A Macrocyclic Coumarin-Containing Tripeptide via CuAAC Chemistry

Sander S. van Berkel, Bas van der Lee, Floris L. van Delft and Floris P. J. T. Rutjes*
Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ, Nijmegen, The Netherlands.
Fax: (+31) 24365 2929; Tel: (+31) 243652381
E-mail: F.Rutjes@science.ru.nl;

Supplementary information

Instrumentations

NMR spectra were recorded on Bruker DPX200 (200 MHz and 50 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively), Bruker DMX300 (300 MHz and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) and Varian inova 400 spectrometers. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts (δ) are reported in parts per million (ppm) relative to a residual proton peak of the solvent, $\delta=3.31$ for $\mathrm{CD}_{3} \mathrm{OD}, \delta=7.26$ for CDCl_{3}, and $\delta=4.79$ for $\mathrm{D}_{2} \mathrm{O}$. Multiplicities are reported as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), dq (double quartet), ddd (double, double doublet), ddt (double, double triplet) or m (multiplet). Broad peaks are indicated by br. Coupling constants are reported as a J value in Hertz (Hz). The number of protons (n) for a given resonance is indicated as nH , and is based on spectral integration values. ${ }^{13} \mathrm{C}$ NMR chemical shifts (δ) are reported in ppm relative to $\mathrm{CD}_{3} \mathrm{OD}\left(\delta=49.0\right.$) or $\mathrm{CDCl}_{3}(\delta=$ 77.0). Electrospray LC/MS analysis was performed using a Shimadzu LC/MS 2010A system. Matrix assisted laser desorption/ionisation time-of-flight (MALDI-ToF) spectra were measured on a Bruker Biflex III spectrometer and samples were prepared from MeOH solutions using indoleacrylic acid (IAA) ($20 \mathrm{mg} / \mathrm{mL}$) as a matrix. LCQ/MS analysis was performed using Thermo scientific Advantage LCQ Lineair-lontrap Electrospray (ESI-MS). Electrospray ionisation time-of-flight (ESI-ToF) spectra were measured with a JEOL AccuToF. FT-IR spectra were recorded on an ATI Matson Genesis Series FTIR spectrometer with a fitted ATR cell. The vibrations (v) are given in cm^{-1}. Fluorescence measurents were performed on an Ascent reader, Thermolab systems OY fluorometer equipped with a 390/460 filter set (excitation /emission).

Methods and materials

Unless otherwise stated, all chemicals were obtained from commercial sources and used without further purification. THF was distilled under nitrogen from sodium/benzophenone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc}$ and $\mathrm{Et}_{2} \mathrm{O}$ were distilled under nitrogen from CaH_{2}. Analytical thin layer chromatography (TLC) was performed on Merck precoated silica gel 60 F-254 plates (layer thickness 0.25 mm) with visualization by ultraviolet (UV) irradiation at $\lambda=254 \mathrm{~nm}$ and/or $\lambda=366 \mathrm{~nm}$ and/or staining with KMnO_{4}. Purifications by silica gel chromatography were performed using Acros ($0.035-0.070 \mathrm{~mm}$, pore diameter ca. 6 nm) silica gel. Preparative thin layer chromatography (Prep-TLC) was performed on Merck precoated silica gel 60 F-254 plates (layer thickness 1.00 mm) with concentration zone and visualization by UV irradiation at $\lambda=254 \mathrm{~nm}$ and/or $\lambda=366 \mathrm{~nm}$. Counter current distribution was carried out using n-butanol and water. Water used in the biological procedures was deionised using a Labconco Water Pro PS purification system. Bovine serum albumin (BSA) was purchased from Sigma, A-7030. Cbz-Gly-Gly-Arg-AMC was purchased from Bachem, l-1140. Human thrombin (h-Flla) and alpha-2-macroglobulin-thrombin complex ($\alpha_{2} \mathrm{M}-\mathrm{T}$) were supplied by Synapse B.V., Maastricht, The Netherlands.

Synthesis

Boc-Arg-AMC•HCI (I)

To a cold solution $\left(-15^{\circ} \mathrm{C}\right)$ of Boc-protected arginine ($4.64 \mathrm{~g}, 5.0 \mathrm{mmol}$) and 7 -amino-4-methyl-coumarin ($875 \mathrm{mg}, 5.0 \mathrm{mmol}$) in pyridine (15 mL), phosphoryl chloride ($0.51 \mathrm{ml}, 5.5 \mathrm{mmol}$) was added drop wise. A color change going from yellow to orange was observed. The mixture was stirred for 2 hours at $-15{ }^{\circ} \mathrm{C}$ and then allowed to warm to room temperature and was stirred for an additional hour. The reaction mixture was quenched with water (15 mL). The solvents were evaporated under reduced pressure. The crude reaction mixture was purification by counter current chromatography using water as stationary phase and n-butanol as mobile phase. The product was obtained as a light yellow powder ($1.59 \mathrm{~g}, 68 \%$). $R_{\mathrm{F}}=0.65$ $\left(n-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 4: 1: 1 \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.70(\mathrm{~d}, \mathrm{~J}=2.13,1 \mathrm{H}), 7.60(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 173.6,163.2$, 158.6, 158.0, 155.2, 143.3, 126.7, 117.2, 113.6, 108.0, 80.9, 56.4, 42.1, 30.6, 28.8, 26.5, 18.6. HRMS (ESI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 432.2247$, found: 432.2247

H-Arg-AMC•2HCI (II)

To a suspension of Boc-Arg-AMC•HCI (I) (1.18 g, 2.53 mmol$)$ in ether $(50 \mathrm{~mL})$, a solution of HCl dissolved in EtOAc ($2.6 \mathrm{M}, 10 \mathrm{ml}$) was added. The suspension was stirred overnight at room temperature after which the solvents were removed in vacuo. The product was re-suspended in $\mathrm{Et}_{2} \mathrm{O}$ (20 mL), stirred for 2 hours and filtered off to yield a white powder (993 mg , $97 \%) . R_{\mathrm{F}}=0.17\left(n-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 4: 1: 1 \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.95-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}):$ 169.0, 155.4, 155.2, 142.6, 127.0, 117.7, 117.3, 113.9, 108.3, 54.8, 41.8, 29.8, 25.5, 18.7. LRMS (ESI+) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 332.1$, found: 332.2 ; Anal. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 3.0 \mathrm{HCl}$ calculated C 45.15\% H 5.69\% N 16.45\%, measured C 45.12\% H 5.43\% N 16.57\%

Boc-Gly-Pro-OH (III)

This compound was prepared according to a literature procedure: ${ }^{\text {s1 }}$
Quantities used; H-Pro-OMe ($1.30 \mathrm{~g}, 7.75 \mathrm{mmol}$), Boc-Gly-OH ($1.26 \mathrm{~g}, 7.75$ $\mathrm{mmol})$, NMM ($0.85 \mathrm{~mL}, 7.75 \mathrm{mmol}$), HOBt ($1.05 \mathrm{~g}, 7.75 \mathrm{mmol}$), EtOAc (30 mL) and DCC ($1.68 \mathrm{~g}, 8.14 \mathrm{mmol}$) The product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$. Boc-Gly-Pro-OMe (III) was obtained as an off white semisolid $(2.15 \mathrm{~g}(90 \%))$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 4.46(\mathrm{dd}, \mathrm{J}=8.7,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.99-3.81 (m, 2H), 3.70 (s, 3H), 3.66-3.52 (m, 2H), 2.28-2.18 (m, 1H), 2.08-1.92 (m, 3H), $1.45(\mathrm{~s}, 9 \mathrm{H})$. LRMS (ESI+) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 309.14$, found: 309.1
Subsequent saponification of Boc-Gly-Pro-OMe ($2.00 \mathrm{~g}, 7.50 \mathrm{mmol}$) in dioxane (13 mL), water (5 mL) using $\mathrm{NaOH}(2 \mathrm{~mL}, 2 \mathrm{M})$. The reaction was stirred for 16 hours at room temperature. After addition of $\mathrm{HCl}(1.5 \mathrm{~mL}, 2 \mathrm{M})$ the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before the solvents were removed in vacuo. The product was obtained as a white powder ($1.61 \mathrm{~g}(79 \%)$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 4.40(\mathrm{dd}, \mathrm{J}=8.73 .4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.99$3.81(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H})$, 2.08-1.92 (m, 3H), 1.45 (s, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 173.7,168.3,156.5,78.7,58.6,45.4,41.5,28.2,26.8,23.8$. LRMS (ESI-) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-} 271.1$, found: 271.1, $542.9[2 \mathrm{M}-\mathrm{H}]^{-}$

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $\mathrm{H}-\mathrm{Arg}-\mathrm{AMC}$ (II) (202 mg, 0.5 mmol), Boc-Gly-Pro-OH (III) ($150 \mathrm{mg}, 0.55 \mathrm{mmol}$), DMAP ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$) and HOBt ($73.7 \mathrm{mg}, 0.55 \mathrm{mmol}$) in DMF $(9 \mathrm{~mL}), \mathrm{EDC} \cdot \mathrm{HCl}(116 \mathrm{mg}, 0.55 \mathrm{mmol})$ was added in small portions. The solution was allowed to warm to room temperature and was stirred for 16 hours at room temperature after which the DMF was evaporated in vacuo. The crude material was purified using counter current chromatography $\left(\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\right)$ to afford an off-white solid (205 mg $\left.(70 \%)\right) R_{\mathrm{F}}=0.62\left(\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 4: 1: 1\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.87(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=8.8,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=4.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}=5.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}$, $J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 174.9$, $172.9,172.5,171.4,163.2,158.7,155.4,155.2,143.4,226.7,117.4,117.3,113.7,108.2,80.6,62.4$, 54.9, 48.0, 43.9, 41.9, 30.8, 29.8, 28.7, 26.4, 26.0, 18.6. HRMS (ESI+) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{7}$ $[\mathrm{M}+\mathrm{H}]^{+} 586.2989$, found: 586.2973.

H-Gly-Pro-Arg-AMC•2HCl (1)

Compound IV ($200 \mathrm{mg}, 0.35 \mathrm{mmol}$) was suspended in $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and HCl in EtOAc was added ($2.6 \mathrm{M}, 2 \mathrm{~mL}$). This mixture was stirred for 16 hours and solvents were evaporated in vacuo. The crude material was purified by counter current chromatography $\left(\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\right)$ and the product was obtained as a white powder ($161 \mathrm{mg}(95 \%)$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm): 7.87 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (dd, J = 2.0, 8.8 Hz, 1H), $6.25(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.48$ (m, $2 \mathrm{H}), 3.94(\mathrm{q}, \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.65(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}):$ 172.6, 170.7, 165.0, 161.3, 156.7, 153.3, 141.4, 124.8, 115.6, 115.4, 111.8, 106.2, 60.1, 53.6, 40.1, 39.9, 29.1, 28.0, 24.7, 23.8, 16.6. HRMS (ESI+) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 486.2465$, found: 486.2500
N-Butynyloxycarbonyl-Gly-OH (6a)

Prepared according to a modified literature procedure: ${ }^{\text {s2 }}$
To a solution of glycine (150 mg, 2 mmol) in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, butynchloroformate ($265 \mathrm{mg}, 2 \mathrm{mmol}$) was added drop wise whilst keeping the pH between 9.5 and 10.5 with a 2 M NaOH solution. The reaction was monitored until the pH was stable and then stirred for 72 hours. The solution was transferred to a separation funnel and washed two times with EtOAc $(10 \mathrm{~mL})$ after which the water layer was acidified with $2 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$. The product was extracted from the water layer with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} after which the solvent was removed in vacuo. The product was obtained as a yellow oil ($332 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.26$ (br s, $1 \mathrm{H}), 4.21(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{dt}, \mathrm{J}=6.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 173.7, 156.1, 77.2, 69.9, 63.2, 42.4, 19.3. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$172.0610, found: 172.0605 .

N-Butynyloxycarbonyl-Gly-Pro-OMe (8)
To a cooled mixture ($0^{\circ} \mathrm{C}$) of N -butynyloxycarbonyl-Gly-OH (6a)
 $(150 \mathrm{mg}, 0.88 \mathrm{mmol})$, proline methyl ester ($113 \mathrm{mg}, 0.88 \mathrm{mmol}$), NMM $(89 \mathrm{mg}, 0.88 \mathrm{mmol})$ and HOBt ($118 \mathrm{mg}, 0.88 \mathrm{mmol}$) in EtOAc (5 mL), DCC ($180 \mathrm{mg}, 0.92 \mathrm{mmol}$) was added in small portions. The mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$ and an additional 16 hours at room temperature. DCU was filtered off and the filtrate was transferred to a separation funnel and washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 5 \mathrm{~mL})$. The combined aqueous layers were washed with EtOAc $(3 \times 5 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ where after
the solvent was removed in vacuo. The product was purified by column chromatography (EtOAc/MeOH 20:1) to afford a yellow oil ($159 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm): 4.46 (dd, J = 8.7, 4.0 Hz, 1H), 4.12 (dt, J = 6.9, 2.3 Hz, 2H), $3.96(\mathrm{q}, \mathrm{J}=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.45-$ $3.65(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dt}, \mathrm{J}=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.86(\mathrm{~m}$, 3H). LRMS (ESI+) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$283.1, found: 283.1.

N-Butynyloxycarbonyl-Gly-Pro-OH (5a)

N-Butynyloxycarbonyl-Gly-Pro-OMe (8) (158 mg, 0.56 mmol$)$ was dissolved in a mixture of dioxane (13 mL), $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and a 2 M NaOH solution (2 mL) was added. The mixture was stirred for 16 hours at room temperature. EtOAc (10 mL) was added to the reaction mixture and it was transferred to a separation funnel. The aqueous layer was acidified with $2 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$ and washed with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} before the solvent was removed in vacuo. The product was purified with gradient column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9 \rightarrow 1: 1\right)$ and the product was obtained as yellow oil. ($105 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 2.11-1.86(\mathrm{~m}, 3 \mathrm{H}), 2.28-$ $2.18(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, \mathrm{J}=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{q}, \mathrm{J}=$ $17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{dt}, \mathrm{J}=6.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{dd}, \mathrm{J}=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H})$. LCMS analysis: purity $+99 \%, \mathrm{MS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 269.1$, found: 269.0.

N-Hex-5-ynoyl-Gly-OMe (7)

To a cooled solution ($0^{\circ} \mathrm{C}$) of $\mathrm{H}-\mathrm{Gly}-\mathrm{OMe} \cdot \mathrm{HCl}(687.5 \mathrm{mg}, 5.5 \mathrm{mmol})$, 5-hexynoic acid ($0.6 \mathrm{~mL}, 5.5 \mathrm{mmol}$), and DMAP ($1.21 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$, EDC $\cdot \mathrm{HCl}(1.05 \mathrm{~g}, 5.5 \mathrm{mmol})$ was slowly added in small portions. The mixture was for 30 min at $0^{\circ} \mathrm{C}$ and an additional 16 hours at room temperature. The reaction mixture was poured into $1 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 50 mL). The combined organic layers were washed with sat. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure to afford the product as a light yellow oil ($980 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 6.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.05(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 2.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{dt}, \mathrm{J}=2.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{p}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 172.4,170.4,83.4,69.2,52.4,41.2,34.6,24.0,17.8$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$184.0974, found: 184.0972.

N-Hex-5-ynoyl-Gly-OH (6b)

Compound 7 ($550 \mathrm{mg}, 3 \mathrm{mmol}$) was dissolved in THF (30 mL) and cooled to
 $0^{\circ} \mathrm{C}$. An aqueous solution of $\mathrm{NaOH}(1 \mathrm{M}, 6 \mathrm{~mL})$ was added drop wise. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and an additional 30 min at room temperature. The volume of the reaction was reduced to 50% before aqueous $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ were added. The layers were separated after which the water layer was washed with EtOAc $(2 \times 20 \mathrm{~mL})$. The organic layers were combined and dried over MgSO_{4}. After filtration of MgSO_{4} the solvents were removed under reduced pressure. The crude product was re-dissolved in EtOAc (30 mL) and an aqueous solution of NaHCO_{3} ($1 \mathrm{M}, 20 \mathrm{~mL}$) was added. After extraction and separation, the water layer was acidified with aqueous $\mathrm{HCl}(2 \mathrm{M}, 15 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and after filtration evaporated under reduced pressure. The product was obtained as slightly yellow solid ($507 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 6.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 5.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, COOH), $4.09(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{dt}, \mathrm{J}=2.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{t}, \mathrm{J}=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 173.4,171.6,83.2$, 69.0, 40.9, 34.4, 24.0, 17.6. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right.$170.0817, found: 170.0817.

N-Hex-5-ynoyl-Gly-Pro-OBu (9)

Compound 6b ($169 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{H}-\mathrm{Pro}^{t} \mathrm{Bu}(180 \mathrm{mg}, 1.05 \mathrm{mmol})$ and DMAP ($242 \mathrm{mg}, 2 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. To the cooled solution EDC $\cdot \mathrm{HCl}(210 \mathrm{mg}, 1.1 \mathrm{mmol})$ was added slowly after which the reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and overnight at room temperature. The reaction mixture was quenched
with aqueous $\mathrm{HCl}(2 \mathrm{M}, 20 \mathrm{~mL})$ and the layers were separated. The water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration the solvent was removed under reduced pressure. The product was obtained as a yellow oil (315 mg , $97 \%)^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{S}$-cis/trans isomers observed; $\delta(\mathrm{ppm}): 6.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{dd}, \mathrm{J}=$ $8.6,3.5 \mathrm{~Hz})+4.25(\mathrm{dd}, \mathrm{J}=8.2,2.8 \mathrm{~Hz}) 2 \mathrm{H}, \mathrm{AB}$-system: $4.10+3.96(\mathrm{dd}, \mathrm{J}=17.7,4.6 \mathrm{~Hz})+\mathrm{AB}-$ system: $4.07+3.72$ (dd, $J=17.2,3.5 \mathrm{~Hz}) 2 \mathrm{H}, 3.67-3.61(\mathrm{~m})+3.60-3.53(\mathrm{~m})+3.48-3.42(\mathrm{~m}) 2 \mathrm{H}, 2.37$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz})+2.36(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}) 2 \mathrm{H}, 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.21-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.89-1.82 (m, 2H), $1.46(\mathrm{~s})+1.45(\mathrm{~s}) 9 \mathrm{H} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.7,170.4,166.8$, 166.3, 82.9, 82.6, 81.2, 68.7, 59.2, 58.8, 46.2, 45.5, 41.6, 41.3, 34.3, 30.9, 28.6, 27.5, 24.0, 23.7, 21.7, 17.5. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 323.1971$, found: 323.1966.

N-Hex-5-ynoyl-Gly-Pro-OH (5b)

Compound 9 ($315 \mathrm{mg}, 0.97 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and TFA ($1.5 \mathrm{~mL}, 20.2 \mathrm{mmol}$) was added. The reaction was stirred for 16 hours at room temperature. The solvent and excess TFA were removed under reduced pressure after which the crude product was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and an aqueous solution of $\mathrm{NaHCO}_{3}(1 \mathrm{M}, 20 \mathrm{~mL})$ was added. After extraction and separation, the water layer was acidified with aqueous $\mathrm{HCl}(2 \mathrm{M}, 15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and after filtration evaporated under reduced pressure. The product was obtained as slightly brown oil ($290 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.16$ (br s, 1 H), 4.53 (dd, $J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), AB-system: $4.19+4.04(\mathrm{dd}, \mathrm{J}=17.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H})$, $2.45(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{dt}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}$, 1H), 1.82 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.7,175.6,169.5,84.3,70.2,60.5,47.4$, 42.6, 35.6, 30.2, 25.9, 25.7, 18.7. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 267.1345$, found: 267.1349 .
N-Carbobenzyloxy-3-aminophenol (10a)

Prepared according to a literature procedure: ${ }^{\text {S3 }}$
Quantities used; 3-aminophenol ($2.5 \mathrm{~g}, 23 \mathrm{mmol}$), benzyl chloroformate $(2.0 \mathrm{~g}, 11.5 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{O}(175 \mathrm{~mL})$. The product was obtained as a white powder ($2.85 \mathrm{~g}, 51 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 9.62(\mathrm{~s}$, $1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{ddd}, \mathrm{J}=8.3$, $1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.38 (ddd, $J=8.1,2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.13(\mathrm{~s}, 2 \mathrm{H})$. LRMS (ESI+) $\mathrm{m} / \mathrm{z} \mathrm{calcd}$. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$244.1, found: 244.0.
N-Ethoxycarbonyl-3-aminophenol (10b)

Prepared according to a literature procedure: ${ }^{\text {S4 }}$
Quantities used; 3-aminophenol ($12.8 \mathrm{~g}, 117 \mathrm{mmol}$), ethyl chloroformate (25.6 g , $237 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{O}(450 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. The product was obtained as white crystals ($11.4 \mathrm{~g}, 54 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{br}, 1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, \mathrm{J}=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{ddd}, \mathrm{J}=8.1,2.4,0.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $6.19(\mathrm{br}, 1 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. LRMS (ESI+) m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$182.1, found: 182.1.
N-Acetyl-3-aminophenol (10c)

Prepared according to a literature procedure: ${ }^{\mathrm{s5}}$
Quantities used; 3-aminophenol ($10.9 \mathrm{~g}, 0.10 \mathrm{~mol}$) acetic anhydride (21.3 mL , 0.22 mol) The product was obtained as a light brown powder ($15.0 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.15(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}$, 1 H), 6.91 (ddd, $J=8.1,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.52 (ddd, $J=8.1,2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09 ($\mathrm{s}, 3 \mathrm{H}$). LRMS (ESI+) m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$152.1, found: 152.0.
 N -ethoxycarbonyl-3-aminophenol (10b) ($2.0 \mathrm{~g}, 12 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{SO}_{4}(40 \mathrm{~mL}$, 60% in $\mathrm{H}_{2} \mathrm{O}$). The product was obtained as a light pink powder ($2.4 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 10.19(\mathrm{br}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 282.1$, found: 282.1.

N-Acetyl-7-amino-4-chloromethylcoumarin (11c)

Ethyl 4-chloroacetoacetate ($1.8 \mathrm{~g}, 11.12 \mathrm{mmol}$) was added to a solution of N -acetyl-3-aminophenol (10c) ($1.4 \mathrm{~g}, 9.27 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{SO}_{4}\left(30 \mathrm{~mL}, 70 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The suspension was stirred for 4 days at $45{ }^{\circ} \mathrm{C}$. The mixture was transferred to a separation funnel and the product was extracted with EtOAc $(3 \times 35 \mathrm{~mL})$. Solid material was filtered off and the filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ after which the solvent was removed in vacuo. The product was purified two times by column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9$) and was obtained as brown powder ($465 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}): 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, J = 8.8, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.54(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 169.1,159.8,154.0,150.4,142.8,125.7,115.0,112.9,112.1,105.5,41.1,24.1$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{CINO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$252.0428, found: 252.0433.

7-Amino-4-chloromethylcoumarin (12)

To a solution of concentrated $\mathrm{HCl}(0.20 \mathrm{~mL})$ in 2-propanol (1 mL) was added N -acetyl-7-amino-4-chloromethylcoumarin (10c) ($200 \mathrm{mg}, 1.20 \mathrm{mmol}$). The solution was heated to reflux and stirred for 16 hours. The mixture was then cooled to room temperature and subsequently transferred to a separation funnel. After addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, the product was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ after which the solvents were removed in vacuo. The product was obtained as a brown solid. ($181 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 4.87(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.59 (dd, J = 8.7, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.48(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}):$ 157.7, 154.9, 153.3, 127.1, 113.0, 109.3, 108.4, 100.6, 42.3. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{CINO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$210.3022, found: 210.0322.

7-Amino-4-azidomethylcoumarin (13)

To a suspension of $\mathrm{NaN}_{3}(1.14 \mathrm{~g}, 17.5 \mathrm{mmol})$ in acetone and acetonitril ($1: 1 \mathrm{v} / \mathrm{v}, 70$ mL), 7-Amino-4-chloromethylcoumarin (12) ($730 \mathrm{mg}, 3.5 \mathrm{mmol}$) was added. The mixture was stirred for 48 hours after which the solvent was evaporated in vacuo. The mixture was suspended in EtOAc (35 mL) and the precipitated salts were removed by filtration. The resulting organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The product was obtained as a brown powder (725 $\mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 7.48(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, \mathrm{J}=8.7,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 164.2,157.5,154.9,152.7,126.5,113.2,108.6,107.7,51.6$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$217.0726, found: 217.0730. FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 2569,2116,1688$, 1601, 1320, 849, 603.

Boc-Arg-7-amino-4-azidomethylcoumarin•HCl (14)

To a cooled solution ($-15{ }^{\circ} \mathrm{C}$) of Boc-protected arginine $(328 \mathrm{mg}$, 1.00 mmol) and 7-amino-4-azidomethylcoumarin (13) (216 mg, 1.00 mmol) in pyridine (3 mL) was added drop wise phosphoryl chloride ($102 \mathrm{mg}, 1.1 \mathrm{mmol}$). The mixture was stirred for 5 min at $-15^{\circ} \mathrm{C}$ and was allowed to warm to room temperature and stirred for an additional hour. The solvent was evaporated under reduced pressure and purification was performed two times using counter current chromatography ($n-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$) to obtain the product as a white powder (208 mg, 41\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.86(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 173.6$, 162.6, 158.7, 158.0, 155.7, 151.7, 151.6, 143.6, 126.2, 117.3, 144.8, 113.0, 108.3, 81.0, 56.4, 51.4, 42.1, 30.6, 28.7, 26.5. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 473.2261$, found: 473.2285.

H-Arg-7-amino-4-azidomethylcoumarin•2TFA (4)

To a suspension of Boc-Arg-7-amino-4-azidomethylcoumarin (14) (295 mg, 0.58 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added trifluoroacetic acid (TFA, 0.5 mL , 6.7 mmol). The suspension was stirred for 48 hours after which the solvent and excess TFA were removed in vacuo to afford a orange/brown powder ($299 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.96(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, \mathrm{J}=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.74(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.02(\mathrm{~m}$, $2 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 169.0,162.5$, 158.7, 155.6, 151.6, 142.9, 126.3, 117.3, 115.2, 113.2, 108.4, 54.9, 51.4, 41.8, 29.8, 25.6. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 445.1270, calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 373.1734$, found: 373.1747. FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right)$: 3339, 3170, 2142, 1701, 1662, 1610, 1584, 1528, 1416, 1394, 1225, 1001, 858.

N-Butynyloxycarbonyl-Gly-Pro-Arg-7-amino-4-azidomethylcoumarin•TFA (3a)

To a cooled solution ($0^{\circ} \mathrm{C}$) of N -butynyloxycarbonyl-Gly-Pro-OH (5a) ($113 \mathrm{mg}, 0.42 \mathrm{mmol}$), H-Arg-7-amino-4-azidomethyl-coumarin-2TFA (4) $(252 \mathrm{mg}, 0.42 \mathrm{mmol})$, HOBt ($57 \mathrm{mg}, 0.42 \mathrm{mmol}$) and DMAP (103 mg, 0.42 mmol) in DMF (10 mL), EDC•HCl ($89 \mathrm{mg}, 0.46 \mathrm{mmol}$) was slowly added in small portions. The mixture was allowed to warm to room temperature and was stirred for an additional 16 hours. The DMF was removed under reduced pressure and purification was performed three times using counter current chromatography $\left(\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\right)$ to give the product as a yellow powder ($66 \mathrm{mg}, 24 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta(\mathrm{ppm}): 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}), 7.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.42$ $(\mathrm{s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.51-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.80-4.05$ ($\mathrm{m}, 4 \mathrm{H}$), 3.55-3.75 (m, 2H), $3.23(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.26-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.92-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.86(\mathrm{~m}, 4 \mathrm{H})$, MALDI-TOF (ESI+) m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{10} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 623.2690$, found: 623.2733 , calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NaN}_{10} \mathrm{O}_{7}$ $[\mathrm{M}+\mathrm{Na}]^{+} 645.2510$, found: 645.2515.
N-[(N-Hex-5-ynoyl)-Gly-Pro-Arg]-7-amino-4-azidomethylcoumarin•TFA (3b)

N-Hex-5-ynoyl-Gly-Pro-OH (5b) (133 mg, 0.5 mmol) and H-Arg-7-amino-4-azidomethylcoumarin-2TFA (4) ($295 \mathrm{mg}, 0.5 \mathrm{mmol}$) were dissolved in DMF (15 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. DMAP (121 mg, 1.0 $\mathrm{mmol})$ and EDC.HCl ($105 \mathrm{mg}, 0.55 \mathrm{mmol}$) were added to the cooled solution which was subsequently stirred for 30 min at $0{ }^{\circ} \mathrm{C}$ before allowing the mixture to warm to room temperature. The reaction mixture was stirred for an additional 16 hours at room temperature after which the solvent was removed under reduced pressure. The crude mixture was purified by counter current chromatography $\left(n-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\right.$ $1: 1)$ to afford a white solid ($200 \mathrm{mg}, 54 \%$) $R_{\mathrm{F}}=0.36\left(\mathrm{BuOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}\right.$ 4:1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.92(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70-7.63 (m, 2H), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{dd}, \mathrm{J}=$ 9.7, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.47(\mathrm{dd}, \mathrm{J}=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15+3.94$ (ABsystem, $J=16.7,2 \mathrm{H}$), 3.79-3.74 (m, 1H), 3.70-3.64 (m, 1H), $3.25(\mathrm{dt}, \mathrm{J}=6.8,6.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.42$2.22(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dt}, J=7.0,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.60(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 176.2,174.9,172.5,171.0,162.6,158.7,155.7,151.6$, 143.6, 126.1, 117.5, 14.9, 113.1, 108.4, 84.1, 70.2, 62.5, 54.90, 54.84, 51.45, 43.2, 41.9, 35.5, 30.8, 29.7, 26.5, 26.0, 25.7, 18.7. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{10} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$621.2897, found: 621.2882. FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 3287,2941,2111,1653,1610,1528,1420,1195,1135$.
N-[(N-Hex-5-ynoyl)-Gly-Pro-Arg ${ }^{\omega, \omega^{\prime}}$ (bis-Boc)]-7-amino-4-azidomethylcoumarin (15)

Compound 3b ($57 \mathrm{mg}, 77.0 \mu \mathrm{~mol}$) was dissolved in THF (1.5 mL) and DMAP ($18.6 \mathrm{mg}(0.15 \mathrm{mmol})$ was added. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $(\mathrm{Boc})_{2} \mathrm{O}(67.1 \mathrm{mg}, 0.31 \mathrm{mmol})$ was added slowly. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and an additional 72 hours at r.t. The solvent was removed under reduced pressure and the crude mixture was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$ to afford the ${ }^{\omega, \omega}$ bis-(Boc) product as a white solid ($50 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.92$ (dd, J = 6.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.74$ (ddd, $J=8.6,3.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=16.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H})$, 3.68-3.62 (m, 1H), 3.46-3.38 (m, 1H), 2.40-2.20 (m, 4H), 2.16 (t, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddt}, \mathrm{J}=7.0,4.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 6 \mathrm{H})$, 1.88-1.58 (m, 4H), $1.52(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.9$, 174.8, 172.7, 170.9, 162.6, 160.7, 157.6, 155.6, 154.1, 151.6, 143.6, 126.0, 117.4, 114.7, 112.9, $108.3,85.3,84.5,84.2,80.4,70.3,62.6,55.4,51.4,45.5,43.2,41.3,35.4,30.8,29.6-29.5$ (d), 28.7, 28.3, 27.1-27.0 (d), 26.0, 25.6, 18.7. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{10} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 821.3946$, found: 821.3939.

Macrocyclization reactions

Starting with linear precursor 3a first the 1,3-dipolar cycloaddition was performed in the presence of copper(I) bromide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in toluene at $40{ }^{\circ} \mathrm{C}$ giving rise to multiple products (Table S1, entry 1). Applying CuSO_{4} in combination with sodium ascorbate in a solvent mixture of tert-butanol/water again produced multiple products, including the desired cyclic product (Table S1, entry 2). Disturbingly, identification of the crude products with ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy was complicated due to complexation of copper ions to the guanidine moiety giving rise to broadening of the signals. A convenient way to get around this problem involves pressure-promoted cycloaddition in the absence of copper. ${ }^{[57]}$ Hence, a high pressure experiment was performed (DMF, $50^{\circ} \mathrm{C}, 5$ days), but unfortunately again a variety of products was formed (entry 3). The use of copperwire activated by $\mathrm{Et}_{3} \mathrm{~N}$ in a solvent mixture of $\mathrm{MeOH} / \mathrm{MeCN}$ required prolonged heating ($65{ }^{\circ} \mathrm{C}$, 7 days), leading to the formation of both the desired product and by-products (entry 4).
The macrocyclization reactions performed on compound 3b proceeded more successfully, giving clean conversions to the desired product $\mathbf{2 b}$ according to TLC analysis (Table S1, entries 5 and 6). However, the unprotected side-chain of arginine hindered purification and thus isolation of the product.

Entry	Compound	Conditions	Time	Temp	S	P	B
1	3 a	$\mathrm{CuBr}, \mathrm{DBU}$, toluene	48 h	$40^{\circ} \mathrm{C}$	\checkmark		\checkmark
2	3a	$\mathrm{CuSO}_{4}, \mathrm{Na}-\mathrm{Asc}$., ${ }^{\text {t }} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$	16 h	$40^{\circ} \mathrm{C}$	\checkmark	\checkmark	\checkmark
3	3a	DMF ${ }^{\text {a }}$	5 d	$50^{\circ} \mathrm{C}$	\checkmark		\checkmark
4	3 a	Cu-wire, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH} / \mathrm{MeCN}$	7 d	$65^{\circ} \mathrm{C}$		\checkmark	\checkmark
5	3b	Cul, TBTA $^{\text {b }}$, Et ${ }_{3} \mathrm{~N}, \mathrm{DMF}$	18 h	$40^{\circ} \mathrm{C}$		\checkmark	
6	3b	Cu-wire, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$	18 h	$40^{\circ} \mathrm{C}$		\checkmark	
${ }^{\text {a }}$ Reaction performed at 15 kPa , no additives, ${ }^{\mathrm{b}}$ TBTA = tris-(benzyltriazolylmethyl)amine, $\mathrm{S}=$ starting material, $\mathrm{P}=$ product, $\mathrm{B}=$ by-product							

Cyclo-[-N-(N-(1,2,3-triazol-4-yl)-butanoyl-glycyl-prolyl-arginyl ${ }^{\omega, \omega}{ }^{\prime}$ (bis-Boc))-7-amino-4-methylenecoumarin-] (16)

Compound (15) ($47 \mathrm{mg}, 57.6 \mu \mathrm{~mol}$) was dissolved in dry and degassed $\left(\mathrm{N}_{2}\right)$ THF (25 mL) and kept under a nitrogen atmosphere. A volume of 5 mL of a stock solution containing $\mathrm{CuBr}(85 \mathrm{mg}$, $576 \mu \mathrm{~mol})$ and $N, N, N^{\prime}, N^{\prime}, N^{\prime \prime}$-pentamethyl- diethylenetriamine (PMDETA) ($105 \mathrm{mg}, 576 \mu \mathrm{~mol}$) in dry and degassed (N_{2}) THF (50 mL) was slowly added to the reaction (a colour change of yellow to green is observed). The reaction mixture was warmed to $40^{\circ} \mathrm{C}$ and stirred for 7 hours and subsequently quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$. The solvents were removed under reduced pressure and the crude mixture was purified by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$ to afford a light yellow solid ($11 \mathrm{mg}, 23 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm): 8.33 (dd, J = 4.2, 2.1 Hz, 1H), 7.79 (s, 1H), 7.30 (ddd, J = 8.6,
$5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.09+5.49$ (AB-system, $J=15.3,2 H$), 4.57-4.53 (m, 1H), 4.32 (dd, $J=8.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24+3.86$ (AB-system, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.70(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38-2.11(\mathrm{~m}, 3 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}$, 9 H), 1.43 (d, J = $3.3 \mathrm{~Hz}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.6,174.9,172.4,171.2,162.3$, $157.7,156.24,156.15,148.9,148.5,143.4,125.3,125.0,117.6,117.4,114.4,108.3,85.4,84.5,80.4$, 68.9, 63.64, 63.60, 54.8, 54.7, 52.8, 47.8, 45.4, 42.9, 41.3, 35.3, 31.0, 28.7, 28.3, 27.4, 27.1, 26.3, 26.1, 25.1. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{10} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 821.3946$, found: 821.3942. FT-IR $v_{\text {max }}$ film $\left(\mathrm{cm}^{-1}\right)$: 3304, 2976, 2928, 2872, 1722, 1645, 1567, 1143, 1057.

Cyclo-[-N-(N-(1,2,3-triazol-4-yl)-butanoyl-glycyl-prolyl-arginyl)-7-amino-4-methylenecoumarin-]•2HCl (2b)

A solution of compound $16(10 \mathrm{mg}, 12.2 \mu \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ was treated with 0.5 mL 2.6 M HCl in EtOAc. The clear solution became a suspension upon stirring for 72 hours. The solvents were removed by a nitrogen airflow and the remaining solid was dried in vacuo to yield a yellow solid ($8 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 9.17(\mathrm{~s}$, $1 \mathrm{H}, N \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.15+5.60(\mathrm{AB}-$ system, $J=15.1 \mathrm{~Hz}, 1.3$, 2 H), 4.53 (dd, $J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=8.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ +3.95 (AB-system, $J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.21$ $(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 1 \mathrm{H})$, $2.09(\mathrm{dt}, \mathrm{J}=6.2,12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-178(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.54(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.5,175.1,172.3,171.4,162.3$, 158.7, 156.2, 148.7, 143.4, 125.6, 125.3, 117.7, 117.6, 114.5, 108.4, 63.7, 54.3, 53.0, 47.9, 43.0, 41.9, 35.2, 31.1, 30.8, 28.5, 26.9, 26.13, 26.10, 24.9. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{10} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 621.2898, found: 621.2851.

Biological evaluation

Determination kinetic parameters for H-Gly-Pro-Arg-AMC•2HCl (1):
The following solutions were prepared and stored at the indicated temperatures:
Substrate: H-Gly-Pro-Arg-AMC ($55.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in $1.0 \mathrm{~mL} \mathrm{BSA}^{+}$buffer ($60 \mathrm{mg} / \mathrm{mL}$, containing $\mathrm{NaCl}(8.18 \mathrm{mg} / \mathrm{mL})$) to give a 100 mM stock solution. From this stock solution a series of dilutions was prepared (total volume of $500 \mu \mathrm{~L}$) to give final substrate concentrations in the well of $0,200,400,600,800,1000,1200$, and $1400 \mu \mathrm{M}$. The dilutions are kept at $37^{\circ} \mathrm{C}$.
Fluo: Cbz-Gly-Gly-Arg-AMC ($61.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in 1.0 mL DMSO to give a 100 mM stock solution. $7.5 \mu \mathrm{~L}$ of the 100 mM stock solution and $292.5 \mu \mathrm{~L}$ BSA60 buffer (NOT containing NaCl) were shortly vigorously mixed to give a Fluo-solution of 2.5 mM . This solution was kept at room temperature.
h-Thrombin: A solution of $1.2 \mu \mathrm{M}$ activated humane thrombin (denoted Flla) was prepared from an $18.8 \mu \mathrm{M}$ Flla stock solution via dilution with BSA5 buffer ($5 \mathrm{mg} / \mathrm{mL}$). The Flla solution was kept at $0^{\circ} \mathrm{C}$. Prior to use it was warmed to $37^{\circ} \mathrm{C}$.
Calibrator: Lyophilized a_{2}-MT complex was reconstituted in 1 mL deionised water to give a final enzyme concentration of 600 nM . The calibrator solution was kept at $0^{\circ} \mathrm{C}$. Prior to use it was warmed to $37^{\circ} \mathrm{C}$.

A set of four wells (quadruple measurement) of an Immulon 2 HB , round-bottom 96 -well plate, was filled with $100 \mu \mathrm{~L}$ of each appropriate substrate concentration (total 4×8 wells). A set of four wells in a 96 wells plate was filled with $80 \mu \mathrm{~L}$ BSA5 buffer followed by $20 \mu \mathrm{~L}$ of Fluo-solution. The 96 wells plate was placed in a Ascent reader, Thermolab systems OY fluorometer equipped with a 390/460 filter set (excitation lemission) and allowed to warm to $37^{\circ} \mathrm{C}$ (approximately 5 minutes). To all the wells containing substrate, $20 \mu \mathrm{~L}$ of $0.6 \mu \mathrm{M}$ Flla solution was added to each well (4×8 wells) to initiate hydrolysis (200 nM end concentration of Flla in wells). To the wells containing the Fluo-solution, $20 \mu \mathrm{~L}$ of calibrator was added to initiate hydrolysis. In a typical experiment fluorescence was measured continuously during 40 minutes at $37^{\circ} \mathrm{C}$. The obtained data was organized in Microsoft Excel and the kinetic parameters were obtained by fitting the data to the Michaels-Menten equation. For the determination of K_{M} and $\mathrm{k}_{\text {cat }}$ the initial reaction velocity of the first 10 minutes was used. The amidolytic activity was calculated by comparing the arbitrary fluorescence values to those of an AMC-calibration curve. Results of different experiments can be compared by correcting the amidolytic activity of each experiment with the amidolytic activity found for the calibrator which was measured in the same 96 wells plate.

Determination kinetic parameters for cyclo-[-N-(N-(1,2,3-triazol-4-yl)-butanoyl-glycyl-prolyl-arginyl)-7-amino-4-methylenecoumarin- $] \cdot 2 \mathrm{HCl}$ (2b):

Using the experimental procedure as described vide supra utilizing substrate $\mathbf{2 b}$.
The following solution was prepared and stored at the indicated temperature:
Substrate: c(-Gly-Pro-Arg-AMC-[triazole]-spacer-) (2b, $1.4 \mathrm{mg}, 0.025 \mathrm{mmol}$) was dissolved in 0.25 mL BSA60 ${ }^{+}$buffer ($60 \mathrm{mg} / \mathrm{mL}$ containing $\mathrm{NaCl}(8.18 \mathrm{mg} / \mathrm{mL})$) to give a 100 mM stock solution. From this stock solution a series of dilutions was prepared (total volume of $500 \mu \mathrm{~L}$) to give final substrate concentrations in the well of $0,50,100,200,400,600,800$ and $1000 \mu \mathrm{M}$. The dilutions are kept at $37^{\circ} \mathrm{C}$.

In brief, kinetic parameters were determined by monitoring the fluorescence increase in time as a result of the hydrolysis of the arginine-coumarin bond. The fluorescent counts were subsequently converted to AMC concentrations using a calibration curve. Plotting of the calculated AMC concentration versus time gave curves as depicted in Graph S1. While complete substrate consumption was observed after approximately 3 minutes for the linear Gly-Pro-Arg peptide, complete substrate consumption for the cyclic Gly-Pro-Arg peptide required more than 10 minutes. For both the linear and cyclic peptide the curves obtained at different substrate concentrations did not allow linear regression processing so that the initial rate constants were determined via non-linear regression by fitting of the data to a $6^{\text {th }}$ order polynomial. From these polynomials the initial rate constants were determined.

Graph S1 Normalized plots of the hydrolysis of the linear and cyclic peptide at a substrate concentration of $600 \mu \mathrm{M}$ where $(\Delta)=$ linear peptide (1), conc. Flla $=1.11 \mu \mathrm{M}$ and $(\stackrel{)}{ }$) = cyclic peptide (2b), conc. Flla $=0.45 \mu \mathrm{M}$

Subsequently applying the Michaelis-Menten equation on the obtained rate constants for linear peptide 1, we found a poor overlap of the fitted data with the experimental data which hampered accurate determination of the kinetic parameters. To assess the kinetic constants more accurately, a Lineweaver-Burk plot was constructed by plotting the reciprocal substrate concentrations against the reciprocal rate constants. The slope of the obtained linear line equals $k_{\text {cat }}$ and from the x-intercept, the K_{M} could be determined $\left(x=-1 / K_{M}\right)$. Statistical analysis showed a tolerable R^{2} of 0.97 . From calculations a K_{M} value of $746.9 \mu \mathrm{M}$ and a $\mathrm{k}_{\text {cat }}$ of $29.3 \mathrm{~s}^{-1}$ were obtained for the linear peptide 1 (Table S2, entry 1). Utilizing the Michaelis-Menten equation on the initial rate constants obtained for compound $\mathbf{2 b}$, gave a good overlap of the fitted and experimental data, resulting in a $\mathrm{k}_{\mathrm{cat}}=23.3 \mathrm{~s}^{-1}$, and $\mathrm{a} \mathrm{K}_{\mathrm{M}}=3693.9 \mu \mathrm{M}$ (Table S2, entry 2).

Table S2. Kinetic parameters for the linear peptide 1 and cyclic peptide 2b

Entry	Substrate	$\mathrm{E}(\mu \mathrm{M})$	$\mathrm{K}_{\mathrm{M}}(\mu \mathrm{M})$	$\mathrm{k}_{\text {cat }}\left(\mathrm{s}^{-1}\right)$	$\mathrm{V}_{\text {max }}(\mathrm{M} \cdot \mathrm{s})^{-1}$
$\mathbf{1}$	${ }^{\mathrm{b}}$ H-Gly-Pro-Arg-AMC (1)	1.11	746.9	29.3	39228
$\mathbf{2}$	${ }^{\text {a }}$ c[Pro-Arg-AMC- Ψ (triazole)-Gly] (2b)	0.45	3693.9	23.3	6308
Calculated via Michaelis-Menten method, ${ }^{\mathrm{b}}$ Calculated via Lineweaver-Burk method, $\mathrm{E}=\mathrm{Flla}, \mathrm{v}_{\text {max }}=\mathrm{k}_{\text {cat }} / \mathrm{K}_{\mathrm{M}}$					

References

[^0]
[^0]: S1 B. Poojary, K. H. Kumar, S. L. Belagali, Z. Naturforsch. B, 2004, 59, 817-820.
 S2 D. J. Maly, F. Leonetti, B. J. Backes, D. S. Dauber, J. L. Harris, C. S. Craik, A. Ellman, J. Org. Chem. 2002, 67, 910-915.
 S3 E. R. Bissell, Synthesis 1982, 846-848.
 S4 B. Cürten, P. H. M. Kullmann, M. E. Bier, K. Kandler, B. F. Schmidt, Photochem. Photobiol. 2005, 81, 641648.

 S5 A. Kakefuda, T. Suzuki, T. Tobe, J. Tsukada, A. Tahara, S. Sakamoto, S. Tsukamoto, J. Med. Chem. 2002, 45, 2589-2598.
 S6 R. G. Bhat, S. Sinha, S. Chandrasekaran, Chem. Commun. 2002, 812-813.
 S7 V. Melai, A. Brillante, P. Zanirato, J. Chem. Soc., Perkin Trans. 2 1998, 2447-2449

