Apex II mass instrument (ESI). MS were measured on a VG-7070E spectrometer (EI at 70 eV); Infrared spectra were recorded on an ATI Mattson: Genesis Series FTIR spectrometer from a thin film deposited onto a sodium chloride plate

4) starting materials

Starting material **2** was synthesized by the reaction of dimethyl malonate and propargyl bromide in a solution of sodium in MeOH^[S1]. Starting materials **1a-p** were synthesized by the reaction of the corresponding aromatic aldehyde and p-toluenesulfonamide with titanium tetrachloride and anhydrous triethylamine in dry dichloromethane^[S2]. The starting material **1q** was synthesized by condensation of p-toluenesulfonamide with butyraldehyde mediated by sulfamic acid in aqueous media^[S3].

2. Practical experimental

2.1 Cu(I) catalyzed cascade

2.1.1 Synthesis and characterization of intermediate 4

Dimethyl 2-(phenyl(tosylamino)methyl)-2-(prop-2-ynyl)malonate (4). Under a N₂ atmosphere, malonate 2 (46 µL, 0.3 mmol) was dissolved in dry THF (3 mL) at -40 ^oC. Then KO^tBu (33.6 mg, 0.3 mmol) in THF (1 mL) was added to the solution. After 30 minutes, 1a (51.8 mg, 0.2 mmol) was added. The reaction was stirred at -40 ^oC for 10 h. Subsequently, aqueous 10% HCl was added to the mixture to quench the reaction. The reaction was warmed up to room temperature, washed with saturated aqueous NaHCO₃ water, dried (MgSO₄) and concentrated to give the crude product. The crude product was purified by column chromatography to yield desired compound 4 (0.037 g, 43%) as a white solid; mp 78–79 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 8.0 Hz, 2H), 7.27–7.04 (m, 5H), 6.99 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 9.5 Hz, 1H), 5.15 (d, J = 9.5 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 2.64 (dd, J = 0.5 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.74 (s, 3H), 3.74 (s, 3H), 3.74 (s, 3H), 3.75 (s, 32.0 Hz, 16.8 Hz, 1H), 2.52 (dd, J = 2.0 Hz, 16.8 Hz, 1H), 2.94 (s, 3H), 2.13 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.1, 168.6, 142.6, 137.7, 135.0, 129.0, 128.3, 128.2, 127.9, 126.9, 78.4, 72.4, 62.0, 60.5, 53.1, 53.0, 23.9, 21.3; **IR**: v_{max} (film)/cm⁻¹ 3293, 3059, 2954, 1742, 1598, 1495, 1434, 1330, 1279, 1216, 1162, 1091, 1059, 913, 877, 733, 704, 670, 558; MS: m/z 365 (0.1), 259 (8.0), 195 (2.1), 155 (47.0), 111 (28.9), 91 (100.0), 77 (22.0), 65 (28.0), 59 (19.0); HRMS (ESI): calcd. for $C_{22}H_{24}NO_6S [M + H^+] 430.1319$, found 430.1324.

2.1.2 Synthesis and characterization of compound 3a

Dimethyl 5-methylene-2-phenyl-1-tosylpyrrolidine-3,3-dicarboxylate (3a). Under a N_2 atmosphere, dry MeOH (0.5 ml) was added to a mixture of $CuOTf\cdot^1\!/2C_6H_6$ (2.5 mg, 0.01 mmol), PPh₃ (8.4 mg, 0.03 mmol). Then malonate 2 (46 μ L, 0.3 mmol) and **1a** (51.8 mg, 0.2 mmol) were added consecutively to the catalyst solution. After 2 minutes, KO^tBu (2.24 mg, 0.02 mmol) was added. The reaction was stirred at room temperature for 16 h. On completion, the reaction mixture was directly loaded onto a silica gel column and purified by flash chromatography (elution: diethyl ether: Et_3N) to afford the desired product **3a** (0.081 g, 94%) as a white solid; **mp** 120–121 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 7.69 (d, J = 8.4 Hz, 2H), 7.29–7.22 (m, 5H), 7.27 (d, J =8.4 Hz, 2H), 6.07 (s, 1H), 4.90 (s, 1H), 4.32 (s, 1H), 3.68 (s, 3H), 3.64 (d, J = 16.8 Hz, 1H), 3.34 (s, 3H), 2.94 (d, J = 16.8 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 166.7, 144.0, 140.7, 137.4, 135.7, 129.1, 128.5, 128.4, 128.1, 127.1, 89.0, 69.4, 61.9, 53.4, 52.7, 37.3, 21.6; **IR**: v_{max} (film)/cm⁻¹ 3474, 3066, 2958, 1741, 1677, 1641, 1597, 1452, 1433, 1347, 1286, 1223, 1165, 1119, 1084, 1009, 952, 823, 701, 660; **MS**: m/z 429 (M⁺, 1.41), 370 (7.4), 306 (14.5), 221 (29.6), 156 (21.2), 105 (62.3), 91 (100.0), 77 (19.1), 65 (45.1), 59 (25.7); HRMS (ESI): calcd. for $C_{22}H_{24}NO_6S [M + H^+] 430.1319$, found 430.1322.

2.1.3 Synthesis and characterization of compound 3b

Dimethyl 5-methylene-2-p-tolyl-1-tosylpyrrolidine-3,3-dicarboxylate (3b). This product was synthesized by the same method as for **3a.** The product **3b** (0.075 g, 85%) was isolated as a white solid after flash chromatography; **mp** 130–131 °C; ¹H **NMR**

(400 MHz, CDCl₃): δ 7.70 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.03 (s, 1H), 4.87 (s, 1H), 4.39 (s, 1H), 3.67 (s, 3H), 3.64 (d, J = 16.8 Hz, 1H), 3.33 (s, 3H), 2.93 (d, J = 16.8 Hz, 1H), 2.40 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 166.7, 143.9, 140.6, 138.2, 135.7, 134.4, 129.1, 129.0, 128.1, 126.9, 88.8, 69.2, 61.8, 53.3, 52.6, 37.2, 21.5, 21.1; **IR**: v_{max} (film)/cm⁻¹ 3471, 3062, 2956, 1735, 1666, 1623, 1598, 1494, 1435, 1340, 1288, 1225, 1165, 1115, 1085, 1007, 962, 811, 656, 596; **MS**: m/z 443 (M⁺, 2.8), 379 (6.2), 288 (7.1), 235 (45.3), 170 (24.8), 105 (61.5), 91 (100.0), 77 (9.9), 65 (47.8), 59 (21.7); **HRMS** (ESI): calcd. for C₂₃H₂₆NO₆S [M + H⁺] 444.1475, found 444.1474.

2.1.4 Synthesis and characterization of compound 3c

Dimethyl 5-methylene-2-m-tolyl-1-tosylpyrrolidine-3,3-dicarboxylate (3c). This product was synthesized by the same method as for **3a.** The product **3c** (0.076 g, 86%) was isolated as a white solid after flash chromatography; **mp** 118–119 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.19 (dd, J = 7.6, 8.0 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 6.03 (s, 1H), 4.91 (s, 1H), 4.31 (s, 1H), 3.68 (s, 3H), 3.65 (d, J = 16.8 Hz, 1H), 3.35 (s, 3H), 2.94 (d, J = 16.8 Hz, 1H), 2.40 (s, 3H), 2.27 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 169.5, 166.6, 143.9, 140.7, 137.9, 137.1, 135.7, 129.3, 129.1, 128.2, 128.1, 127.7, 124.2, 88.9, 69.3, 61.9, 53.4, 52.6, 37.3, 21.5, 21.4; **IR**: v_{max} (film)/cm⁻¹ 3475, 3023, 2956, 1740, 1678, 1642, 1599, 1491, 1433, 1348, 1281, 1221, 1165, 1118, 1085, 1008, 954, 811, 661, 595; **MS**: m/z 443 (M⁺, 3.6), 384 (36.7), 288 (12.3), 198 (17.9), 170 (27.3), 117 (16.6), 91 (100.0), 65 (37.8), 59 (25.0); **HRMS** (ESI): calcd. for C₂₃H₂₆NO₆S [M + H⁺] 444.1475, found 444.1474.

2.1.5 Synthesis and characterization of compound 3d

Dimethyl 5-methylene-2-o-tolyl-1-tosylpyrrolidine-3,3-dicarboxylate (3d). This product was synthesized by the same method as for **3a.** The product **3d** (0.072 g, 81%) was isolated as a white solid after flash chromatography; **mp** 154–156 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 2H), 7.26–7.11 (m, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.07–7.04 (m, 2H), 6.47 (s, 1H), 4.87 (s, 1H), 4.30 (s, 1H), 3.83 (d, J = 17.2 Hz, 1H), 3.71 (s, 3H), 3.24(s, 3H), 3.02 (d, J = 17.2 Hz, 1H), 2.50 (s, 3H), 2.38 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 169.8, 166.8, 143.9, 140.7, 136.1, 135.8, 135.6, 130.3, 129.0, 128.2, 128.0, 126.8, 126.2, 88.6, 65.0, 61.4, 53.5, 52.4, 38.0, 21.5, 19.3; **IR**: v_{max} (film)/cm⁻¹ 3472, 3062, 2956, 1735, 1666, 1624, 1494, 1435, 1340, 1288, 1224, 1166, 1115, 1085, 1007, 962, 812, 656, 597; **MS**: m/z 443 (M⁺, 2.5), 384 (2.9), 320 (19.0), 288 (8.2), 235 (65.1), 170 (14.5), 117 (25.2), 91 (100.0), 65 (33.5), 59 (22.6); **HRMS** (ESI): calcd. for C₂₃H₂₆NO₆S [M + H⁺] 444.1475, found 444.1472.

2.1.6 Synthesis and characterization of compound 3e

Dimethyl 2-(4-methoxyphenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3e). This product was synthesized by the same method as for 3a. The product 3e (0.069 g, 75%) was isolated as a white solid after flash chromatography; mp 121–122 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 6.02 (s, 1H), 4.87 (s, 1H), 4.30 (s,

1H), 3.78 (s, 3H), 3.68 (s, 3H), 3.65 (d, J = 16.4 Hz, 1H), 3.37 (s, 3H), 2.94 (d, J = 16.4 Hz, 1H), 2.40 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃): δ 169.6, 166.7, 159.6, 143.9, 140.6, 135.7, 129.4, 129.1, 128.3, 128.1, 113.7, 88.9, 69.0, 61.8, 55.2, 53.4, 52.7, 37.2, 21.6; **IR**: v_{max} (film)/cm⁻¹3458, 3019, 2955, 1740, 1666, 1613, 1514, 1436, 1343, 1291, 1253, 1221, 1164, 1111, 1085, 1007, 954, 900, 811, 702, 660, 602, 543; **MS**: m/z 459(M⁺, 2.4), 400 (27.4), 304 (2.6), 245 (25.8), 186 (26.0), 155 (13.7), 91 (100.0), 65 (39.5), 59 (25.8); **HRMS** (ESI): calcd. for C₂₃H₂₆NO₇S [M + H⁺] 460.1424, found 460.1427.

2.1.7 Synthesis and characterization of compound 3f

Dimethyl 2-(2-methoxyphenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3f). This product was synthesized by the same method as for 3a. The product 3f (0.063 g, 69%) was isolated as a white solid after flash chromatography; mp 114–115 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 2H), 7.26–7.12 (m, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.08–7.04 (m, 2H), 6.47 (s, 1H), 4.87 (s, 1H), 4.30 (s, 1H), 3.83 (d, J = 16.8 Hz, 1H),3.71 (s, 3H), 3.24 (s, 3H), 3.03 (d, J = 16.8 Hz, 1H), 2.51 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 166.8, 143.9, 140.7, 136.1, 135.8, 135.6, 130.4, 129.1, 128.3, 128.0, 126.8, 88.6, 65.0, 61.4, 53.5, 52.4, 38.0, 21.5, 19.3; IR: v_{max}(film)/cm⁻¹ 3472, 3062, 2956, 1735, 1666, 1623, 1495, 1435, 1340, 1289, 1251, 1225, 1165, 1116, 1084, 1008, 962, 905, 812, 754, 655, 596, 542; MS: m/z 45 9(M⁺, 2.8), 400 (30.0), 304 (7.1), 245 (26.3), 186 (26.0), 155 (14.6), 91 (100.0), 65 (37.9), 59 (25.8); HRMS (ESI): calcd. for C₂₃H₂₆NO₇S [M + H⁺] 460.1424, found 460.1431.

2.1.8 Synthesis and characterization of compound 3g

Dimethyl 2-(2-fluorophenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3g). This product was synthesized by the same method as for 3a. The product 3g (0.071 g, 79%) was isolated as a white solid after flash chromatography; mp 136–137 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.35–7.25 (m, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.12–7.09 (m, 1H), 7.04–7.00 (m, 1H), 6.40 (s, 1H), 4.94 (s, 1H), 4.33 (s, 1H), 3.69 (d, *J* = 16.8 Hz, 1H), 3.65 (s, 3H), 3.38 (s, 3H), 2.97 (d, *J* = 16.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.3, 166.8, 159.6 (d, *J* = 257 Hz), 144.1, 140.6, 135.4, 130.2 (d, *J* = 8 Hz), 129.3, 128.7, 128.1, 125.3 (d, *J* = 13 Hz), 124.4 (d, *J* = 3 Hz), 115.3 (d, *J* = 21 Hz), 89.2, 61.3, 53.4, 52.8, 37.8, 21.6; **IR**: v_{max}(film)/cm⁻¹ 3479, 3003, 2953, 1740, 1646, 1594, 1490, 1452, 1438, 1343, 1282, 1250, 1220, 1167, 1117, 1089, 1006, 951, 901, 836, 799, 775, 705, 657, 601, 545, 523; **MS:** m/z 447 (M⁺, 2.7), 388 (27.4), 324 (7.1), 202 (18.1), 174 (23.3), 155 (25.2), 91 (100.0), 65 (36.4), 59 (23.7); **HRMS** (ESI): calcd. for C₂₂H₂₃FNO₆S [M + H⁺] 448.1225, found 448.1233.

2.1.9 Synthesis and characterization of compound 3h

Dimethyl 2-(4-cyanophenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3h). This product was synthesized by the same method as for 3a. The product 3h (0.083 g, 91%) was isolated as a white solid after flash chromatography; mp 163–164 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.06 (s, 1H), 4.96 (s, 1H), 4.38 (s, 1H), 3.67 (s, 3H), 3.54 (d, *J* = 16.4 Hz, 1H), 3.36 (s, 3H), 2.91 (d, *J* = 16.4 Hz, 1H),

2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 166.4, 144.5, 143.3, 140.2, 135.0, 132.2, 129.4, 128.1, 127.8, 118.3, 112.4, 90.3, 68.8, 61.7, 53.6, 52.9, 37.2, 21.6; **IR**: v_{max} (film)/cm⁻¹ 3483, 3127, 2954, 2227, 1742, 1648, 1602, 1434, 1343, 1286, 1219, 1163, 1126, 1087, 1008, 958, 862, 835, 814, 663, 600; **MS**: m/z 454 (M⁺, 1.1), 395 (11.0), 299 (8.3), 267 (2.7), 155 (45.5), 91 (100.0), 65 (33.7), 59 (30.0); **HRMS** (ESI): calcd. for C₂₃H₂₃N₂O₆S [M + H⁺] 455.1271, found 455.1280.

2.1.10 Synthesis and characterization of compound 3i

Dimethyl 2-(4-chlorophenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3i). This product was synthesized by the same method as for 3a. The product 3i (0.089 g, 96%) was isolated as a white solid after flash chromatography; mp 141–142 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.02 (s, 1H), 4.91 (s, 1H), 4.33 (s, 1H), 3.67 (s, 3H), 3.60 (d, *J* = 16.8 Hz, 1H), 3.37 (s, 3H), 2.93 (d, *J* = 16.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.3, 166.5, 144.2, 140.4, 136.2, 135.4, 134.4, 129.2, 128.6, 128.5, 128.0, 89.5, 68.7, 61.7, 53.5, 52.8, 37.2, 21.6; IR: v_{max} (film)/cm⁻¹ 3461, 3067, 2955, 1739, 1677, 1642, 1596, 1492, 1434, 1345, 1283, 1223, 1165, 1121, 1089, 1009, 953, 830, 661, 600; MS: m/z 465 (1.2), 463 (M⁺, 3.0), 406 (14.0), 404 (35.1), 249 (6.7), 218 (16.1), 190 (16.7), 155 (39.6), 91 (100.0), 65 (36.3), 59 (25.5); HRMS (ESI): calcd. for C₂₂H₂₃³⁵CINO₆S [M + H⁺] 464.0929, found 464.0936.

2.1.11 Synthesis and characterization of compound 3j

Dimethyl 2-(3-chlorophenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3j). This product was synthesized by the same method as for 3a. The product 3j (0.082 g, 82%) was isolated as a white solid after flash chromatography; **mp** 116–118 ^oC; ¹H **NMR** (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.26–7.24 (m, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.17–7.15 (m, 2H), 6.01 (s, 1H), 4.95 (s, 1H), 4.35 (s, 1H), 3.68 (s, 3H), 3.58 (d, *J* = 16.4 Hz, 1H), 3.40 (s, 3H), 2.93 (d, *J* = 16.4 Hz, 1H), 2.42 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 169.2, 166.5, 144.3, 140.4, 139.5, 135.4, 134.3, 129.7, 129.3, 128.7, 128.0, 127.3, 125.2, 89.6, 68.7, 61.8, 53.5, 52.8, 37.2, 21.6; **IR**: v_{max} (film)/cm⁻¹ 3479, 3064, 2959, 1741, 1647, 1596, 1575, 1434, 1348, 1286, 1218, 1165, 1118, 1085, 1006, 944, 838, 840, 663, 590; **MS:** m/z 465 (1.4), 463 (M⁺, 3.2), 406 (13.3), 404 (33.3), 308 (5.1), 218 (16.5), 190 (14.9), 155 (39.9), 91 (100.0), 65 (36.4), 59 (26.2); **HRMS** (ESI): calcd. for C₂₂H₂₃³⁵ClNO₆S [M + H⁺] 464.0929, found 464.0931.

2.1.12 Synthesis and characterization of compound 3k

Dimethyl 2-(2-chlorophenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3k). This product was synthesized by the same method as for 3a. The product 3k (0.081 g, 87%) was isolated as a white solid after flash chromatography; mp 116–118 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.36–7.20 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.65 (s, 1H), 4.98 (s, 1H), 4.34 (s, 1H), 3.68 (d, *J* = 16.8 Hz, 1H), 3.67 (s, 3H), 3.36 (s, 3H), 3.01 (d, *J* = 16.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100

MHz, CDCl₃): δ 169.3, 166.8, 144.2, 140.6, 135.8, 135.2, 133.0, 129.5, 129.4, 129.2, 128.5, 128.1, 127.2, 89.1, 65.4, 61.2, 53.4, 52.6, 38.0, 21.6; **IR**: v_{max} (film)/cm⁻¹ 3468, 3004, 2952, 1736, 1643, 1596, 1473, 1436, 1341, 1287, 1220, 1168, 1113, 1088, 1005, 952, 833, 769, 657, 595; **MS**: m/z 465 (0.3), 463 (M⁺, 1.0), 406 (3.0), 404 (7.6), 340 (6.9), 255 (17.4), 190 (8.2), 155 (21.2), 91 (100.0), 65 (40.3), 59 (25.8); **HRMS** (ESI): calcd. for C₂₂H₂₃³⁵CINO₆S [M + H⁺] 464.0929, found 464.0936.

2.1.13 Synthesis and characterization of compound 3I

Dimethyl 5-methylene-2-(4-nitrophenyl)-1-tosylpyrrolidine-3,3-dicarboxylate (31). This product was synthesized by the same method as for **3a.** The product **3l** (0.087 g, 92%) was isolated as a white solid after flash chromatography; **mp** 187–189 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.18 (d, J = 8.8 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.10 (s, 1H), 4.98 (s, 1H), 4.40 (s, 1H), 3.68 (s, 3H), 3.56 (d, J = 16.8 Hz, 1H), 3.37 (s, 3H), 2.92 (d, J = 16.8 Hz, 1H), 2.43 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 169.0, 166.3, 147.8, 145.3, 144.6, 140.2, 134.9, 129.4, 128.0, 123.6, 90.5, 68.5, 53.6, 53.6, 52.9, 37.3, 21.6; **IR**: v_{max}(film)/cm⁻¹ 3480, 3119, 2955, 1740, 1646, 1603, 1523, 1434, 1405, 1347, 1286, 1246, 1217, 1163, 1122, 1087, 1009, 954, 906, 866, 815, 701, 680, 659, 599, 542; **MS:** m/z 447 (M⁺, 0.2), 410 (0.9), 351 (5.9), 319 (1.8), 155 (18.3), 105 (60.1), 91 (100.0), 65 (32.0), 59 (26.6); **HRMS** (ESI): calcd. for C₂₂H₂₃N₂O₈S [M + H⁺] 475.1170, found 475.1162.

2.1.14 Synthesis and characterization of compound 3m

Dimethyl 2-(4-bromophenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3m). This product was synthesized by the same method as for 3a. The product 3m (0.086 g, 85%) was isolated as a white solid after flash chromatography; mp 158–159 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.00 (s, 1H), 4.91 (s, 1H), 4.33 (s, 1H), 3.78 (s, 3H), 3.67 (d, *J* = 16.4 Hz, 1H), 3.38 (s, 3H), 2.93 (d, *J* = 16.4 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.3, 166.5, 144.2, 140.4, 136.7, 135.4, 131.5, 129.2, 128.8, 128.0, 122.6, 89.5, 68.7, 61.7, 53.5, 52.8, 37.2, 21.6; IR: v_{max} (film)/cm⁻¹ 3481, 3005, 2953, 1921, 1740, 1633, 1595, 1487, 1434, 1347, 1286, 1224, 1165, 1119, 1077, 1006, 959, 906, 855, 817, 702, 677, 659, 597, 541; MS: m/z 509 (2.9), 507 (M⁺, 2.6), 450 (26.4), 448 (25.3), 264 (8.8), 262 (9.8), 155 (45.4), 91 (100.0), 65 (34.5), 59 (24.2); HRMS (ESI): calcd. for C₂₂H₂₃⁷⁹BrNO₆S [M + H⁺] 508.0424, found 508.0421.

2.1.15 Synthesis and characterization of compound 3n

Dimethyl 2-(2-bromophenyl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (3n). This product was synthesized by the same method as for 3a. The product 3n (0.082 g, 81%) was isolated as a white solid after flash chromatography; mp 168–170 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.27 (dd, *J* = 8.0, 8.0 Hz, 2H), 7.25 (d, *J* = 6.8 Hz, 1H), 7.14 (dd, *J* = 6.8, 8.0 Hz, 1H), 6.63 (s, 1H), 4.99 (s, 1H), 4.33 (s, 1H), 3.72 (d, *J* = 16.8 Hz, 1H), 3.64 (s, 3H), 3.36 (s, 3H), 3.01 (d, *J* = 16.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100

MHz, CDCl₃): δ 169.2, 166.8, 144.2, 140.6, 137.4, 135.2, 132.9, 129.8, 129.2, 128.7, 128.1, 127.8, 123.4, 89.1, 67.9, 61.2, 53.4, 52.6, 38.0, 21.6; **IR**: $v_{max}(film)/cm^{-1}3469$, 2993, 2952, 1939, 1736, 1640, 1593, 1496, 1469, 1437, 1350, 1288, 1219, 1166, 1110, 1087, 1005, 960, 943, 903, 825, 758, 707, 680, 656, 595, 543; **MS**: m/z 509 (1.4), 507 (M⁺,1.0), 450 (5.7), 448 (5.6), 301 (18.8), 299 (19.3), 155 (26.8), 91 (100.0), 65 (43.2), 59 (27.0); **HRMS** (ESI): calcd. for C₂₂H₂₃⁷⁹BrNO₆S [M + H⁺] 508.0424, found 508.0421.

2.1.16 Synthesis and characterization of compound 30

Dimethyl 2-(furan-2-yl)-5-methylene-1-tosylpyrrolidine-3,3-dicarboxylate (30). This product was synthesized by the same method as for **3a.** The product **3o** (0.074 g, 88%) was isolated as a white solid after flash chromatography; **mp** 114–115 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 1.6 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.41 (d, *J* = 3.2 Hz, 1H), 6.32 (dd, *J* = 1.6, 3.2 Hz, 1H), 6.10 (s, 1H), 4.83 (s, 1H), 4.29 (s, 1H), 3.75 (d, *J* = 16.4 Hz, 1H), 3.72 (s, 3H), 3.50 (s, 3H), 3.01 (d, *J* = 16.4 Hz, 1H), 2.39 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 168.8, 166.4, 149.9, 143.8, 142.9, 140.0, 135.6, 129.2, 127.7, 110.4, 110.1, 89.1, 62.7, 60.6, 53.5, 53.0, 37.8, 21.5; **IR**: v_{max}(film)/cm⁻¹ 3464, 3013, 2956, 1921, 1741, 1668, 1622, 1596, 1498, 1436, 1350, 1283, 1216, 1166, 1111, 1085, 1009, 948, 890, 811, 758, 705, 662, 601, 533; **MS:** m/z 419 (M⁺, 3.8), 360 (26.2), 264 (29.4), 204 (16.9), 155 (17.5), 146 (31.3), 91 (100.0), 65 (59.3), 59 (33.0); **HRMS** (ESI): calcd. for C₂₀H₂₂NO₇S [M + H⁺] 420.1111, found 420.1117.

2.1.17 Synthesis and characterization of compound 3p

Dimethyl 5-methylene-2-(pyridin-3-yl)-1-tosylpyrrolidine-3,3-dicarboxylate (3p). This product was synthesized by the same method as for **3a**. The product **3p** (0.071 g, 82%) was isolated as a white solid after flash chromatography; **mp** 96–97 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.54 (br, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.0 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.0 Hz, 1H), 6.06 (s, 1H), 4.96 (s, 1H), 4.37 (s, 1H), 3.67 (s, 3H), 3.59 (d, J = 16.4 Hz, 1H), 3.37 (s, 3H), 2.95 (d, J = 16.4 Hz, 1H), 2.42 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 169.0, 166.4, 149.7, 148.6, 144.3, 140.2, 135.1, 134.4, 133.5, 129.3, 128.0, 123.3, 89.9, 67.1, 61.6, 53.5, 52.9, 37.1, 21.6; **IR**: v_{max}(film)/cm-1 3481, 3008, 2956, 1918, 1742, 1673, 1645, 1594, 1428, 1398, 1350, 1325, 1295, 1218, 1164, 1118, 1085, 1006, 957, 904, 830, 810, 709, 678, 656, 593, 542; **MS**: m/z 430 (M⁺, 2.9), 366 (8.0), 307 (4.3), 275 (3.4), 155 (15.6), 105 (32.9), 91 (100.0), 65 (39.2), 59 (22.7); **HRMS** (ESI): calcd. for C₂₁H₂₃N₂O₆S [M + H⁺] 431.1271, found 431.1276.

2.1.18 Synthesis and characterization of compound 3q

Dimethyl 5-methylene-2-propyl-1-tosylpyrrolidine-3,3-dicarboxylate (3q). This product was synthesized by the same method as for **3a.** The product **3q** (0.025 g, 32%) was isolated as a colorless oil after flash chromatography; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 5.03 (t, J = 6.0 Hz, 2H), 4.86 (s, 1H), 4.26 (s, 1H), 3.74 (s, 3H), 3.51 (s, 3H), 3.44 (d, J = 16.8 Hz, 1H), 2.94 (d, J = 16.8 Hz, 1H), 2.42 (s, 3H), 1.75–1.43 (m, 5H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 167.7, 143.9, 140.0, 135.5, 129.0, 128.5, 90.4, 66.4, 60.6,

53.2, 53.1, 37.7, 35.3, 21.6, 19.0, 14.2; **IR**: v_{max} (film)/cm⁻¹ 3394, 3003, 2959, 2874, 1737, 1616, 1437, 1329, 1272, 1221, 1163, 1086, 1044, 950, 909, 815, 706, 672, 549; **MS**: m/z 395 (M⁺, 3.8), 336 (40.5), 288 (27.3), 180 (15.4), 155 (26.3), 91 (100.0), 65 (42.9), 59 (35.8); **HRMS** (ESI): calcd. for C₁₉H₂₆NO₆S [M + H⁺] 396.1475, found 396.1484.

2.1.19 Synthesis and characterization of compound 5

Dimethyl 2-(2-fluorophenyl)-1,2-dihydro-5-methyl-1-tosylpyrrole-3,3-dicarboxylate (5). The compound **3g** (18 mg, 0.04 mmol) was dissolved in CDCl₃ in NMR tube at r.t.. After 72 hrs, S.M. was almost isomerized to the desired product **5** (> 95% yield) by ¹H NMR. **mp** 45–47 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.35–7.17 (m, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.11–7.07 (m, 1H), 7.03–7.00 (m, 1H), 6.43 (s, 1H), 5.00 (s, 1H), 3.55 (s, 3H), 3.10 (s, 3H), 2.41 (s, 3H), 2.22 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 168.5, 168.0, 159.4 (d, *J* = 247 Hz), 144.0, 143.6, 135.1, 129.9 (d, *J* = 8 Hz), 129.7, 128.6, 127.7, 125.6 (d, *J* = 12 Hz), 124.1, 114.9 (d, *J* = 22 Hz), 106.9, 67.8, 61.4, 53.1, 52.2 , 21.5, 15.5; **IR**: $v_{max}(film)/cm^{-1}$ 3441, 2954, 1740, 1662, 1595, 1492, 1454, 1437, 1347, 1275, 1223, 1168, 1094, 1067, 1040, 990, 901, 938, 810, 759, 659, 591, 542; **MS**: m/z 447 (M⁺, 3.0), 388 (35.6), 202 (24.6), 174 (23.4), 155 (30.9), 91 (100.0), 65 (30.4), 59 (19.2); **HRMS** (ESI): calcd. for C₂₂H₂₃FNO₆S [M + H⁺] 448.1225, found 448.1233.

15

3. References

[S1] A. M. Gómez, M. D. Company, S. Valverde and J. C. López, *Org. Lett.*, 2002, **4**, 383.

- [S2] (a) W. B. Jennings, C. J. Lovely, *Tetrahedron*, 1991, 47, 5561.
 (b) W. B. Jennings, C. J. Lovely, *Tetrahedron Lett.*, 1988, 29, 3725.
- [S3] (a) F. Chemla, V. Hebbe and J.-F. Normant, *Synthesis*, 2000, 75.
 (b) Zh.-J. Li, X.-H. Ren, P. Wei, H.-G. Wan, Y.-H. Shi and P.-K. Ouyang, *Green Chem.*, 2006, 8, 433.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

4. Spectra

4.1 Spectra for compound 4

4.3 Spectra for compound 3b

4.4 Spectra for compound 3c

¹H NMR:

4.5 Spectra for compound 3d

4.6 Spectra for compound 3e

¹H NMR:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

ppm

4.7 Spectra for compound 3f

¹H NMR:

4.8 Spectra for compound 3g

¹H NMR:

4.9 Spectra for compound 3h

¹H NMR:

4.10 Spectra for compound 3i

4.11 Spectra for compound 3j

¹H NMR:

4.12 Spectra for compound 3k

4.13 Spectra for compound 3I

¹H NMR:

արտարությունը 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

4.14 Spectra for compound 3m

¹H NMR:

Мx

ppm

4.15 Spectra for compound **3n**

¹H NMR:

4.16 Spectra for compound 30

¹H NMR:

4.17 Spectra for compound **3p**

¹H NMR:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

4.18 Spectra for compound 3q

4.19 Spectra for compound 5

