SUPPLEMENTARY INFORMATION.

DNA synthesis and irradiation:

The DNA oligonucleotide 5'-GCGTTT^{Br}dUXGAC-3' (1 μ mol scale) was synthesized on an *Äkta Oligopilot 10 (Amersham Biosciences)* DNA synthesizer using ultra-mild phosphoramidites and an Ac-dC-Q-CPG 500 solid support (Glen Research). An elongated coupling protocol was applied for the coupling of the modified bases. The capping was achieved with Pac₂O. After automated synthesis ODNs were cleaved from the solid support with 50 mM potassium carbonate in MeOH (50 mM) within three hours at RT. The slurry was concentrated *in vacuo* and the crude ODNs were redissolved in water. Analytics and purification were performed using a *Waters* system equipped with 3 μ m C₁₈-*reversed phase* Nucleodur columns from *Machery-Nagel*. Eluting buffers were buffer A (0.1 M NHEt₃OAc in H₂O) and buffer B (0.1 M NHEt₃OAc in H₂O/MeCN 20/80). The elution was monitored at 260 nm. The product was analyzed by MALDI-TOF (Figure 1A). A 1 μ M solution of the single strand was irradiated for 45 minutes at 10 °C with a 340 nm longpass filter (Fig 2.) in 150 mM NaCl, 10 mM Tris/HCl-buffer (pH 7.4) after purging it with argone for 40 minutes.

Fig. 1. A) MALDI-TOF analysis of the educt single strand 5'-GCGTTT^{Br}dUXGAC-3' where ^{Br}dU is 5-Br-dU and X is Donor 1. The strand has an exact mass of 3620 Daltons. B) After 45 minutes of irradiation no educt strand is left and two masses dominate the MALDI-TOF

spectra. The main peak at 3436 D corresponds to the debrominated strand and the peak at 3516 D shows Donor cleavage and no debromination.

λ in nm	280	290	300	310	320	330	340	350	360	370	380
k (λ)	6	3.7	2.20	1.03	0.47	0.21	0.096	0.047	0.026	0.018	0.016
λ in nm	390	400	410	420	430	440	450	460	470	480	490
k (λ)	0.011	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.009	0.008	0.009
λ in nm	500	510	520	530	540	550	560	570	580	590	600
k (λ)	0.010	0.011	0.014	0.018	0.023	0.029	0.037	0.046	0.055	0.066	0.077
λ in nm	610	620	630	640	650	660	670	680	690	700	710
k (λ)	0.089	0.101	0.113	0.125	0.136	0.147	0.158	0.168	0.177	0.186	0.190
λ in nm	720	730	740	750	760	780	800	820	840	860	880
k (λ)	0.20	0.20	0.20	0.20	0.21	0.21	0.21	0.20	0.190	0.180	0.175

Figure 2. Absorption coefficients $k(\lambda)$ of the applied filter (russian C3C17, 3 mm thickness)

Experimental data for compounds 1-14:

Chemicals were purchased from Sigma-Aldrich, Fluka or ACROS and used without further purification. Solvents used were of reagent grade and purified by usual methods. Reactions were monitored on Merck Silica 60 F254 TLC plates. Detection was done by irradiation with UV light (254 nm) and staining with *p*-anisaldehyde solution in ethanol or with a 0.05 M solution of KMnO₄ (in 1 M NaOH). Flash column chromatography was performed on Silica 60 (Merck, 230-400 mesh). NMR spectra were recorded on the following spectrometers: *Varian Oxford 200, Bruker AC 300, Varian XL 400* and *Bruker AMX 600*. The chemical shifts (δ) are given in ppm, the coupling constants (*J*) in Hz. Mass spectra were recorded on the following machines: Finnigan MAT 95 (EI), *Bruker Autoflex II* (MALDI-Tof) and Thermo Finnigan LTQ-FT (ESI-ICR).

Synthesis of single electron donor 1:

5 (698 mg, 0.74 mmol) was solved in pyridine (6 mL) and cooled to 0 °C. HF·pyridine (70% HF, 22.2 mmol, 533 μ L) was added dropwise. The reaction was stirred for 18 h at 22 °C and finally quenched with Me₃SiOMe (10.2 mL, 74 mmol). After 30 min the solvents were removed *in vacuo* and the residual was chromatographically (SiO₂, CH₂Cl₂:MeOH, 22:3) purified. Yield: 335 mg (98%). Colorless foam. 4 Diastereoisomers in the ratio 18:18:32:32. ¹H-NMR (600 MHz, CDCl₃) δ : 1.50 (*s*, Me), 1.51 (*s*, Me), 1.52 (*s*, Me), 1.53 (*s*, Me), 2.04-2.35 (*m*), 2.47-2.61 (*m*), 2.82 (*s*, N-Me), 2.833 (*s*, N-Me), 3.07 (*s*, N-Me), 3.08 (*s*, N-Me), 3.34-3.42 (*m*), 3.53-3.63 (*m*), 3.71-3.73 (*m*), 3.78-3.84 (*m*), 3.87-3.89 (*m*), 3.98-4.00 (*m*), 4.07-4.10 (*m*), 4.16-4.18 (*m*), 4.24-4.33, 4.43-4.54 (*m*), 6.16-6.20 (*m*, 2 x H1²), 6.30 (*t*, H1²), 7.33-7.38 (*m*, Ph), 7.42-7.48 (*m*), 7.81 (*s*, H6), 7.83 (*s*, H6), 7.85 (*s*, H6), 7.92

(*s*, H6), 8.14-8.16 (*m*), 10.09 (*s*, 2 x NH), 10.23-10.24 (*m*, 2 x NH); ¹³C-NMR (150 MHz, CDCl₃) δ: 26.30, 26.46, 26.49, 26.51, 33.69, 33.85, 36.64, 36.68, 40.38, 40.50, 40.60, 40.99, 43.13, 43.35, 43.52, 43.80, 43.90, 44.03, 46.38, 46.48, 61.72, 61.93 (2x), 62.17 71.30, 71.33, 71.38, 71.84, 79.27, 79.30, 79.39 (2x), 85.54, 85.87, 85.98, 86.06, 87.40, 87.45 (2x), 87.54, 108.79, 108.98, 109.58, 109.71, 127.98 (2x), 128.06 (4x), 128.09 (2x), 130.19 (4x), 162.65 (4x), 132.70 (4x), 134.72 (4x), 137.29, 137.64, 139.64 , 140.13, 150.44 (2x), 150.48, 150.58, 163.13, 163.18, 163.72, 163.77, 172.89 ,173.06 (2x) ,173.29 ,204.90 ,205.09, 205.15, 205.34; MS (ESI): calc. for [C₂₂H₂₈N₃O₈+H]⁺: 462.1876; found: 462.1853.

Left: UV-spectr. of **1**: 70 μ M in MeOH:H₂O 1:4, $\lambda_{max} = 251$ nm, $\varepsilon_{260nm} = 10120 \text{ M}^{-1} \text{cm}^{-1}$, $\varepsilon_{340nm} = 37 \text{ M}^{-1} \text{cm}^{-1}$; Right: HPLC (Merck Hitachi, CC 250/4 Nucleosil 100-5 C18) of **1**, gradient: 100% to 25% 0.1 M NEt₃/AcOH in H₂O and 75% 0.1 M NEt₃/AcOH in MeOH/H₂O 80/20 in 45 min.

Synthesis of reference molecule **3**:

The same deprotection- and work-up procedures as described for **1** were applied to the corresponding 3',5'-TBDPS-ether **14** (214 mg, 0.26 mmol). Yield: 68 mg (74%). Colorless solid. 4 Diastereoisomers in the ratio of about 17:17:33:33.

¹H-NMR (400 MHz, CD₃OD) δ : 1.21 (*s*, 2 x CH₃), 1.22 (*s*, 2 x CH₃), 2.15-2.33 (*m*, 4 x H2'), 2.46 (*ddd*, *J* = 2.27, 4.44, 15.46 Hz, CH₂), 2.58 (*ddd*, *J* = 2.40, 8.17, 15.51 Hz, CH₂), 2.63 (*dt*, *J* = 3.17, 4.53 Hz, CH₂), 2.71 (*ddd*, *J* = 4.14, 8.00, 15.41 Hz, CH₂), 2.87 (*s*, 2 x N-CH₃), 3.11 (*s*, 2 x N-CH3), 3.69-3.81 (*m*, 4 x H5'), 3.90-3.94 (*m*, 4 x H4'), 4.15-4.41 (*m*, 4 x (H3', CH₂, CH)), 6.25-6.30 (*m*, 4 x H1'), 7.88 (*s*, H6), 7.90 (*s*, H6), 8.01 (*s*, H6), 8.03 (*s*, H6). ¹³C-NMR (100 MHz, CDCl₃) δ : 21.91 (4x), 32.06, 32.09, 35.54, 35.55, 39.95 (2x), 40.20, 40.28, 41.26, 41.28, 41.58, 41.59, 43.76, 43.78, 46.28 (2x), 61.22, 61.29, 61.52, 61.55, 64.47, 64.50, 64.75, 64.76, 70.74, 70.83, 70.94, 70.98, 85.17, 85.02, 85.25, 85.29, 87.64 (2x), 87.69 (2x), 109.00 (2x), 109.61, 109.62, 138.70, 138.79, 138.88, 138.94, 150.64 (4x), 163.55, 163.57, 164.01 (2x), 173.02, 173.05, 173.10, 173.12; MS (ESI): calc. for [C₁₅H₂₄N₃O₇+H]⁺: 358.1614; found: 358.1614.

Left: UV-absorption of **3**: 70 μ M in MeOH:H₂O 1:4, $\lambda_{max} = 266$ nm, $\varepsilon_{260nm} = 7090 \text{ M}^{-1} \text{cm}^{-1}$; Right: *reversed-phase* HPLC (Merck Hitachi, CC 250/4 Nucleosil 100-5 C18) of **3**, gradient: 100% to 96% 0.1 M NEt₃/AcOH in H₂O and 4% 0.1 M NEt₃/AcOH in CH₃CN/H₂O 80/20 in 45 min.

Synthesis of reference molecule 4:

The same deprotection- and work-up procedures as described for **1** were applied to the corresponding 3',5'-TBDPS-ether **15** (247 mg, 0.3 mmol). Yield: 85 mg (81%). Colorless solid. 2 Conformational isomers in the ratio of about 35:65.

¹H-NMR (400 MHz, CD₃OD) δ : 2.21 (*s*, Me), 2.22 (*s*, Me), 2.23–2.26 (*m*, 2 x H2', 2 x H2''), 2.85 (*s*, NMe), 3.02 (*s*, NMe), 3.28-3.30 (*m*, 2 x CH₂), 3.68–3.82 (*m*, 2 x H5', 2 x H5''), 3.88–3.94 (*m*, 2 x H4'), 4.09-4.23 (*m*, 2 x NCH₂), 4.33–4.42 (*m*, 2 x H3'), 6.24–6.29 (*m*, 2 x H1'), 7.86 (*s*, H6), 8.06 (*s*, H6); ¹³C-NMR (100 MHz, CD₃OD) δ : 28.96, 28.99, 31.68, 35.83, 39.62, 40.22, 43.78, 46.83, 47.90 (2x), 61.25, 61.71, 70.68, 70.96, 85.02, 85.30, 87.55, 87.64, 108.56, 109.34, 138.85, 139.45, 150.59, 150.66, 163.61, 163.92, 168.71, 168.92, 203.69, 204.04; MS (ESI): calc. for $[C_{15}H_{22}N_3O_7+H]^+$: 356.1458; found: 358.1456.

Left: UV-absorption: 70 μ M in MeOH:H₂O 1:4, $\lambda_{max} = 265$ nm, $\varepsilon_{260nm} = 8770$ M⁻¹cm⁻¹; right: *reversed-phase* HPLC, gradient: 100% to 96% 0.1 M NEt₃/AcOH in H₂O and 4% 0.1 M NEt₃/AcOH in CH₃CN/H₂O 80/20 in 45 min.

Synthesis of secondary amine **5**:

A solution of 3'- and 5'-TBDPS protected bromo-thymidine¹ (1.9 g, 2.38 mmol) was solved in dry DMF and saturated with MeNH₂ at 0 °C. The solution was stirred for 16 h at 22 °C and was finally diluted with AcOEt. The organic phase was washed three times with H₂O, dried over MgSO₄, concentrated *in vacuo* and chromatographically purified (SiO₂, CH₂Cl₂: MeOH 15:1). Yield: 1.158 mg (64%). Colorless solid.

¹H-NMR (400 MHz, CDCl₃) δ : 0.93 (*s*, 9 H, ^tBu), 1.08 (*s*, 9 H, ^tBu), 1.90 – 2.00 (*m*, 1 H, H2'), 2.15 (*s*, 3 H, Me), 2.34 (*ddd*, *J* = 13.0, 5.2, 1.2 Hz, 1 H, H2''), 3.07 (*dd*, *J* = 11.2, 2.2 Hz, 2 H, NCH₂), 3.34 (*dd*, *J* = 11.5, 2.2 Hz, 1 H, H5'), 3.77 (*dd*, *J* = 11.4, 2.2 Hz, 1 H, H5''), 4.00 (*s*, 1 H, H4'), 4.55 (*d*, *J* = 5.5 Hz, 1 H, H3'), 5.63 (*bs*, 1 H, NH), 6.57 (*dd*, *J* = 9.2, 5.4 Hz, 1 H, H1'), 7.30 – 7.65 (*m*, 21 H, H6, 20 x CH(Ph));

¹³C-NMR (100 MHz, CDCl₃) δ: 19.01, 19.29, 26.89 (3x), 26.91 (3x), 34.93, 41.29, 47.75, 63.93, 73.83, 84.93, 87.78, 112.06, 127.87 (2x), 127.90 (4x), 127.91 (2x), 129.98 (2x), 130.01, 130.03, 132.23, 133.04, 133.06, 133.17, 135.15 (2x), 135.43 (2x), 135.65 (2x), 135.71 (2x), 137.30, 150.38, 163.72; MS (ESI): calc. for [C₄₃H₅₄N₃O₅Si₂+H]⁺: 748.3602; found: 748.3610.

Synthesis of carbonic acid **6**:

A suspension of 11 (1.5 g, 7.72 mmol) and TEMPO (84 mg, 0.54 mmol) in CH₃CN (40 mL) and 1 M phosphate-buffer (29 mL, pH 6.8) was heated to 35 °C. 20% of an aqueous NaClO₂-solution (80% (techn.), 1.75 g, 15.45 mmol in 7.8 mL H₂O), followed by 20% of an aqueous NaOCl-solution (13% in H₂O, 90 μ L in 3.81 mL H₂O) were added dropwise. The residuals

NaClO₂- and NaOCl-solutions were added synchronically within 2 hours. After 29 h at 35 °C the yellow solution was diluted with 60 mL H₂O and the pH was adjusted to 8 with 2 N NaOH. A cooled aqueous solution of Na₂SO₃ (2.3 g in 40 mL H₂O) was added and the solution was warmed to 22 °C. After 1 h the suspension was washed with TBME and then acidified to pH 3 with 2 N HCl. The suspension was extracted with TBME, the organic phase washed with water, then dried over MgSO₄ and concentrated *in vacuo*. Yield: 1.41 g (88%). Colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ : 1.21 (*s*, 3 H, Me), 2.72 (*d*, *J* = 17.06 Hz, 1 H, CH₂), 3.31 (*d*, *J* = 16.98 Hz, 1 H, CH₂), 7.44-7.50 (*m*, 2 H, CH), 7.55-7.65 (*m*, 1 H, CH), 8.18-8.21 (*m*, 1 H, CH); ¹³C-NMR (100 MHz, CDCl₃) δ : 26.53, 44.00, 78.40, 128.27 (2x), 128.45, 130.13 (2x), 132.93, 177.3, 202.6; MS (ESI): calc. for [C₁₁H₁₁O₄-H]⁻: 207.0657; found: 207.0665.

Synthesis of **7**:

A solution of HBTU (287 mg, 0.76 mmol), NEt(ⁱPr)₂ (132 μ L, 0.76 mmol) and **6** (143 mg, 0.69 mmol) in dry DMF (8 mL) was stirred at 22 °C. After 30 min a solution of **5** (536 mg, 0.72 mmol) in dry DMF (8 mL) was added and the mixture was heated to 50 °C. After 16 hours AcOEt was added. The organic phase was washed with water three times, dried over MgSO₄ and concentrated *in vacuo*. The residual was chromatographically purified (SiO₂, ⁱhexanes:AcOEt 1:1). Yield: 580 mg (86%). Colorless solid. 4 Diastereoisomers in the ratio 18:18:32:32.

¹H-NMR (600 MHz, CDCl₃) δ: 0.87 (*s*, CH₃), 0.88 (*s*, CH₃), 0.94 (*s*, CH₃), 0.9 (*s*, CH₃), 1.07 (*s*, CH₃), 1.09 (*s*, CH₃), 1.11 (*s*, 2 x CH₃), 1.52 (*s*, CH₃), 1.53 (*s*, CH₃), 1.54 (*s*, CH₃), 1.55 (*s*,

CH₃), 1.74-1.79 (*m*), 1.97-2.03 (*m*), 2.16-2.21 (*m*), 2.26-2.34 (*m*), 2.39-2.45 (*m*), 2.44 (*s*, NCH₃), 2.50 (*s*, NCH₃), 2.70-2.74 (*m*, CH₂), 3.06 (*s*, NCH₃), 3.16 (*s*, NCH₃), 3.21-3.38 (*m*), 3.43-3.46 (*m*), 3.48-3.56 (*m*), 3.74-3.76 (*m*), 3.85-3.90 (*m*), 3.98-4.03 (*m*), 4.08-4.16 (*m*), 4.30 (*d*, J = 5.34 Hz, H3'), 4.47 (*d*, J = 5.50 Hz, H3'), 4.57 (*d*, J = 5.90 Hz, H3'), 4.59 (*d*, J = 5.62 Hz, H3'), 6.37 (*dd*, J = 8.71, 5.38 Hz, H1'), 6.42 (*dd*, J = 8.80, 5.40 Hz, H1'), 6.50 (*dd*, J = 8.14, 5.78 Hz, H1'), 6.56 (*dd*, J = 8.73, 5.43 Hz, H1'), 7.22-7.69 (*m*), 8.18-8.22 (*m*), 9.66 (*bs*, 2 x NH), 9.79 (*bs*, 2 x NH); ¹³C-NMR (150 MHz, CDCl₃) δ: 19.01, 19.03, 19.06, 19.07, 19.09, 19.12, 19.34, 19.39, 26.51, 26.52 (2x), 26.57, 26.82 (4x), 26.83 (4x), 26.89 (4x), 26.93 (11x), 26.96, 31.79, 32.15, 36.76, 37.17, 40.44, 40.67, 40.77, 41.02, 42.48, 42.49, 42.60, 42.99, 44.31, 44.40, 45.84, 46.08, 63.87 (2x), 63.95 (2x), 73.51, 73.92, 73.95, 74.00, 79.45, 79.58, 79.67, 79.80, 85.26, 85.28, 85.38, 85.85, 87.85 (2x), 87.93, 88.90, 108.95, 109.12, 109.87, 109.89, 127.68-135.72 (96x), 137.85, 138.75, 139.89, 140.86, 150.12 (2x), 150.23 (2x), 162.78 (2x), 163.71, 163.97, 172.78, 173.09, 173.23, 173.25; MS (ESI): calc. for $[C_{54}H_{64}N_3O_8Si_2+H]^+$: 938.4232; found: 938.4250.

Synthesis of vinylbromide 8:

A solution of commercially available 3-Bromo-3-buten-1-ol (5 g, 33 mmol), TBDPS-Cl (11.819 g, 43 mmol) and imidazole (6.33 g, 93 mmol) in dry DMF (36 mL) was stirred at 22 °C for 18 hours. The reaction was quenched by the addition of saturated NaHCO₃-solution. The mixture was diluted with isohexane. The organic phase was washed with water three times, dried over MgSO₄ and concentrated *in vacuo*. The residual was chromatographically purified (SiO₂, isohexanes:AcOEt 95:5). Yield: 12.339 g (96%). Colorless oil.

¹H-NMR (300 MHz, CDCl₃) δ: 1.14 (*s*, 9 H), 2.72 (*td*, *J* = 0.98, 6.21, 6.23 Hz, 2 H), 3.92 (*t*, *J* = 6.21 Hz, 2 H), 5.56 (*d*, *J* = 1.57 Hz, 1 H), 5.68-5.69 (*m*, 1 H), 7.36-7.60 (*m*, 6 H), 7.75-7.79

(*m*, 4 H). ¹³C-NMR (75 MHz, CDCl₃) δ: 19.37, 26.92 (3x), 44.64, 61.54, 118.63, 127.79 (4x), 129.78 (2x), 130.96, 133.71 (2x), 135.70 (4x); MS (EI): calc. for [C₂₀H₂₅⁷⁹BrOSi-^tBu]⁺: 331.0154; found: 331.0110.

Synthesis of ketone 9:

A solution of vinylbromid **8** (1 g, 2.57 mmol), PhB(OH)₂ (626 mg, 5.14 mmol), CsCO₃ (2.51 g, 7.7 mmol) and PEPPSI-IPr (52 mg, 77 μ mol) in PhCl (13 mL) was heated to 80 °C while a steady stream of CO was bubbling through it. After 4 hours the reaction mixture was filtered through a pad of Celite, concentrated *in vacuo* and the residual was chromatographically purified (SiO₂, isohexane:AcOEt 96:4). Yield: 757 mg (71%). Colorless oil.

¹H-NMR (300 MHz, CDCl₃) δ : 1.02 (*s*, 9 H, CH₃), 2.73 (*td*, *J* = 6.21, 0.79 Hz, 2 H, CH₂), 3.85 (*t*, *J* = 6.24 Hz, 2 H, CH₂), 5.67 (*d*, *J* = 0.62 Hz, 1 H, =CH₂), 5.93 (*m*, 1 H, =CH₂), 7.32-7.44 (*m*, 8 H), 7.50-7.56 (*m*, 1 H), 7.64-7.67 (*m*, 4 H), 7.76-7.80 (*m*, 2 H); ¹³C-NMR (75 MHz, CDCl₃) δ : 19.21, 26.82 (3x), 35.72, 62.55, 127.55, 127.66 (4x), 128.14 (2x), 129.63 (2x), 129.71 (2x), 132.17, 133.73 (2x), 135.58 (4x), 137.81, 145.39, 198.08; MS (ESI): calc. for [C₂₇H₃₀O₂Si+H]⁺: 415.2088; found: 415.2077.

Synthesis of α-hydroxyl-ketone 9:

A solution of ketone **8** (51 mg, 0.12 mmol) in ⁱPrOH (1 mL) was added to a cooled (0 °C) suspension of Mn(dpm)₃ (3.7 mg, 6µmol) in ⁱPrOH (250 µL). PhSiH₃ (30 µL, 0.25 mmol) was added and O₂ was bubbled through for 45 min at 0 °C. Then P(OEt)₃ (24 µL, 0.14 mmol) was added. After 1 hour at 0 °C the reaction was quenched by the addition of a saturated solution of Na₂S₂O₃. The mixture was extracted with Et₂O, the organic phase was washed,

dried over MgSO₄ and concentrated *in vacuo*. The residual was chromatographically purified (SiO₂, isohexane:AcOEt 96:4). Yield: 34 mg (64%). Colorless oil.

¹H-NMR (300 MHz, CDCl₃) δ: 0.87 (*s*, 9 H, CH₃), 1.59 (*s*, 3 H, CH₃), 2.03-2.12 (*m*, 1 H, CH₂), 2.39-2.48 (*m*, 1 H, CH₂), 3.80-3.85 (*m*, 2 H, CH₂), 5.05 (*s*, 1 H, OH), 7.26-7.58 (*m*, 22 H), 8.13-8.17 (*m*, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ: 18.86, 26.58 (3x), 28.24, 42.07, 61.21, 79.72, 127.70, 127.76, 128.18, 129.76, 129.82, 130.15 (3x), 132.64 (2x), 132.67, 135.03 (2x), 135.46 (2x), 135.52 (2x), 135.56, 204.87; MS (ESI): calc. for [C₂₇H₃₂O₃Si+H]⁺: 433,2193; found: 433.2181.

Synthesis of glycol **11**:

Following the procedure of *M.* Newcomb², α -hydroxy-ketone **9** (2.0 g, 6.5 mmol) was dissolved in dry THF (35 mL) and stirred under nitrogen atmosphere. Then a solution of 1 M TBAF in THF (13 mL, 13 mmol) was added dropwise over 5 minutes. After stirring 20 minutes at 22 °C the reaction mixture was diluted with EtOAc (50 mL) and washed with saturated NaHCO₃ aqueous solution, water and brine (each 20 mL). The organic phase was then dried over MgSO₄ and concentrated *in vacuo*. Yield: 1.1 g (86 %). Colorless solid. ¹H-NMR (300 MHz, DMSO-d6) δ : 1.18 (*s*, 3 H, CH₃), 1.88 (*ddd*, *J* = 2.4, 7.36, 12.05 Hz, 1

H Mill (306 Mill), Dinso do) 6. 1116 (5, 5 H, CH₃), 106 (dat, J = 2.39, 7.62, 9.87 Hz, 1 H, H, CH₂), 2.28 (*dt*, J = 9.45, 12.03 Hz, 1 H, CH₂), 3.93 (*ddd*, J = 2.39, 7.62, 9.87 Hz, 1 H, CH₂), 4.06 (*dt*, J = 7.48, 9.16 Hz, 1 H, CH₂), 4.15 (*s*, 1 H, OH), 5.98 (*s*, 1 H, OH), 7.22-7.31 (*m*, 3 H, CH(arom.)), 7.48-7.51 (*m*, 2 H, CH(arom.)). ¹³C-NMR (75 MHz, DMSO-d6) δ : 21.66, 39.30, 64.37, 79.78, 106.92, 127.04 (2x), 127.46, 128.32 (2x), 141.56; MS (ESI): calc. for [C₁₁H₁₄O₃+Cl]⁻: 229.0637; found: 229.0636.

Synthesis of phosphoramidite 12:

ⁱPr₂NH₂-tetrazolate (54 mg, 0.316 mmol) and P(N ⁱPr₂)₂OCE (100 μ L, 0.316 mmol) were added to a cooled (0 °C) solution of **13** (120 mg, 0.158 mmol) in CH₂Cl₂ (2.5 ml). After 2.5 hours at 22 °C the reaction was concentrated *in vacuo* and chromatographically purified (SiO₂, CH₂Cl₂:MeOH 9:1 + 1% pyridine). Yield: 114 mg (75%). Slightly yellow solid.

³¹P-NMR (81 MHz, CDCl₃) δ : 149.6-150.5 (*m*); MS (ESI): calc. for [C₅₂H₆₂N₅O₁₁-H]⁻: 963.4111; found: 963.4095.

Synthesis of 13:

Amide **1** (321 mg, 0.7 mmol) was coevaporated with pyridine three times, then solved in pyridine (4 mL) and 3 Å molsieves were added. After 1 hour a solution of DMT-OTf (629 mg, 1.39 mmol) in 2.5 ml pyridine (mixture also stored over 3 Å molsieves) was added. After 4 hours at 22 °C the reaction was quenched by the addition of MeOH, concentrated *in vacuo* and chromatographically purified (SiO₂, CH₂Cl₂ \rightarrow CH₂Cl₂:MeOH 24:1 + 1% pyridine). Yield: 474 mg (89%). Slightly yellow solid. 4 Diastereoisomers in the ratio of 19:19:31:31.

¹H-NMR (600 MHz, CDCl₃) δ : 1.48 (*s*), 1.50 (*s*), 1.52 (*s*), 1.53 (*s*), 1.94-2.05 (*m*), 2.13-2.17 (*m*), 2.2-2.37 (*m*), 2.43-2.47 (*m*), 2.51-2.58 (*m*), 2.61-2.65 (*m*), 3.01 (*s*), 3.12 (*s*), 3.21-3.47 (*m*), 3.72 (*s*), 3.72 (*s*), 3.80-3.87 (*m*), 3.92-4.07 (*m*), 4.40-4.43 (*m*), 4.54-4.58 (*m*), 5.79 (*s*), 5.91 (*s*), 6.01 (*s*), 6.13 (*s*), 6.18 (*t*, J = 6.22 Hz), 6.27 (*t*, J = 6.42 Hz), 6.37 (*t*, J = 6.42 Hz), 6.37 (*t*, J = 6.42 Hz), 6.37 (*t*), 5.79 (*s*), 5.91 (*s*), 6.01 (*s*), 6.13 (*s*), 6.18 (*t*, J = 6.22 Hz), 6.27 (*t*, J = 6.42 Hz), 6.37 (*t*, J = 6.42 Hz), 6.37 (*t*), 5.79 (*s*), 5.91 (*s*), 6.01 (*s*), 6.13 (*s*), 6.18 (*t*, J = 6.22 Hz), 6.27 (*t*, J = 6.42 Hz), 6.37 (*t*, J = 6.42 Hz), 6.37 (*t*, J = 6.42 Hz), 6.37 (*t*), 5.91 (*s*), 6.01 (*s*), 6.13 (*s*), 6.18 (*t*, J = 6.22 Hz), 6.27 (*t*, J = 6.42 Hz), 6.37 (*t*, J = 6.42 Hz), 6.37 (*t*), 5.91 (*s*), 6.01 (*s*), 6.13 (*s*), 6.18 (*t*, J = 6.22 Hz), 6.27 (*t*, J = 6.42 Hz), 6.37 (*t*), 5.91 (*s*), 6.01 (*s*), 6.13 (*s*), 6.18 (*t*), J = 6.22 Hz), 6.27 (*t*, J = 6.42 Hz), 6.37 (*t*, J = 6.42 Hz), 6.37 (*t*), 5.91 (*s*), 6.11 (*s*), 6.13 (*s*), 6.11 (*s*), 6.11

J = 6.62 Hz), 6.42 (t, J = 6.5 Hz), 6.74-6.78 (m), 7.11-7.61 (m), 8.17-8.21 (m), 9.85 (bs), 10.12 (bs); ¹³C-NMR (150 MHz, CDCl₃) & 26.58, 26.61, 26.66, 26.71, 32.24, 32.60, 36.89, 37.22, 39.94, 40.14, 40.18, 40.57, 42.45, 42.78 (2x), 43.00, 44.23, 44.58, 46.04, 46.34, 55.33 (2x), 55.35, 55.36, 63.90, 63.95, 64.01, 64.07, 71.42, 71.71, 72.05, 72.07, 79.64, 79.72, 79.76, 79.91, 84.93, 85.22, 85.47 (2x), 85.51, 85.66, 85.75, 86.14, 86.66, 86.67, 86.85, 86.93, 109.22, 109.28, 110.07, 110.21, 113.28, 113.29, 113.36, 113.38, 123.98 (16x), 126.95-136.02, 137.73, 138.95, 139.75, 141.16, 144.43, 144.48, 144.77, 144.79, 150.26, 150.41, 150.43, 150.52, 158.60, 158.62, 158.63, 158.65, 158.79 (2x), 158.81, 158.82, 162.89, 162.92, 163.54, 163.84, 173.03, 173.36, 173.41, 173.49, 204.26, 204.74, 204.87, 204.92; MS (ESI): calc. for [C₄₃H₄₅N₃O₁₀-H]⁻: 762.3032; found: 762.3026.

Synthesis of β -hydroxyl-amide 14:

A solution of HBTU (54 mg, 0.14 mmol), NEt(iPr)₂ (27 μ L, 0.14 mmol) and 3-hydroxybutyric acid (13 μ L, 0.13mmol) in DMF (1.5 mL) was stirred at 22 °C. After 30 min a solution of amine **5** (100 mg, 0.13 mmol) in DMF (1.5 mL) was added and the mixture was heated to 45 °C. After 24 h the reaction was diluted with AcOEt, washed with water and brine, dried over MgSO₄ and concentrated *in vacuo*. The residual was chromatographically purified (SiO₂, isohexanes:AcOEt 5:3). Yield: 104 mg (93%). Colorless foam. 4 Diastereoisomers.

¹H-NMR (400 MHz, CDCl₃) δ: 0.93-0.94 (*m*), 1.06-1.07 (*m*), 1.09 (s), 1.16-1.21 (*m*), 1.87-1.99 (*m*), 2.16-2.23 (*m*), 2.30-2.46 (*m*), 2.69-2.74 (*m*), 2.80-2.84 (*m*), 2.97 (s), 3.02-3.06 (*m*), 3.34-3.51 (*m*), 3.66-3.71 (*m*), 3.76-3.99 (*m*), 4.03-4.04 (*m*, 2 x H4'), 4.06-4.07 (*m*, 2 x H4'), 4.08-4.24 (*m*), 4.45-4.48 (*m*, 2 x H3'), 4.55-4.57 (*m*, 2 x H3'), 6.37-6.41 (*m*, 2 x H1'), 6.466.05 (*m*, 2 x H1'), 7.25-7.66 (*m*), 7.74 (*s*), 7.77 (*s*), 9.48 (*bs*), 9.67 (*bs*); ¹³C-NMR (100 MHz, CDCl₃) δ : 18.98 (2x), 19.01 (2x), 19.19 (2x), 19.41, 19.42, 22.12 (2x), 22.21, 22.26, 26.87 (18x), 26.96 (6x), 31.25, 31.27, 36.55, 36.54, 40.61, 40.64, 40.93, 41.02, 41.08 (2x), 41.41, 41.58, 44.36, 44.49, 45.69, 45.76, 63.74, 63.77, 63.94, 64.02, 64.09 (2x), 64.42 (2x), 73.43, 73.57, 73.76, 73.92, 84.98, 85.16, 85.51, 85.66, 87.74, 87.83, 87.90, 87.98, 109.10, 109.16, 110.10, 110.13, 127.73-135.68 (96x), 138.45, 138.54, 140.70, 140.77, 150.02, 150.05 (2x), 150.08, 162.59, 162.61, 163.69, 163.71, 172.84, 172.88, 173.05, 173.08; MS (ESI): calc. for $[C_{47}H_{60}N_3O_7Si_2+H]^+$: 834.3970; found: 834.3981.

Synthesis of β -keto-amide **15**:

Amine **5** (150 mg, 0.2 mmol), EDC (43 mg, 0.22 mmol) and HOBt (33 mg, 0.24 mmol) were solved in DMF (2 mL). A solution of 3-oxo-butanoic acid⁹ (42 mg, 0.4 mmol) in DMF (1.5 mL) was added dropwise at 0 °C. After 24 h at 22 °C the mixture was diluted with AcOEt, washed with water/brine, dried over MgSO₄ and concentrated *in vacuo*. The residual was chromatographically purified (SiO₂, isoxexane:AcOEt 5:3 -> 1:1). Yield: 175 mg (63%). Colorless foam. Two conformational isomers in the ratio 6:4.

¹H-NMR (400 MHz, CDCl₃) δ: 0.92 (*s*, *t*Bu), 1.05 (*s*, *t*Bu), 1.08 (*s*, *t*Bu), 1.86-1.98 (*m*), 2.10 (CH₃), 2.20 (CH₃), 2.31-2.42 (*m*), 2.90 (*s*, 2 x CH₃), 3.19 (*d*), 3.40-3.45 (*m*), 3.65 (*dd*), 3.77-4.07 (*m*), 4.45 (*d*, H3'), 4.54 (*d*, H3'), 6.37 (*dd*, H1'), 6.44-6.48 (*m*, H1'), 7.24-7.69 (*m*), 9.34 (*bs*, NH), 9.59 (*bs*, NH); ¹³C-NMR (100 MHz, CDCl₃) δ: 19.19 (2x), 19.37, 19.61, 27.04 (3x), 27.07 (6x), 27.15 (3x), 30.25, 30.49, 37.28 (2x), 40.80, 41.64, 44.76, 46.88, 49.91, 50.37,

63.93, 64.24, 73.71, 74.05, 85.27, 85.79, 88.01, 88.14, 109.24, 109.98, 127.93-135.88 (48x), 138.90, 140.41, 150.19, 150.27, 162.99, 163.75, 167.06, 167.43, 202.43, 202.43; MS (ESI): calc. for [C₄₇H₅₈N₃O₇Si₂+H]⁺: 832.3813; found: 832.3827.

¹S. Hong, M. M. Greenberg, Org. Lett., 2004, 6, 26, 5011-5013.

²L. Xu, J. Jin, M. Lal, P. Daublain and M. Newcomb, Org. Lett., 2007, 9, 9, 1837-1840.