First expeditious synthesis of 6, 11-diamino-[6]helicenes

Grégory Pieters, Anne Gaucher*, Damien Prim* and Jérôme Marrot

Supporting Information

G. Pieters, Dr. A. Gaucher, Pr. D. Prim, J. Marrot Institut Lavoisier de Versailles, Université de Versailles-Saint-Quentin-en-Yvelines 45, Avenue des Etats-Unis 78035 Versailles (France) Fax: (+33) 1 39 25 44 52 E-mail: prim@chimie.uvsq.fr; anne.gaucher@chimie.uvsq.fr Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Table of contents

Operating methods	4
Procedure for the Suzuki-Miyaura Reaction	4
Bromination/Cyanation	4
Cyclisation (thermal activation)/Acetylation	5
Cyclisation (ultrasonic activation)/Acetylation	5
Analytical data	6
1,8-di(<i>o</i> -tolyl)naphthalene 3	6
1,8-Di(4-methoxy-2-methylphenyl)naphthalene 7	6
1,8-di(2-cyanomethylphenyl)naphthalene 2	7
1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8	8
6,11-diacetamido-[6]-helicene 6	8
3,14-dimethoxy-6,11-diacetamido-[6]-helicene 9	9
NMR Spectrum	10
¹ H NMR 1,8-di(<i>o</i> -tolyl)naphthalene 3	10
¹ H NMR 1,8-di(<i>o</i> -tolyl)naphthalene 3 ¹³ C NMR 1,8-di(<i>o</i> -tolyl)naphthalene 3	10 11
¹ H NMR 1,8-di(<i>o</i> -tolyl)naphthalene 3 ¹³ C NMR 1,8-di(<i>o</i> -tolyl)naphthalene 3 ¹ H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7	10 11 12
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 	10 11 12 13
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹⁴ NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 	10 11 12 13 14
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹⁴ NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 	10 11 12 13 14 15
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 	10 11 12 13 14 15 16
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 	10 11 12 13 14 15 16 17
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹⁴H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹⁴H NMR 6,11-diacetamido-[6]-helicene 6 	10 11 12 13 14 15 16 17 18
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 	10 11 12 13 14 15 16 17 18 19
 ¹H NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹³C NMR 1,8-di(<i>o</i>-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 8 ¹⁴H NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 6,11-diacetamido-[6]-helicene 6 ¹⁴H NMR 3,14-dimethoxy,6,11-diacetamido-[6]-helicene 9 	10 11 12 13 14 15 16 17 18 19 20
 ¹H NMR 1,8-di(o-tolyl)naphthalene 3 ¹³C NMR 1,8-di(o-tolyl)naphthalene 3 ¹H NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹³C NMR 1,8-di(4-methoxy-2-methylphenyl)naphthalene 7 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹⁴H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹³C NMR 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8 ¹⁴H NMR 6,11-diacetamido-[6]-helicene 6 ¹⁴H NMR 3,14-dimethoxy,6,11-diacetamido-[6]-helicene 9 ¹³C NMR 3,14-dimethoxy-6,11-diacetamido-[6]-helicene 9 	10 11 12 13 14 15 16 17 18 19 20 21

General

Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without purification. Petroleum ether was distilled under Argon, DMF was distilled on CaH₂, DMSO was distilled under reduced pressure, THF was dried on sodium/benzophenone and distilled under argon. Boronic acids were purchased from Aldrich and Alfa aesar and were used without purification. NMR spectra were recorded on a 300 MHz and 200 MHz Brucker spectrometer. Chemical shifts were reported in ppm relative to the residual solvent peak (7.26 ppm for CHCl₃, 2.5 ppm DMSO-d6, 3.31 for CD₃OD) for ¹H spectra and (77.00 ppm for CDCl₃, 39.52 ppm for DMSO-d6, 49.00 ppm for CD₃OD) for ¹³C spectra. High Resolution Mass spectroscopy data were recorded on a Autospec Ultima (Waters/Micromass) device with a resolution of 5000 RP at 5%. UV spectra data were recorded on a Agilent 8453 UV-Visible Spectrometry system at 25 °C.

Operating methods

Procedure for the Suzuki-Miyaura Reaction

To a stirred suspension of 1,8-dibromonaphthalene^[S1] **4** (285.9 mg; 1 mmol), boronic acid (2.4 mmol; 2.4 eq.), and Cs_2CO_3 (1.6 g, 5 mmol; 5 eq.) in DMF/H₂O (95:5, 2.5 mL) was added the palladium complex **5** (4.52 mg; 1% mol). The mixture was stirred at 100 °C for one night. Diethylether (50 mL) and water (50 mL) were then added, and the aqueous phase was extracted with diethylether (2x10 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (petroleum ether) to give the 1,8-di(*o*-tolyl)naphthalene **3** (245 mg; 80%) as a pale yellow solid.

Using the same procedure 1,8-di(4-methoxy-2-methylphenyl)naphthalene **7** was isolated in 85% yield.

Bromination/Cyanation

To a solution of the 1,8-di(*o*-tolyl)naphthalene **3** (150 mg; 0.49 mmol) in CCl₄ (5 mL) was added *N*-Bromosuccinimide (181 mg; 1.03 mmol; 2.1 eq.) and a catalytic amount of AIBN. The solution was refluxed for 4 h and the solvent evaporated under reduced pressure. The crude product was filtered through a pad of silica gel (Petroleum ether/chloroform: 1/1) to give a white solid (230 mg). The white solid was dried under vaccum, and solubilized in DMSO (1 mL). Potassium cyanide (100 mg; 1,5 mmol; 3 eq.) was then added and the suspension was allowed to stir at room temperature overnight. The resulting redish solution was poured into water, the aqueous layer was extracted with dichloromethane (3x20 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated under vacuum. The crude product was purified by gradient flash chromatography on silica gel (Petroleum ether/ethyl acetate: 95/5, then 80/20), to give 1,8-di(2-cyanomethylphenyl)naphthalene **2** as a white solid (105 mg; 60%).

Using the same procedure 1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene **8** was isolated in 60% yield.

Cyclisation (thermal activation)/Acetylation

The dinitrile product **2** (40 mg; 0.11 mmol) was solubilized in polyphosphoric acid (1 mL). The mixture was stirred at 100 °C overnight. The resulting greenish mixture was poured into ice (15 g) and basified with a K₂CO₃ 1M solution until pH = 11-12. This aqueous layer was extracted with ethyl acetate (3x10 mL) and the combined organic layer was dried (MgSO₄), filtered and concentrated under vacuum. To the resulting solid in THF (1 mL) at 0° were successively added triethylamine (20 μ L; 2.1 eq.) and acetyl chloride (10 μ L; 2 eq.). The suspension was stirred at room temperature overnight. Water (10 mL) was added and the aqueous phase was extracted with ethyl acetate (2x10 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated under vacuum. The crude product was purified by thin layer chromatography (AcOEt) to give the 6,11-diacetamido-[6]-helicene **6** (20 mg; 40%) as a pale yellow solid.

Using the same procedure 3,14-dimethoxy-6,11-diacetamido-[6]-helicene **9** was isolated in 30% yield.

Cyclisation (ultrasonic activation)/Acetylation

The dinitrile product (40 mg; 0.095 mmol) was solubilized in polyphosphoric acid (1 mL) and sonoactivated at 40 °C overnight. The redish mixture was poured into ice (15 g) and the suspension was stirred few minutes. See the thermal activation for work up procedure. The crude product was purified by thin layer chromatography (AcOEt) to give the 3,14-dimethoxy-6,11-diacetamido-[6]-helicene **9** (21 mg; 44%) as a white solid.

Analytical data

1,8-di(o-tolyl)naphthalene 3

Chemical Formula: C24H20

<u>¹H NMR</u>: (δ ppm, CDCl₃, 300K, 300 MHz): 7.95 (dd, 2H, J = 8.2, 1 Hz), 7.51 (dt, 2H, J = 8.2, 1 Hz), 7.20 (m, 2H), 7.10-6.75 (m, 8H), 1.91 (s, (syn form)), 1.88 (s, (anti form)).

¹³C NMR: (δ ppm, CDCl₃, 300K, 75 MHz): 142.3, 141.9, 139.7, 139.7, 135.4, 135.0, 135.0, 134.7, 131.4, 130.2, 130.0, 129.9, 128.9, 128.5, 128.4, 128.2, 126.6, 126.1, 124.9, 124.8, 124.3, 124.2, 20.6, 20.4.

Data in accordance with literature.^[52]

1,8-Di(4-methoxy-2-methylphenyl)naphthalene 7

Chemical Formula: C₂₆H₂₄O₂

<u>**RMN**</u> ¹<u>H</u> : (δ ppm, CDCl₃, 300K, 300 MHz) : 7.91 (dd, 2H, *J* = 8.3, 1.3 Hz), 7.49 (dt, 2H, *J* = 8.3, 1.3 Hz), 7.19 (dd, 2H, *J* = 7, 1.3 Hz), 6.90 (d, *J* = 8.3 Hz (anti form)), 6.69 (d, *J* = 8.1 Hz (syn form)), 6.39 (dd, 2H, *J* = 8.3, 2.7 Hz), 6.34 (d, *J* = 2.7 Hz (syn form)), 6.29 (d, *J* = 2.7 Hz (anti form)) 3.73 (s, (syn form)), 3.72 (s, (antiform)), 1.85 (s, (syn form)), 1.78 (s, (anti form)).

<u>RMN</u> ¹³**C** : (δ ppm, CDCl₃, 300K, 75 MHz) : 158.0, 157.5, 139.4, 139.3, 136.8, 136.4, 135.3, 134.8, 134.7, 132.2, 130.9, 130.3, 130.1, 128.9, 128.5, 128.4, 124.9, 124.7, 114.3, 114.2, 110.2, 109.8, 56.1, 20.9, 20.8.

Melting point : 124 °C

1,8-di(2-cyanomethylphenyl)naphthalene 2

Chemical Formula: C₂₆H₁₈N₂

<u>¹H NMR</u>: (δ ppm, CDCl₃, 300K, 200 MHz): 8.02 (dd, 2H, *J* = 8.2, 1.2 Hz), 7.57 (dt, 2H, *J* = 7.9, 1.2 Hz), 7.24 (m, 2H), 7.10-7.03 (m, 8H), 3.19 (s, 4H).

¹³C NMR: (δ ppm, CDCl₃, 300K, 75 MHz): 141.3, 136.4, 134.9, 130.9, 129.9, 128.6, 128.1, 127.9, 127.6, 127.4, 125.7, 117.7, 22.4.

IR: (v cm⁻¹): 758, 775, 832, 1176, 1192, 1236, 1368, 1415, 1442, 1489, 2250 (CN), 2926, 2968, 3055.

HRMS (ESI): *m*/z calculated for C₂₆H₁₈N₂Na ([M+Na]⁺): 381.1383; found: 381.1368.

Melting point : 176 °C

1,8-di(2-cyanomethyl-4-methoxyphenyl)naphthalene 8

Chemical Formula: C₂₈H₂₂N₂O₂

<u>RMN</u>¹<u>H</u></sup>: (δ ppm, CDCl₃, 300K, 300 MHz): 7.99 (dd, 2H, J = 8.2, 1.2 Hz), 7.52 (dt, 2H, J = 8.1, 1.2 Hz), 7.23 (dd, 2H, J = 7, 1.3Hz), 6.95 (d, 2H, 8.3 Hz), 6.66 (dd, 2H, J = 8.3, 2.5 Hz), 6.58 (d, 2H, J = 2,5 Hz), 3.78 (s, 6H), 3.13 (s, 4H).

<u>RMN</u> ¹³**C** : (δ ppm, CDCl₃, 300K, 100 MHz) : 158.9, 136.1, 135.0, 133.8, 131.0, 129.8, 129.5, 129.1, 125.6, 117.6, 113.1, 113.0, 55.3, 22.6.

HRMS (ESI): *m*/*z* calculated for C₂₈H₂₂N₂O₂Na ([M+Na]⁺): 441.1579; found: 441.1578.

Melting point : 147 °C

6,11-diacetamido-[6]-helicene 6

Chemical Formula: C₃₀H₂₂N₂O₂

<u>¹H NMR</u>: (δ ppm, DMSO-d6, 300K, 200 MHz): 10.25 (s, 2H), 8.31 (d, 2H, *J* = 8.5 Hz), 8.20 (d, 2H, *J* = 8.5 Hz), 8.14 (s, 2H), 7.86 (d, 2H, *J* = 8.0 Hz), 7.34 (d, 2H, *J* = 8.5 Hz), 7.23 (t, 2H, *J* = 7.4 Hz), 6.65 (t, 2H, *J* = 7.5 Hz), 2.30 (s, 6H).

¹³C NMR (Jmod): (δ ppm, DMSO-d6, 300K, 75 MHz): 169.4, 132.4, 131.5, 131.0, 128.3, 127.6, 127.5, 126.4, 126.3, 126.0, 124.3, 122.9, 122.7, 23.6.

<u>**HRMS (ESI)**</u>: m/z calculated for $C_{30}H_{22}N_2O_2$ ([M+H]⁺): 443.1760; found: 443.1762.

Melting point : 315 °C (decomp.)

3,14-dimethoxy-6,11-diacetamido-[6]-helicene 9

Chemical Formula: C₃₂H₂₆N₂O₄

<u>¹H NMR</u>: (δ ppm, CD₃OD, 300K, 200 MHz): 8.11 (d, 2H, J = 8.5 Hz), 7.94 (d, 2H, J = 8.5 Hz), 7.92 (s, 2H), 7.38 (d, 2H, J = 9.5 Hz), 7.19 (d, 2H, J = 2.6 Hz), 6.28 (dd, 2H, J = 9.5, 2.6 Hz), 3.78 (s, 6H), 2.36 (s, 6H).

¹³C NMR: (δ ppm, CD₃OD, 300K, 75 MHz): 173.3, 159.0, 134.4, 132.5, 130.8, 130.2, 127.9, 126.8, 124.8, 124.7, 124.6, 123.1, 116.9, 107.8, 55.6, 24.1.

HRMS (ESI): *m*/*z* calculated for C₃₂H₂₇N₂O₄ ([M+H]⁺): 503.1971; found: 503.1982.

Melting point : 270 °C

NMR Spectrum

¹H NMR 1,8-di(o-tolyl)naphthalene 3

¹³C NMR 1,8-di(o-tolyl)naphthalene 3

¹H NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2

¹³C NMR 1,8-di(2-cyanomethylphenyl)naphthalene 2

¹H NMR 1,8-di(2-cyanomethylphenyl)diMeOnaphthalene 8

¹³C NMR 1,8-di(2-cyanomethylphenyl)diMeOnaphthalene 8

¹H NMR 6,11-diacetamido-[6]-helicene 6

¹³C NMR 6,11-diacetamido-[6]-helicene 6

¹H NMR 3,14-dimethoxy,6,11-diacetamido-[6]-helicene 9

¹³C NMR 3,14-dimethoxy-6,11-diacetamido-[6]-helicene 9

X-Ray diffraction analysis

Crystal of dimensions $0.24 \times 0.12 \times 0.06 \text{ mm}^3$ was mounted with Paratone-N oil (Hampton

Research) coating and immediately placed in a nitrogen cold stream.

X-ray intensity data were collected on a Bruker X8-APEX2 CCD area-detector diffractometer using Mo- K_{α} radiation ($\lambda = 0.71073$ Å). Nine sets of narrow data frames (30 s per frame) were collected at different values of θ , for 8 and 1 initial values of ϕ and ω , respectively, using 0.5° increments of ϕ or ω .Data reduction was accomplished using SAINT V7.03 [S3]. The substantial redundancy (5.0) in data allowed a semi-empirical absorption correction (SADABS V2.10) [S3] to be applied, on the basis of multiple measurements of equivalent reflections. The structure was solved by direct methods, developed by successive difference Fourier syntheses, and refined by full-matrix least-squares on all F² data using SHELXTL V6.12[S4]. Hydrogen atoms were included in calculated positions and allowed to ride on their parent atoms.

Table 1. Crystal data and structure refinement for CCDC 719176.

Identification code		CCDC 719176			
Empirical formula		C34 H29 N3 O4			
Formula weight		543.60			
Temperature		100(2) K			
Wavelength		0.71073 A			
Crystal system, space group		Triclinic,	P-1		
Unit cell dimensions	a = 9. b = 11 c = 13	4922(14) A .5758(16) A .5860(18) A	alpha = 79.913(7)° beta = 75.844(7)° gamma = 73.560(7)°		
Volume		1379.3(3) A	^3		
Z, Calculated density		2, 1.309 Mg/m ³			
Absorption coefficient		0.087 mm ⁻¹			
F(000)		572			
Crystal size		0.24 x 0.12 x 0.06 mm			
Theta range for data collection		1.56 to 30.17 deg.			
Limiting indices		-13<=h<=13,	-16<=k<=16,19<=l<=18		
Reflections collected / unique		40142 / 8030 [R(int) = 0.0345]			
Completeness to theta = 30.17		98.2 %			
Absorption correction		Semi-empirical from equivalents			
Max. and min. transmission		0.9948 and 0.9795			
Refinement method		Full-matrix least-squares onF ²			
Data / restraints / parameters		8030 / 0 / 375			
Goodness-of-fit on F ²		1.062			
Final R indices [I>2sigma(I)]		R1 = 0.0469, wR2 = 0.1267			
R indices (all data)		R1 = 0.0630, wR2 = 0.1397			
Largest diff. peak and hole		0.447 and -0.212 e.A ⁻³			

Table 2. Hydrogen bonds for 9 [A and deg.].

d(D-H)	d(HA)	d(DA)	
0.88	2.08	2.8923(15)	153.7
0.88	2.01	2.8750(15)	168.4
	d(D-H) 0.88 0.88	d(D-H) d(HA) 0.88 2.08 0.88 2.01	d(D-H) d(HA) d(DA) 0.88 2.08 2.8923(15) 0.88 2.01 2.8750(15)

Symmetry transformations used to generate equivalent atoms: #1 x, y+1, z = #2 x+1, y-1, z

References

[S1]: For preparation of this compounds see: Š. Vyskočil, L. Meca, I. Tišlerová, I. Císařová, M. Polášek, S. R. Harutyunyan, Y. N. Belokon, R. M. J. Stead, L. Farrugia, S. C. Lockhart, W. L. Mitchell, P. Kočovský, *Chem. Eur. J.* 2002, *8*, 4633-4648

- [S2]: R. L. Clough, J. D. Roberts, J. Am. Chem. Soc. 1976, 98, 1018-1020
- [S3]: APEX2 version 1.0-8; Bruker AXS: Madison, WI, 2003
- [S4]: SHELXTL version 6.12; Bruker AXS: Madison, WI, 2001