Supplementary Information

For

Synthesis of a Monophosphoryl Lipid A Derivative and Its Conjugation to a Modified Form of Tumor-Associated Carbohydrate Antigen GM3

Qianli Wang, Jie Xue and Zhongwu Guo*

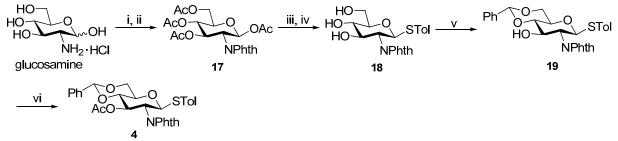

Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA

Table of Contents:	
1. Experimental	S-1
2. NMR and MS Spectra	S-8

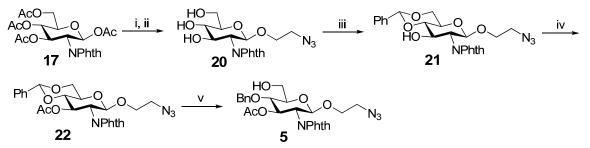
1. Experimental

General Methods. NMR spectra were recorded on a 400 or 500 MHz instrument with chemical shifts reported in ppm (δ) in reference to Me₄Si if not specified otherwise. Coupling constants (*J*) are reported in hertz (Hz). Optical rotations were determined using an Autopol III polarimeter. High resolution mass spectra (HRMS) were obtained with a Waters Micromass-LCTPremier-XE instrument, and MALDI-TOF MS were performed with a Bruker Ultraflex mass spectrometer. Thin layer chromatography (TLC) was performed on silica gel GF254 plates with detection by phosphomolybdic acid in EtOH or 1% H₂SO₄ in EtOH. Molecular sieves were dried under high vacuum at 170-180 °C for 6-10 h immediately before use. Commercial anhydrous solvents and other reagents were used without further purification.

Scheme S-1: Synthesis of Compound 4.

Reagents and Conditions: i) Phthalic anhydride, NaOH, H₂O-MeOH; ii) Ac₂O, AcONa; iii) ToISH, BF₃· Et₂O, CH₂Cl₂; iv) MeONa, MeOH-CH₂Cl₂; v) PhCH(OMe)₂, TsOH, DMF; vi) Ac₂O, TEA, CH₂Cl₂

Compound 17. After the mixture of D-glucosamine hydrochloride (80.0 g, 0.37 mol), NaOH (15.6 g, 0.39 mol), H_2O (350 mL), and MeOH (150 mL) was stirred at rt for 1 h, phthalic anhydride (63.2 g, 0.43 mol) was added, and the reaction was stirred at rt overnight. The solid materials were filtered, washed with a small amount of H_2O , and then dried to produce a solid


intermediate (77.0 g). The mixture of this intermediate (20.0 g, 0.061 mol) and AcONa (13.5 g, 0.164 mol) in Ac₂O (270 mL) was refluxed for 10 h. After removing most of Ac₂O in vacuum, the residue was poured into ice-water, and the mixture was extracted with DCM (300 mL). The organic layer was washed with saturated NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄ and evaporated in vacuum. The residue was recrystallized from EtOAc and hexane to give **17** as a light yellow solid (14.9 g, 52%).

Compound 18. To the stirred solution of **17** (26.7 g, 0.056 mol) and *p*-toluenethiol (9.0 g, 0.073 mol) in anhydrous DCM (90 mL) at 0 °C, $BF_3 \cdot Et_2O$ (10.6 mL, 0.084 mol) was added dropwise. When TLC showed the reaction was completed, the reaction mixture was washed with saturated NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was then dissolved in DCM (50 mL) and treated with CH₃ONa/CH₃OH solution (20 mL, 0.4 M) at rt for 1.5 h. After most of the solvent was removed, the mixture was put in the refrigerator for 2 h, and the mixture was filtered to give **18** as a white solid (10.8 g, 66.7% for two steps). Ref. S. G. Hansen, T. Skrydstrup. *Eur. J. Org. Chem.*, 2007, 3392.

Compound 19. The solution of **18** (10.8 g, 26.0 mmol), benzaldehyde dimethyl acetal (5.9 mL, 39.0 mmol) and TsOH·H₂O (0.29 g, 1.3 mmol) in anhydrous DMF (50 mL) was stirred at 50 °C with occasional vacuum application until TLC showed the reaction was complete. The reaction was quenched with triethylamine, and the mixture was diluted with DCM, washed with brine, dried over anhydrous Na_2SO_4 and concentrated in vacuum. The residue was purified by flash column chromatography to give **19** as a white solid (11.4 g, 87.0%). Ref. Y. Niu, N. Wang, X. Cao, X. Ye. *Synlett*, 2007, 2116.

Compound 4. The mixture of **19** (13.0 g, 26.0 mmol), Ac₂O (3.7 mL, 39.0 mmol), triethylamine (7.9 mL, 78.0 mmol) and DMAP (12 mg, catalytic amount) in DCM (30 mL) was stirred at rt for 5 h. The reaction mixture was washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The residue was recrystallized from EtOAc and hexane to give **4** as a white solid (11.0 g, 78.0%). ¹H NMR (CDCl₃, 400 MHz): δ 7.86 (m, 2 H, aromatic H of Phth), 7.75 (m, 2 H, aromatic H of Phth), 7.43 (m, 2 H, aromatic H), 7.35 (m, 3 H, aromatic H), 7.27 (d, *J* = 8.0 Hz, 2 H, aromatic H), 7.07 (d, *J* = 8.0 Hz, 2 H, aromatic H), 5.88 (t, *J* = 9.6 Hz, 1 H, H-3), 5.76 (d, *J* = 10.8 Hz, 1 H, H-1), 5.52 (s, 1 H, Ph<u>CH</u>), 4.42 (dd, *J* = 10.4 and 4.8 Hz, 1 H, H-6), 4.33 (t, *J* = 10.8 Hz, 1 H, H-2), 3.85-3.71 (m, 3 H, H-4, H-5, H-6'), 2.32 (s, 3 H, CH₃), 1.87 (s, 3 H, OAc). ¹³C NMR (CDCl₃, 100 MHz): δ 136.9, 134.4, 133.7, 129.7, 128.2, 127.2, 123.7, 101.7, 84.0, 79.0, 70.7, 68.8, 54.4, 21.2, 20.5.

Scheme S-2: Synthesis of Compound 5.

Reagents and Conditions: i) 2-azidoethanol, BF₃·Et₂O, CH₂Cl₂; ii) MeONa, MeOH; iii) PhCH(OMe)₂, TsOH, DMF; iv) Ac₂O, TEA, DMAP, CH₂Cl₂; v) BH₃ / THF, TMSOTf

Compound 20. To the stirred mixture of **17** (13.5 g, 0.028 mol), 2-azidoethanol (10.0 g, 0.113 mol) and molecular sieve (4 Å, 3.5 g) in anhydrous DCM (40 mL) under argon, BF₃·Et₂O (5.4 mL, 0.042 mol) was added dropwise. After the mixture was stirred at rt for 2 days, the reaction was quenched with saturated NaHCO₃ solution. The mixture was diluted with DCM and filtered through a Celite pad. The filtrate and washings were combined and washed with brine, dried over Na₂SO₄, and concentrated. The residue was then dissolved in MeOH, to which was added CH₃ONa/CH₃OH solution (0.4 M) until pH = 9. After at rt for 20 min, the reaction mixture was neutralized with Amberlite IR-120 (H⁺) resin, concentrated in vacuum, and finally purified by flash column chromatography to give **20** as syrup (9.0 g, 83.9% for two steps). ¹H NMR (CD₃OD, 500 MHz): δ 7.85 (m, 2 H, aromatic H), 7.80 (m, 2 H, aromatic H), 5.25 (d, *J* = 8.5 Hz, 1 H, H-1), 4.23 (dd, *J* = 11.0 and 8.5 Hz, 1 H, H-2), 4.04-3.98 (m, 2 H, H-3, H-6), 3.94 (dd, *J* = 10.0 and 4.0 Hz, 1 H, H-6'), 3.74 (m, 1 H, O<u>CH</u>₂CH₂N₃), 3.65-3.60 (m, 1 H, H-5), 3.47-3.38 (m, 2 H, H-4, O<u>CH</u>₂CH₂N₃), 3.21-3.17 (m, 1 H, <u>CH</u>₂N₃). ¹³C NMR (CD₃OD, 125 MHz): δ 134.2, 132.1, 98.6, 77.3, 71.5, 71.4, 68.4, 61.5, 57.3, 50.5, 8.5.

Compound 21. It was prepared from **20** (85.5%) following the same procedure described for **19**. ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (m, 2 H, aromatic H of Phth), 7.73 (m, 2 H, aromatic H of Phth), 7.46 (m, 2 H, aromatic H), 7.37 (m, 3 H, aromatic H), 5.55 (s, 1 H, Ph<u>CH</u>), 5.32 (d, *J* = 8.5 Hz, 1 H, H-1), 4.61-4.56 (m, 1 H, H-3), 4.36 (dd, *J* = 10.4 and 4.0 Hz, 1 H, H-6), 4.24 (dd, *J* = 10.4 and 8.8 Hz, 1 H, H-6'), 3.98-3.93 (m, 1 H, O<u>CH</u>₂CH₂N₃), 3.83-3.79 (m, 1 H, H-2), 3.65-3.57 (m, 3 H, H-4, H-5, O<u>CH</u>₂CH₂N₃), 3.37-3.30 (m, 1 H, <u>CH</u>₂N₃), 3.23 (d, 1 H, OH), 3.19-3.13 (m, 1 H, <u>CH</u>₂N₃). ¹³C NMR (CDCl₃, 100 MHz): δ 162.9, 137.3, 134.3, 132.0, 129.5, 128.6, 128.4, 126.6, 123.6, 102.1, 99.2, 82.3, 68.8, 68.7, 66.5, 56.8, 50.7, 36.7, 31.6. Ref. J. Xue, J. Zhu, R. E. Marchant, Z. Guo. *Org. Lett.*, 2005, 7, 3753.

Compound 22. It was prepared from **21** (77.4%) following the same procedure described for **4**. ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (m, 2 H, aromatic H of Phth), 7.73 (m, 2 H, aromatic H of Phth), 7.46 (m, 2 H, aromatic H), 7.37 (m, 3 H, aromatic H), 5.85 (t, *J* = 9.2 Hz, 1 H, H-3), 5.55 (s, 1 H, Ph<u>CH</u>), 5.53 (d, *J* = 8.4 Hz, 1 H, H-1), 4.41 (dd, *J* = 10.4 and 4.8 Hz, 1 H, H-6), 4.32 (dd, *J* = 10.4 and 8.0 Hz, 1 H, H-6'), 4.02-3.98 (m, 1 H, O<u>CH</u>₂CH₂N₃), 3.88-3.74 (m, 3 H, H-2, H-4, O<u>CH</u>₂CH₂N₃), 3.68-3.63 (m, 1 H, H-5), 3.41-3.34 (m, 1 H, <u>CH</u>₂N₃), 3.19-3.13 (m, 1 H, <u>CH</u>₂N₃), 1.89 (s, 3 H, OAc). ¹³C NMR (CDCl₃, 100 MHz): δ 134.5, 129.4, 128.5, 126.5, 123.8, 101.9, 99.0, 79.5, 69.9, 69.1, 68.9, 66.6, 55.5, 50.6, 20.8.

Compound 5. To a stirred solution of **22** (3.0 g, 6.0 mmol) in BH₃·THF at 0 °C, TMSOTf (1.5 mL) was added dropwise. After the mixture was stirred at 0 °C for another hour, the reaction was quenched by trietylamine and MeOH. The solution was then concentrated and purified by flash column chromatography to give **5** as a white solid (2.0 g, 66.0%). ¹H NMR (CDCl₃, 500 MHz): δ 7.82 (m, 2 H, aromatic H of Phth), 7.70 (m, 2 H, aromatic H of Phth), 7.32 (m, 2 H, aromatic H), 7.26 (m, 3H, aromatic H), 5.77 (dd, *J* = 10.5 and 9.0 Hz, 1 H, H-3), 5.50 (d, *J* = 9.6 Hz, 1 H, H-1), 4.66 (d, *J* = 11.0 Hz, 2 H, Ph<u>CH</u>₂), 4.20 (dd, *J* = 10.5 and 8.5 Hz, 1 H, H-2), 3.99-3.89 (m, 2 H, H-6, O<u>CH</u>₂CH₂N₃), 3.82 (m, 2 H, H-5, H-6'), 3.67-3.62 (m, 2 H, H-4, O<u>CH</u>₂CH₂N₃), 3.35-3.30 (m, 1 H, <u>CH</u>₂N₃), 3.18-3.14 (m, 1 H, <u>CH</u>₂N₃), 1.76 (s, 3 H, OAc). ¹³C NMR (CDCl₃, 125 MHz): δ 171.5, 134.4, 134.3, 128.8, 128.7, 128.2, 128.0, 123.7, 98.4, 79.2, 76.4, 75.7, 75.6, 75.0, 73.3, 72.0, 69.0, 61.9, 56.9, 55.3, 50.6, 20.8.

Compound 6. After a mixture of 4 (1.6 g, 2.94 mmol), 5 (1.0 g, 1.96 mmol) and 4Å molecular sieves (4 g) was stirred at rt in anhydrous dichloromethane (DCM) for 2 h under an Argon atmosphere, it was cooled to -50 °C, and then NIS (1.34 g, 5.88 mmol) and AgOTf (0.05 g, 0.2 mmol) were added. The mixture was stirred at rt for 2 days and then guenched by the addition of triethylamine. The molecular sieves were filtered off with a Celite pad and washed with DCM. The filtrate and washings were combined and washed with saturated Na₂S₂O₃ solution and brine, dried over anhydrous Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography (toluene and AcOEt 10:1) to give 6 as a white solid (0.98 g, 54%). $R_f = 0.40$ (toluene and AcOEt 4:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.82-7.78 (m, 4 H), 7.70-7.66 (m, 4 H), 7.46 (m, 2 H), 7.37-7.35 (m, 3 H), 7.26-7.23 (m, 3 H), 7.06-7.03 (m, 2 H), 5.88 (t, J = 8.8 Hz, 1 H, H-3'), 5.65 (dd, J = 10.4, 8.8 Hz, 1 H, H-3), 5.58 (d, J = 8.8 Hz, 1 H, H-1'), 5.56 (s, 1 H, PhCH), 5.35 (d, J = 8.8 Hz, 1 H, H-1), 4.46-4.36 (m, 4 H, H-6', H-2', PhCH₂), 4.14-4.08 (m, 2 H, H-6, H-2), 3.88 (d, J = 10.4 Hz, 1 H, H-4'), 3.84-3.73 (m, 4 H, H-6, H-6', H-5', OCH₂CH₂N₃), 3.67-3.62 (m, 1 H, H-5), 3.58-3.51 (m, 2 H, H-4, OCH₂CH₂N₃), 3.31-3.24 (m, 1 H, CH₂N₃), 3.08-3.03 (m, 1 H, CH₂N₃), 1.90 (s, 3 H, OAc), 1.71 (s, 3 H, OAc). ¹³C NMR (CDCl₃, 100 MHz): δ 170.5, 170.2, 137.6, 137.1, 134.5, 134.3, 129.4, 128.6, 128.5, 128.1, 127.7, 126.5, 123.8, 123.6, 101.9, 98.7, 98.1, 79.4, 77.6, 74.8, 73.2, 70.0, 68.9, 68.8, 68.2, 66.6, 55.5, 55.1, 50.1, 20.8, 20.7. HR ESI MS (m/z) calcd. for C₄₈H₄₅N₅O₁₅Na $(M + Na)^+$ 954.2810, found 954.2813.

Compound 7. After a mixture of **6** (0.58 g, 0.63 mmol) and hydrazine monohydrate (5.5 mL) in ethanol (30 mL) was refluxed for 2 h, it was concentrated in vacuo, and the residue was purified by flash column chromatography (CH₂Cl₂ and MeOH 15:1 to 10:1) to afford **7** as a white solid (0.27 g, 73%). $R_f = 0.65$ (CH₂Cl₂ and MeOH 7:1). ¹H NMR (CD₃OD, 400 MHz): δ 7.50-7.47 (m, 2 H), 7.40-7.28 (m, 8 H), 5.57 (s, 1 H, Ph<u>CH</u>), 4.95 (d, J = 11.2 Hz, 1 H, Ph<u>CH</u>₂), 4.64 (d, J = 10.4 Hz, 1 H, Ph<u>CH</u>₂), 4.37 (d, J = 8.4 Hz, 1 H, H-1'), 4.27 (d, J = 8.0 Hz, 1 H, H-1), 4.24 (dd, J = 10.4, 4.8 Hz, 1 H, H-6'), 4.09 (dd, J = 11.2 and 2.4 Hz, 1 H, H-6), 4.06-4.01 (m, 1 H, O<u>CH</u>₂CH₂N₃), 3.79-3.68 (m, 3 H, H-6, H-6', O<u>CH</u>₂CH₂N₃), 3.55-3.34 (m, 8 H, H-3, H-3', H-4, H-4', H-5, H-5', <u>CH</u>₂N₃), 2.73 (t, J = 8.8 Hz, 1 H, H-2'), 2.65 (dd, J = 10.4, 8.0 Hz, 1 H, H-2). ¹³C NMR (CD₃OD, 100 MHz): δ 138.0, 128.7, 128.2, 127.9, 127.8, 127.6, 126.3, 104.4, 103.4, 101.9, 81.6, 78.7, 76.6, 74.8, 74.6, 72.9, 68.9, 68.7, 68.5, 66.9, 57.9, 57.4, 50.8. HR ESI MS (*m*/*z*): calcd for C₂₈H₃₈N₅O₉ (M + H)⁺, 588.2670; found, 588.2647.

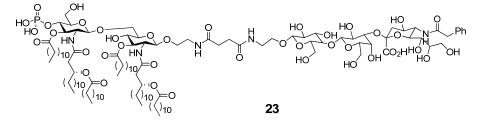
Compound 9. After the solution of EDC·HCl (391 mg, 2.0 mmol) and **8** (260 mg, 0.6 mmol) in anhydrous DCM (8 mL) and DMF (0.5 mL) was stirred at rt for 0.5 h, it was cooled to 0 °C, and then a solution of **7** (120 mg, 0.2 mmol) in DMF (1.5 mL) was added. The mixture was stirred at rt overnight and then diluted with DCM, washed with brine, dried over anhydrous Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂ and MeOH 40:1) to give **9** as a white solid (230 mg, 80%). $R_f = 0.40$ (CH₂Cl₂ and MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.50-7.47 (m, 2 H), 7.37-7.29 (m, 8 H), 6.19 (d, J = 4.8 Hz, 1 H, NH'), 5.99 (d, J = 6.8 Hz, 1 H, NH), 5.53 (s, 1 H, Ph<u>CH</u>), 5.19-5.13 (m, 1 H, lipid), 5.11-5.05 (m, 1H, lipid), 4.98 (d, J = 11.2 Hz, 1 H, Ph<u>CH</u>₂), 4.81 (d, J = 8.8 Hz, 1 H, H-1'), 4.64 (d, J = 11.2 Hz, 1 H, Ph<u>CH</u>₂), 4.62 (d, J = 3.2 Hz, 1 H, 3-OH), 4.58 (d, J = 8.0 Hz, 1 H, H-1'), 4.30 (dd, J = 10.8 and 4.0 Hz, 1 H, H-6), 4.17 (dt, = J 9.2 and 3.2 Hz, 1 H, H-3'), 4.09 (dd, J = 11.2 and 2.4 Hz, 1 H, H-6'), 4.06-4.01 (m, 1 H, O<u>CH₂</u>CH₂N₃), 3.99 (d, J = 3.2 Hz, 1 H, 3'OH), 3.93 (dt, J = 9.6 and 3.2 Hz, 1 H, H-3), 3.77-3.70 (m, 3 H, H-6, H-6', O<u>CH₂</u>CH₂N₃), 3.56-3.31 (m, 8 H, H-2, H-2', H-4, H-4', H-5, H-5', OCH₂<u>CH₂N₃), 2.48 (d, J = 6.4 Hz, 2 H, lipid), 2.37-2.26 (m, 6 H, lipid),</u>

1.66-1.50 (m, 8 H, lipid), 1.25 (br, 68 H, 34 x CH₂, lipid), 0.87 (t, *J* 6.4 Hz, 12 H, 4 x CH₃, lipid). ¹³C NMR (CDCl₃, 100 MHz): δ 174.6, 174.5, 172.1, 171.5, 138.5, 137.3, 129.3, 128.7, 128.5, 128.3, 128.1, 126.6, 102.1, 100.8, 100.3, 81.7, 78.5, 76.2, 74.9, 74.7, 71.7, 71.5, 71.1, 68.8, 68.2, 66.5, 59.1, 58.3, 50.9, 42.6, 36.7, 34.8, 32.1, 31.7, 29.9, 29.7, 29.6, 29.4, 25.5, 25.2, 22.9, 14.3. HR ESI MS (*m*/*z*): calcd for C₈₀H₁₃₃N₅NaO₁₅ (M + Na)⁺, 1426.9696; found, 1426.9696.

Compound 10. After the solution of EDC·HCl (205 mg, 1.07 mmol) and lauric acid (142 mg, 0.712 mmol) in anhydrous DCM (5 mL) was stirred at rt for 20 min, a solution of 9 (100 mg, 0.07 mmol) and N,N-dimethylaminopyridine (DMAP, 8.7 mg, 0.07 mmol) in DCM (5 mL) was added. The mixture was stirred at 45 °C overnight, and it was then diluted with DCM, washed with brine, dried over anhydrous Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂ and acetone 30:1 to 20:1) to give 10 as a white solid (110 mg, 87.3%). $R_f = 0.40$ (CH₂Cl₂and acetone 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.43-7.40 (m, 2 H), 7.35-7.21 (m, 8 H), 5.97 (d, J = 7.2 Hz, 2 H, NH, NH'), 5.48 (s, 1 H, Ph<u>CH</u>), 5.24 (t, J = 10.0 Hz, 1 H, H-3'), 5.17-5.00 (m, 3 H, H-3, 2 H lipid), 4.70 (d, J = 8.4 Hz, 1 H, H-1), 4.61-4.52 $(m, 3 H, H-1', PhCH_2), 4.32 (dd, J = 10.4, 4.8 Hz, 1 H, H-6'), 4.06-3.90 (m, 4 H, H-2, H-2', H-6, H-2')$ OCH₂CH₂N₃), 3.79-3.64 (m, 4 H, H-4', H-6, H-6', OCH₂CH₂N₃), 3.61-3.42 (m, 4 H, H-4, H-5, H-5', CH₂N₃), 3.37-3.31 (m, 1 H, CH₂N₃), 2.47-2.40 (m, 2 H, lipid), 2.34-2.15 (m, 6 H, lipid), 1.64-1.48 (m, 12 H, lipid), 1.24 (br, 104 H, 52 x CH₂, lipid), 0.87 (t, J = 6.4 Hz, 18 H, 6 x CH₃, lipid). ¹³C NMR (CDCl₃, 100 MHz): δ 174.0, 173.9, 173.8, 169.9, 169.7, 137.8, 137.1, 129.3, 128.7, 128.4, 128.2, 127.9, 126.3, 102.2, 101.5, 100.7, 79.0, 76.4, 75.3, 74.6, 71.5, 71.3, 71.2, 68.8, 68.1, 67.1, 66.7, 54.7, 53.6, 51.0, 42.1, 41.8, 34.8, 34.7, 34.5, 34.3, 32.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 25.5, 25.3, 25.0, 22.9, 14.3. HR ESI MS (m/z): calcd for C₁₀₄H₁₇₇N₅NaO₁₇ $(M + Na)^+$, 1791.3037; found, 1791.3024.

Compound 11. After the mixture of 10 (85 mg, 48 µmol), NaBH₃CN (45 mg, 0.72 mmol) and 4Å molecular sieves (1 g) in dry THF (10 mL) was stirred at rt for 2 h, it was cooled to 0 °C, and then HCl (1 M in dry ether) was added dropwise until the pH = 2. After the reaction mixture was stirred at 0 °C for 1 h and at rt for 3 h, triethylamine (0.5 mL) was added to terminate the reaction. The molecular sieves were filtered off through a Celite pat and washed with DCM. The filtrate and washings were combined and washed with saturated NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄ and finally evaporated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂ and acetone 15:1) to give **11** as a white solid (60 mg, 70.6%). $R_f = 0.25$ $(CH_2Cl_2 \text{ and acetone 15:1})$. $[\alpha]^{24}_{D}$ -15.0 (c 1.0, CHCl_3). ¹H NMR (CDCl_3, 400 MHz): δ 7.36-7.19 (m, 10 H), 5.96-5.90 (m, 2 H, NH', NH), 5.15-4.98 (m, 4 H, H-3', H-3, and 2 H of lipid), 4.64 (d, J = 8.8 Hz, 1 H, H-1), 4.60-4.50 (m, 5 H, H-1', 2 x PhCH₂), 4.04-3.85 (m, 4 H, H-2', H-2, H-6', OCH₂CH₂N₃), 3.79-3.63 (m, 5 H, H-4, 2 x H-6, H-6', OCH₂CH₂N₃), 3.60-3.48 (m, 3 H, H-4', H-5', H-5), 3.46-3.38 (m, 1 H, CH₂N₃), 3.33-3.26 (m, 1 H, CH₂N₃), 2.46-2.12 (m, 8 H, lipid), 1.66-1.46 (m, 12 H, lipid), 1.25 (br, 104 H, 52 x CH₂, lipid), 0.87 (t, J = 6.4 Hz, 18 H, 6 x CH₃, lipid). ¹³C NMR (CDCl₃, 100 MHz): δ 174.8, 174.0, 173.9, 169.9, 169.8, 137.8, 128.7, 128.6, 128.1, 128.0, 127.9, 101.4, 100.8, 76.5, 75.2, 74.7, 74.2, 74.0, 71.3, 71.2, 70.7, 67.9, 67.3, 54.0, 53.7, 50.9, 42.0, 41.8, 34.7, 34.4, 34.3, 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 25.5, 25.3, 25.2, 25.0, 22.9, 14.3. MALDI-TOF MS (m/z): calcd for C₁₀₄H₁₇₉N₅O₁₇, 1770.3; found, 1793.3 (M + Na)⁺.

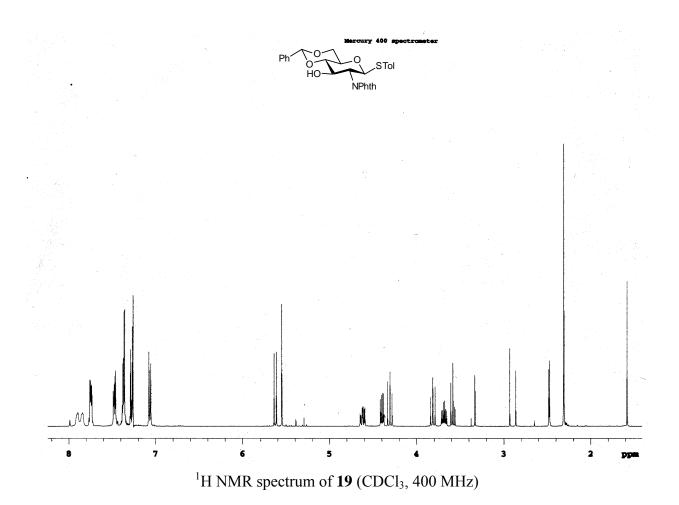
Compound 3. To the stirred solution of **11** (38 mg, 21 μ mol) in dry DCM (3 mL), dibenzyl diisopropylphosphoramidite **12** (21 μ L, 64 μ mol) and 1*H*-tetrazole (~0.45 M in CH₃CN, 0.24 mL,


0.107 mmol) were added. After the mixture was stirred at rt for 2 h and then cooled to -20 °C, t-BuOOH (~5.5 M in CH₃CN, 39 μ L, 0.214 mmol) was added, and the mixture was stirred at rt for another 2 h. The solvent was removed in vacuo, and the residue was purified by flash column chromatography (CH₂Cl₂ and MeOH 60:1) to give **3** as syrup (36.5 mg, 84%). $R_f = 0.45$ (CH₂Cl₂ and MeOH 40:1). $[\alpha]^{24}_{D}$ -9.0 (c 0.5, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 7.33-7.19 (m, 20 H), 5.87 (d, J = 8.8 Hz, 1 H, NH'), 5.80 (d, J = 8.8 Hz, 1 H, NH), 5.31 (dd, J = 10.4 and 8.8 Hz, 1 H, H-3'), 5.13-5.04 (m, 2 H, H-3 and 1 H of lipid), 5.02-4.95 (m, 1 H, lipid), 4.91-4.85 (m, 4 H, $(PhCH_2O)_2P$, 4.77 (d, J = 8.4 Hz, 1 H, H-1'), 4.54 (s, 2 H, PhCH₂), 4.51 (d, J = 8.0 Hz, 1 H, H-1), 4.48-4.41 (m, 3 H, H-4', PhCH₂), 4.05-3.88 (m, 3 H, H-2, H-6, OCH₂CH₂N₃), 3.84-3.68 (m, 3 H, H-2', H-6', H-6), 3.67-3.47 (m, 5 H, OCH₂CH₂N₃, H-6', H-5', H-5, H-4), 3.46-3.39 (m, 1 H, <u>CH</u>₂N₃), 3.32-3.25 (m, 1 H, <u>CH</u>₂N₃), 2.45-2.35 (m, 2 H, lipid), 2.32-2.12 (m, 8 H, lipid), 1.64-1.36 (m, 10 H, lipid), 1.34-1.08 (br, 104 H, 52 x CH₂, lipid), 0.87 (t, J = 6.4 Hz, 18 H, 6 x CH₃, lipid). ¹³C NMR (CDCl₃, 100 MHz): δ 128.8, 128.7, 128.6, 128.1, 128.0, 127.8, 101.0, 100.8, 76.5, 75.2, 74.7, 74.6, 74.5, 74.3, 73.6, 72.6, 71.3, 71.1, 70.7, 69.8, 69.7, 68.9, 68.3, 67.3, 54.8, 53.7. 50.9. 42.0. 41.9. 34.7. 34.4, 34.1, 32.1, 29.9, 29.8, 29.7, 29.6, 29.4, 25.6, 25.2, 25.0, 24.8, 22.9. 14.4. ³¹P NMR (CDCl₃, 161 MHz): δ -1.11. HR ESI MS (*m/z*): calcd for C₁₁₈H₁₉₂N₅NaO₂₀P $(M + Na)^{+}$, 2053.3796; found, 2053.3835.

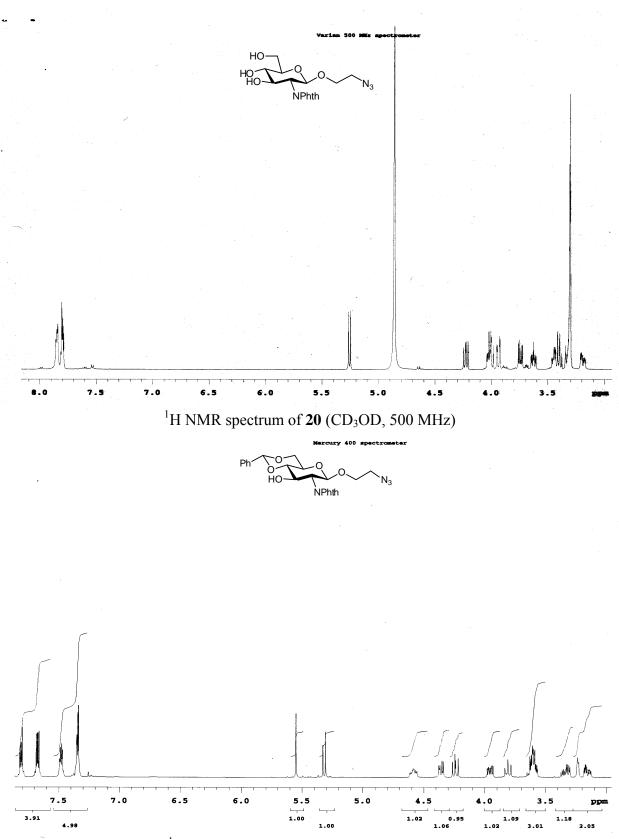
Compound 13. A suspension of 3 (25 mg, 12 μ mol), active zinc dust (25.0 mg, 0.38 mmol), and acetic acid (7 μ L, 0.12 mmol) in DCM (2 mL) was stirred at rt for 24 h, and then solid materials were removed by filtration and washed with DCM. The combined filtrates were neutralized with DIPEA, washed with brine, dried over anhydrous Na₂SO₄, and then concentrated in vacuo. The product [HR ESI MS (m/z): calcd for C₁₁₈H₁₉₅N₃O₂₀P $(M + H)^+$, 2005.4072, found, 2005.4142] was used for the next step of reaction without further purification. The solution of the obtained crude amine, succinic anhydride (5 mg, 49 μ mol), DIPEA (20 μ L, 0.12 mmol) and a catalytic amount of DMAP in DCM (2 mL) and DMF (0.5 mL) was stirred at rt overnight. The mixture was concentrated in vacuo and co-evaporated with toluene a couple of times, and the residue was purified by flash column chromatography (CH₂Cl₂ and MeOH 30:1) to give **13** as a white solid (18 mg, 70%). $R_f = 0.3$ (CH₂Cl₂ and MeOH 20:1). $[\alpha]^{24}_{D}$ -12.0 (*c* 0.25, CHCl₃). ¹H NMR (CDCl₃) 400 MHz): δ 7.34-7.16 (m, 20 H), 6.61 (m, 1 H, OCH₂CH₂NH), 6.34 (d, J = 8.8 Hz, 1 H, NH), 5.94 (d, J = 8.8 Hz, 1 H, NH), 5.43 (t, J = 9.6 Hz, 1 H, H-3'), 5.10-4.97 (m, 3 H, H-3 and 2 H of lipid), 4.93-4.83 (m, 4 H, (PhCH₂O)₂P), 4.78 (d, J = 8.0 Hz, 1 H, H-1'), 4.57-4.43 (m, 5 H, H-4', 2 x PhCH₂), 4.34 (d, J = 8.0 Hz, 1 H, H-1), 4.06-3.95 (m, 2 H, H-2, H-6), 3.84-3.76 (m, 2 H, H-2', H-6'), 3.74-3.61 (m, 5 H, OCH₂CH₂NH, H-5', H-6, H-6'), 3.60-3.45 (m, 3 H, OCH₂CH₂NH, H-5, H-4), 3.28-3.20 (m, 1 H, OCH₂CH₂NH), 2.82-2.72 (m, 1 H, CH₂CH₂COOH), 2.64-2.46 (m, 3 H, CH₂CH₂COOH), 2.46-2.38 (m, 2 H, lipid), 2.34-2.10 (m, 8 H, lipid), 1.64-1.35 (m, 10 H, lipid), 1.34-1.02 (br, 104 H, 52 x CH₂, lipid), 0.87 (t, J = 5.4 Hz, 18 H, 6 x CH₃, lipid). ¹³C NMR (CDCl₃, 125 MHz): δ 174.3, 174.3, 174.2, 173.9, 170.3, 170.3, 138.3, 137.8, 135.7, 128.8, 128.7, 128.6, 128.2, 128.1, 128.0, 127.9, 127.8, 101.4, 100.9, 75.0, 74.8, 74.7, 74.3, 73.6, 72.7, 71.5, 69.9, 69.8, 68.9, 68.3, 54.8, 54.0, 42.0, 41.6, 40.2, 34.8, 34.5, 34.3, 34.2, 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 25.6, 25.5, 25.3, 25.0, 24.8, 22.9, 14.4. ³¹P NMR (CDCl₃, 161 MHz): δ -1.36. HR ESI MS (m/z): calcd for C₁₂₂H₁₉₈N₃NaO₂₃P $(M + Na)^+$, 2127.4051;, found, 2127.4089.

Compound 14. To a stirred solution of **13** (18 mg, 8 μ mol) and *p*-nitrophenol (5.9 mg, 42 μ mol) in DCM (5 mL) was added EDC·HCl (8.2 mg, 42 μ mol) in an ice bath. After the mixture was stirred at rt for 5 h, it was diluted with DCM, washed with brine, dried over anhydrous Na₂SO₄,

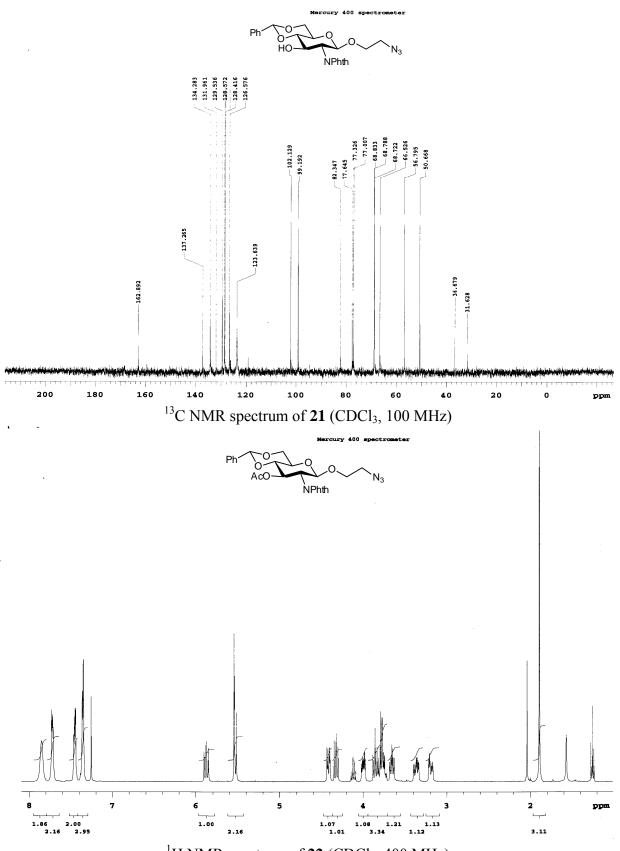
and condensed in vacuo. The residue was purified on a TLC plate (CH₂Cl₂ and MeOH 20:1) to give 14 as a white solid (16 mg, 83.5%). $R_f = 0.55$ (CH₂Cl₂ and MeOH 20:1). $[\alpha]^{24}_D$ -10.0 (c 0.65, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 8.24-8.19 (m, 2 H), 7.34-7.16 (m, 22 H), 6.73 (m, 1 H, OCH₂CH₂NH), 6.09 (d, J 8.8 Hz, 1 H, NH), 5.78 (d, J = 9.2 Hz, 1 H, NH), 5.32 (t, J = 8.8Hz, 1 H, H-3'), 5.08-5.03 (m, 1 H, lipid), 5.00-4.94 (m, 2 H, H-3 and 1 H of lipid), 4.92-4.83 (m, 4 H, $(PhCH_2O)_2P$, 4.71 (d, J = 8.0 Hz, 1 H, H-1'), 4.57-4.49 (m, 2 H, PhCH₂), 4.48-4.40 (m, 3 H, H-4', PhCH₂), 4.31 (d, J = 8.0 Hz, 1 H, H-1), 4.06-3.88 (m, 2 H, H-6, H-2), 3.83-3.71 (m, 3 H, H-2', H-6', OCH₂CH₂NH), 3.69-3.58 (m, 4 H, OCH₂CH₂NH, H-5', H-6, H-6'), 3.55-3.34 (m, 4 H, H-5, H-4, OCH₂CH₂NH), 2.92 (t, J = 7.6 Hz, 2 H, CH₂COOPhNO₂), 2.62 (t, J = 7.6 Hz, 2 H, CH₂CH₂COOPhNO₂), 2.44-2.35 (m, 2 H, lipid), 2.30-2.12 (m, 8 H, lipid), 1.70-1.36 (m, 10 H, lipid), 1.34-1.02 (br, 104 H, 52 x CH₂, lipid), 0.87 (t, *J* = 6.4 Hz, 18 H, 6 x CH₃, lipid). ¹³C NMR (CDCl₃, 125 MHz): δ 174.2, 174.1, 173.9, 173.8, 171.7, 171.4, 170.4, 170.2, 155.7, 145.5, 138.2, 137.7, 135.6, 135.5, 128.9, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 125.4, 122.7, 101.5, 101.0, 76.4, 74.8, 74.5, 74.4, 73.6, 72.5, 71.3, 71.2, 70.0, 69.9, 69.8, 68.9, 68.5, 68.0, 54.8, 54.3, 42.2, 41.9, 40.2, 34.8, 34.5, 34.4, 34.2, 32.2, 30.5, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 25.6, 25.3, 25.0, 24.8, 22.9, 14.4. ³¹P NMR (CDCl₃, 161 MHz): δ -1.04. HR ESI MS (*m/z*): calcd for $C_{128}H_{201}N_4NaO_{25}P(M + Na)^+$, 2248.4215; found, 2248.4226.

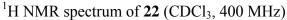

Compound 16. To a stirred solution of 14 (12 mg, 5 μ mol) and 15 (6 mg, 8 μ mol) in DMF (1.5 mL). N-methylmorpholine (NMM, 6 μ L, 54 μ mol) was added at 0 °C. The reaction mixture was stirred at rt overnight, and then DMF was removed in vacuo. The residue was purified on a TLC plate (CH₂Cl₂ and MeOH 3:1) to give 16 as a white solid (10 mg, 65%). $R_f = 0.2$ (CH₂Cl₂ and MeOH 3:1). $[\alpha]_{D}^{24}$ -4.5 (c 0.38, CHCl₃ and MeOH 4:1). ¹H NMR (CDCl₃ and CD₃OD 6:1, 500 MHz): δ 7.24-7.09 (m, 25 H), 5.30 (t, J = 10.0 Hz, 1 H, H-3'), 5.02-4.91 (m, 3 H, H-3, and 2 H of lipid), 4.81-4.73 (m, 4 H, (Ph<u>CH</u>₂O)₂P), 4.68 (d, J = 8.0 Hz, 1 H, H-1'), 4.47-4.40 (m, 2 H, PhCH₂), 4.39-4.33 (m, 3 H, H-4', PhCH₂), 4.32 (d, J = 8.0 Hz, 1 H, H-1"), 4.28 (d, J = 9.0 Hz, 1 H, H-1), 4.17 (d, J = 7.5 Hz, 1 H, H-1"), 3.99-3.94 (m, 2 H, H-6), 3.94-3.40 (m, 31 H), 3.38-3.16 (m, 5 H), 2.40-2.32 (m, 4H), 2.29 (dd, J = 15.0 and 6.0 Hz, 1 H, H-3"e of GM₃), 2.25-2.00 (m, 11 H, lipid and H-3"a of GM₃), 1.67-1.34 (m, 10 H, lipid), 1.30-0.98 (br, 104 H, 52 x CH₂, lipid), 0.84-0.70 (m, 18 H, 6 x CH₃, lipid). ¹³C NMR (CDCl₃ and CD₃OD 6:1, 125 MHz): δ 129.0, 128.8, 128.6, 128.5, 128.4, 128.0, 127.8, 127.7, 127.6, 127.1, 103.9, 102.9, 101.2, 100.5, 80.0, 77.5, 76.5, 76.1, 75.4, 74.9, 74.6, 74.2, 73.9, 73.7, 73.4, 73.3, 72.4, 72.3, 71.5, 71.2, 70.9, 69.9, 69.8, 69.2, 68.8, 68.5, 68.1, 67.5, 63.4, 61.7, 60.9, 54.4, 53.7, 52.7, 49.4, 49.2, 49.1, 48.9, 42.8, 41.1, 40.9, 39.6, 39.4, 34.5, 34.2, 34.0, 31.9, 31.0, 30.9, 29.7, 29.5, 29.4, 29.3, 25.4, 25.1, 24.8, 24.6, 22.7, 14.0. ³¹P NMR (CDCl₃ and CD₃OD 6:1, 161 MHz): δ -1.52. HR ESI MS (*m/z*): calcd for $C_{153}H_{244}N_5Na_2O_{41}P(M + 2Na)^{2+}$, 1442.3342; found, 1442.3287.

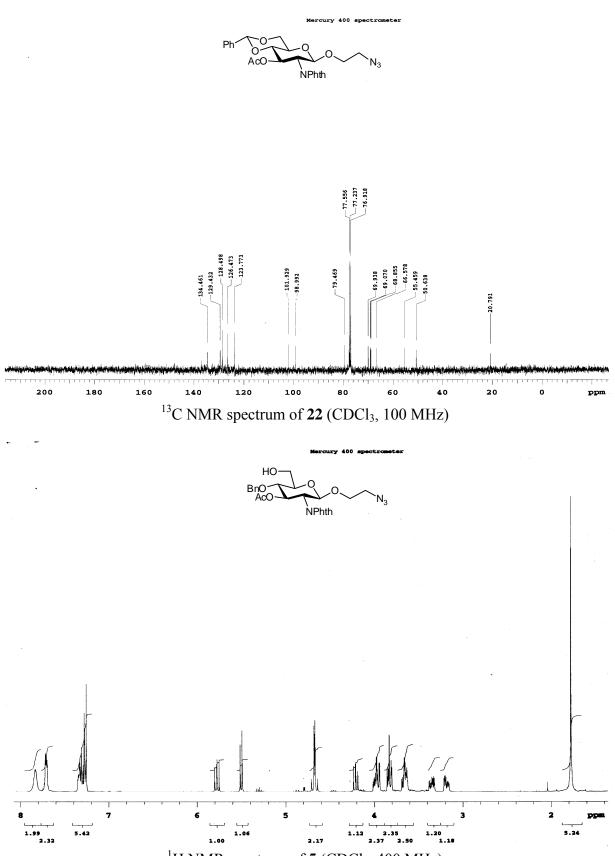
Compound 23. A mixture of **16** (7.5 mg, 2.64 μ mol) and 10% Pd-C (5.0 mg) in DCM-MeOH (1:1, 4 mL) was stirred under an atmosphere of H₂ at rt for 1 day. Thereafter, the catalyst was

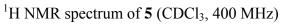

removed by filtration through a Celite pad, and the Celite pad was subsequently washed with DCM-MeOH (1:1) and MeOH. The combined filtrates were concentrated in vacuum, and the residue was purified by a short silica gel column (eluent: DCM/MeOH 1:3) to give **23** as a white solid (4.0 mg, 61.5%). $R_f = 0.25$ (CH₂Cl₂/MeOH 1:3). ¹H NMR (CDCl₃-CD₃OD, 500 MHz): δ ³¹P-NMR(CDCl₃-CD₃OD, 161 MHz): δ 2.875.

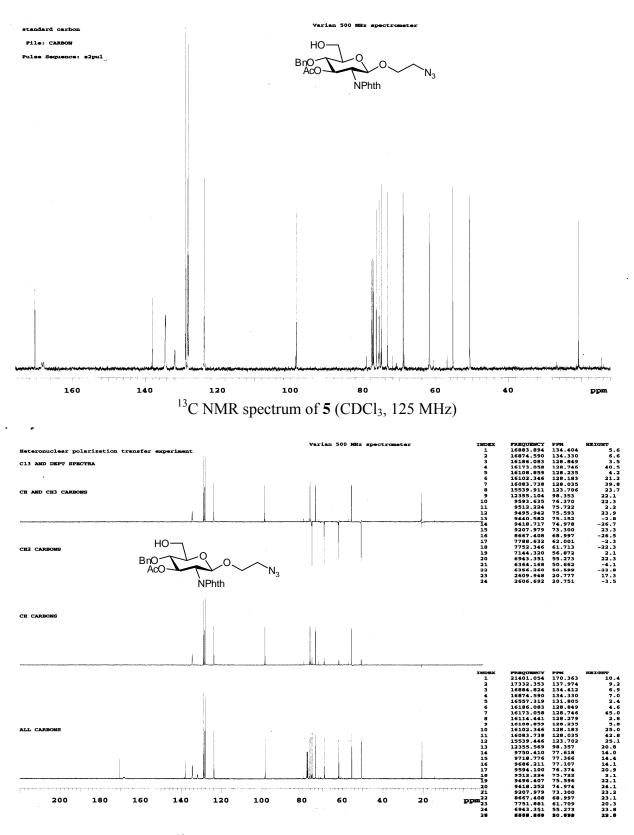
2. NMR and MS Spectra

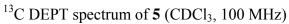


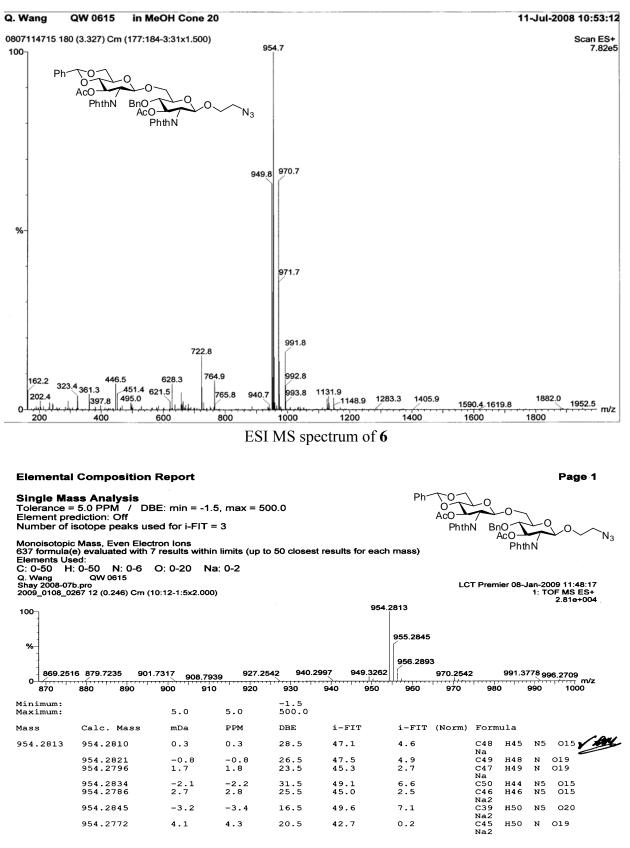

Ρ ò STol AcO , NPhth 6 3 2 7 8 PP ¹H NMR spectrum of **4** (CDCl₃, 400 MHz) Ph 0 STol NPhth بنائلانهم 120 100 200 180 160 140 80 60 40 20 0 ppm

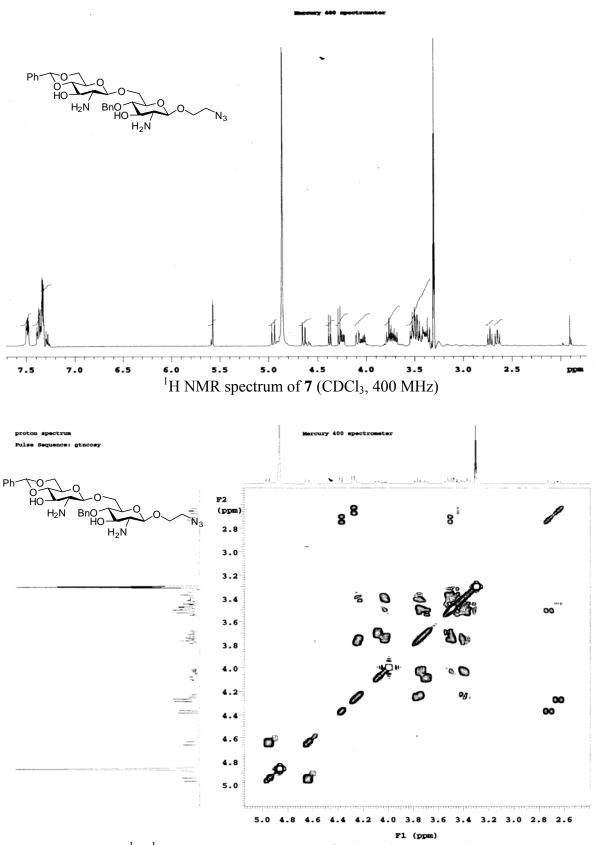

¹³C NMR spectrum of **4** (CDCl₃, 100 MHz)

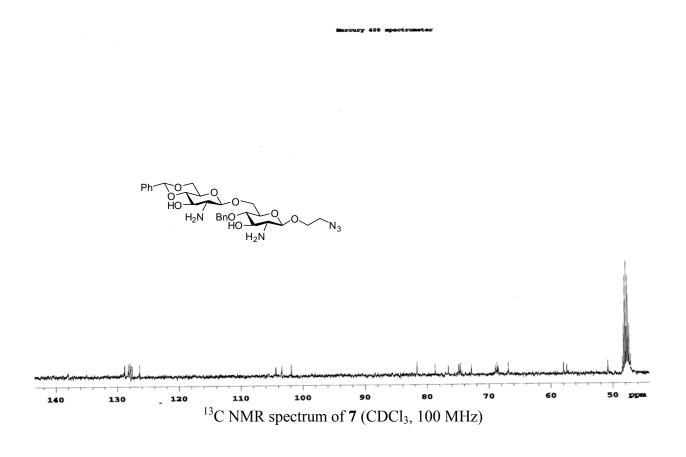


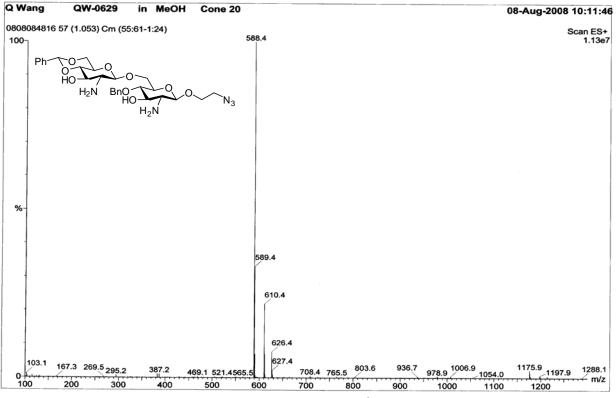

¹H NMR spectrum of **21** (CDCl₃, 400 MHz)







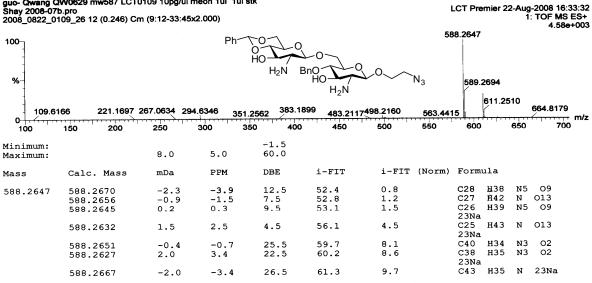

Pł ÀcO BnO⁻ AcO PhthN PhthN 5 3 2 7 6 4 DD ¹H NMR spectrum of **6** (CDCl₃, 400 MHz) Mercury 400 sp Ph ò AcO BnO AcO PhthN ٧₃ PhthN · • • • 170 160 150 140 ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ¹³C NMR spectrum of **6** (CDCl₃, 100 MHz) 100 60 50 40 30 ppm



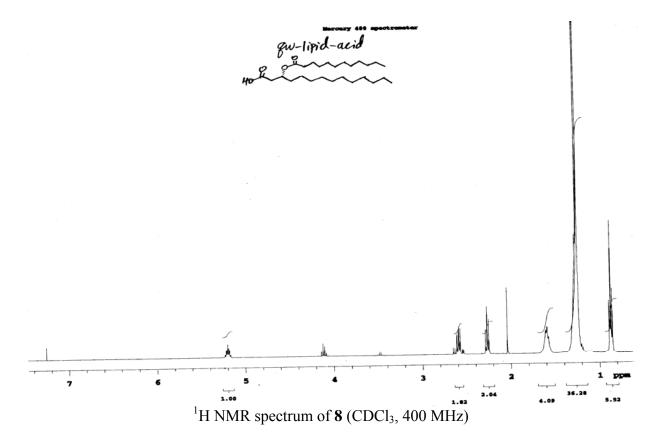
HR ESI MS spectrum of 6

¹H-¹H COSY NMR spectrum of **7** (CDCl₃, 400 MHz)

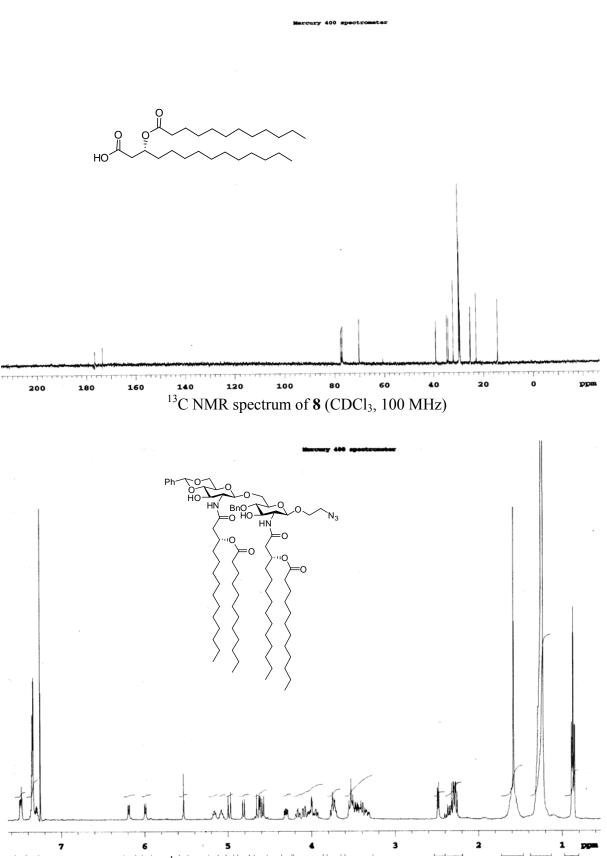
ESI MS spectrum of 7

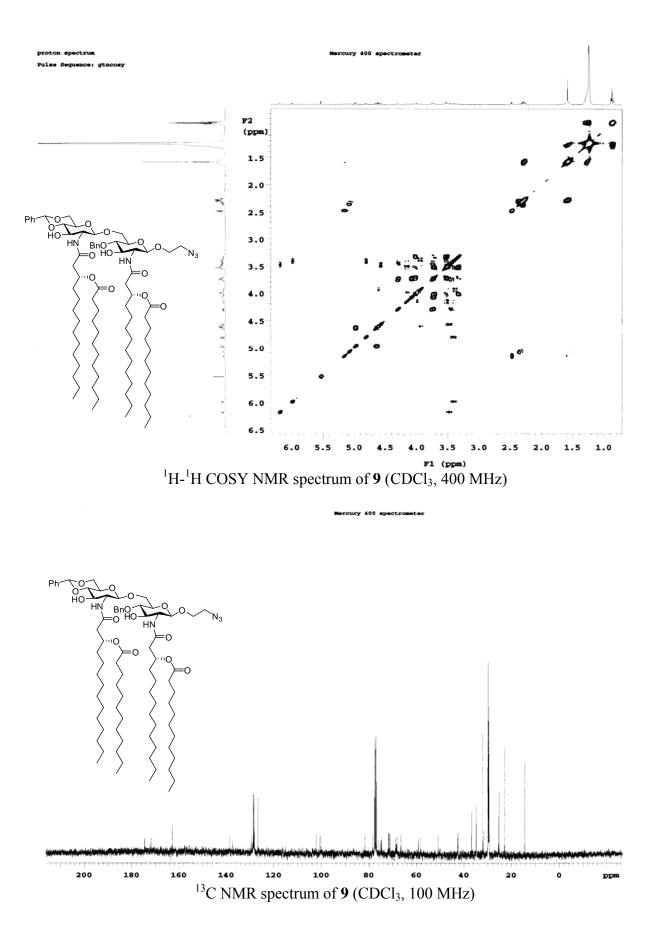

Elemental Composition Report

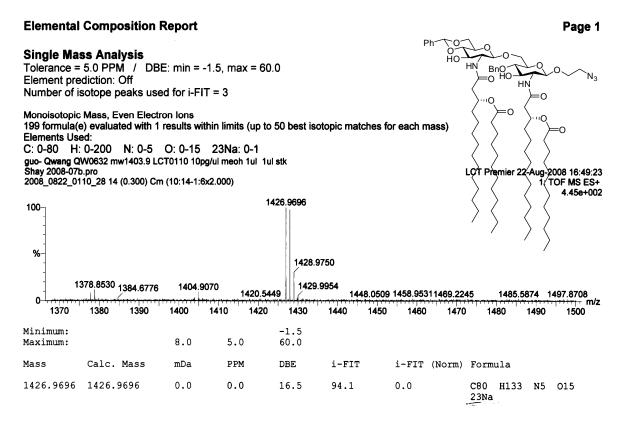
Page 1

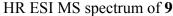

Single Mass Analysis

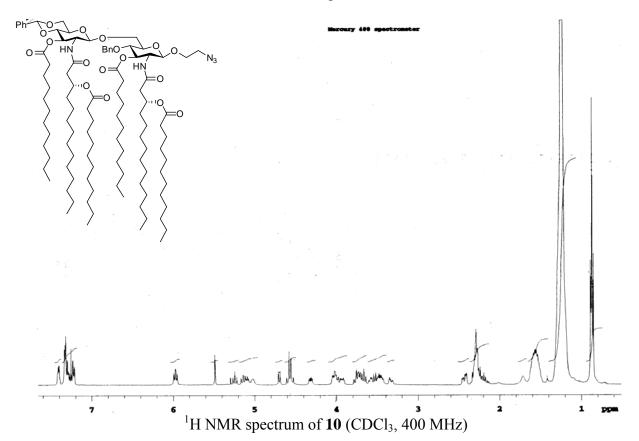
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 60.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

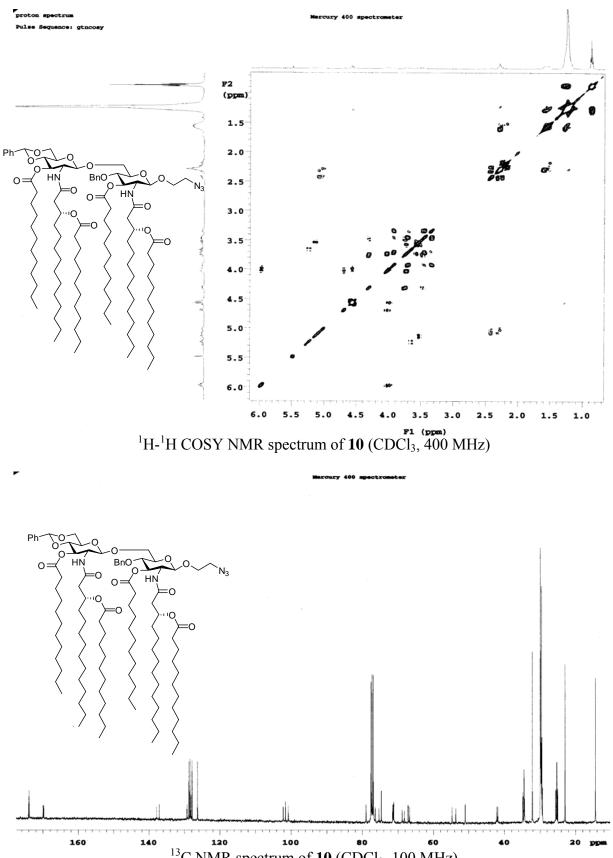

Monolsotopic Mass, Even Electron Ions 1070 formula(e) evaluated with 7 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-113 H: 0-116 N: 0-5 O: 0-13 23Na: 0-1 guo- Cwang QW0629 mw587 LCT0109 10pg/ul mech 1ul 1ul stk Shay 2008-07b.pro LCT 2008_0622_0109_26 12 (0.246) Cm (9:12-33:45x2.000)

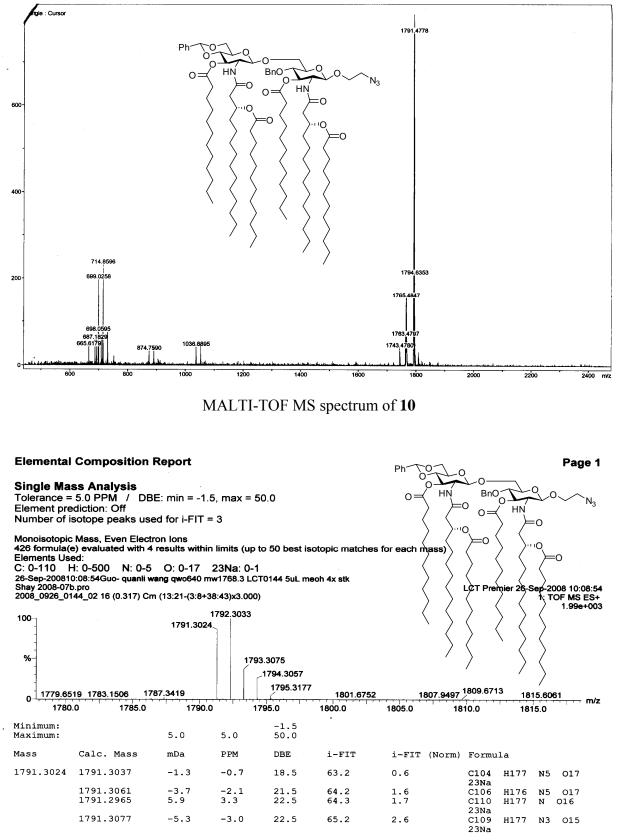

HR ESI MS spectrum of 7

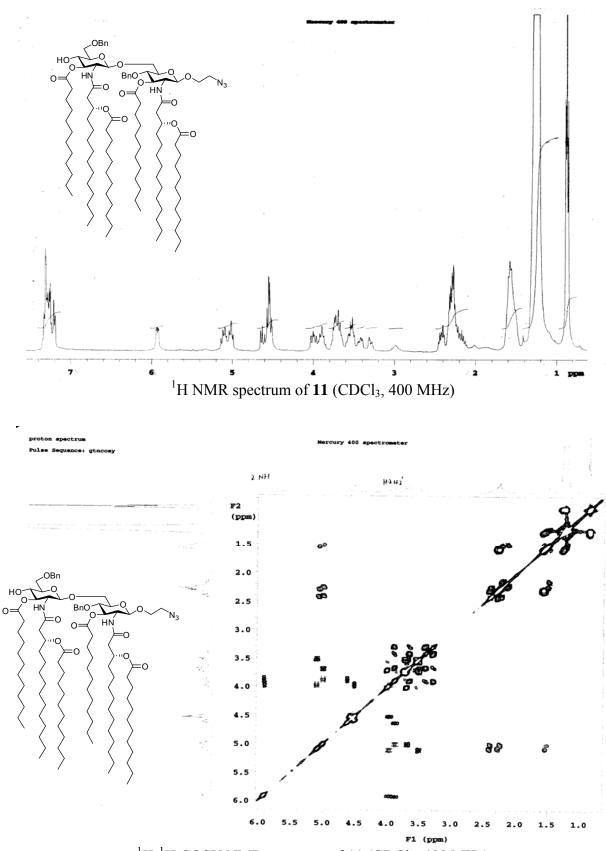


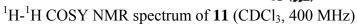

S-18

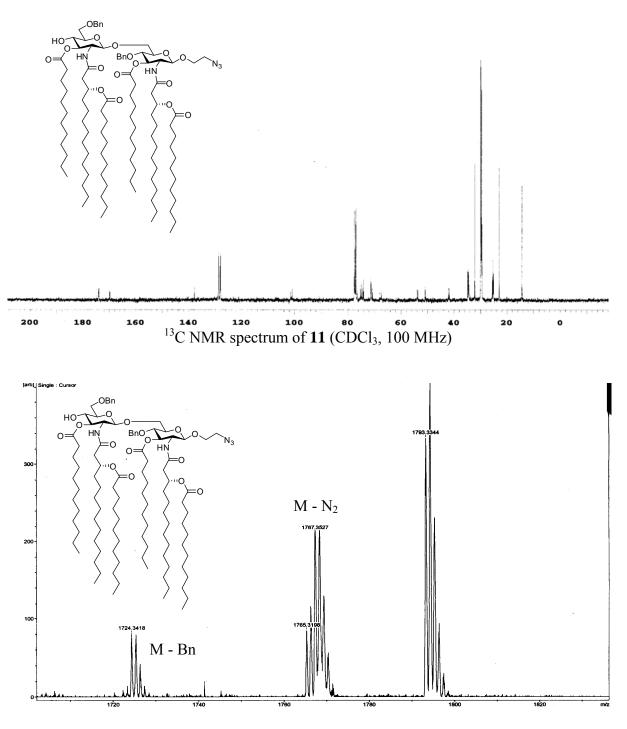



¹H NMR spectrum of **9** (CDCl₃, 400 MHz)

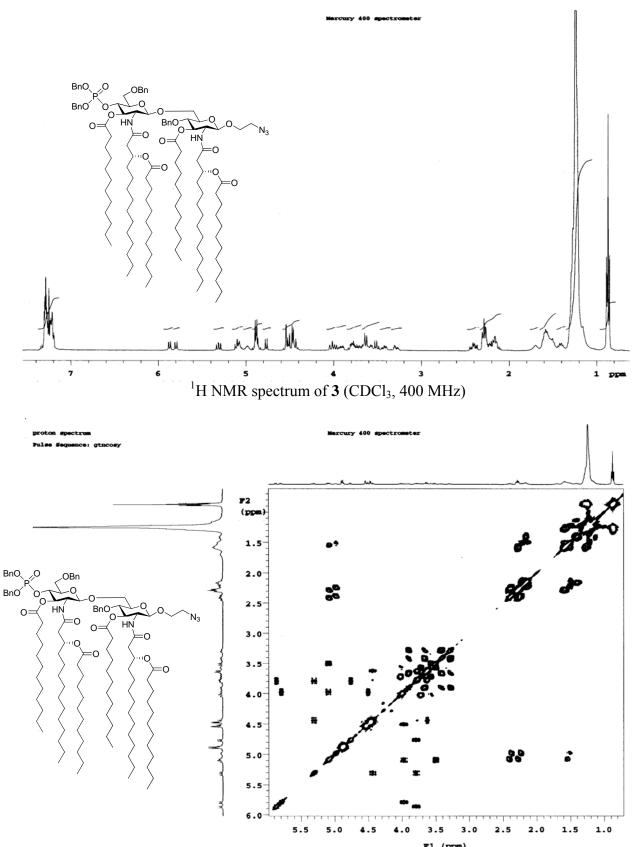


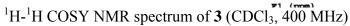


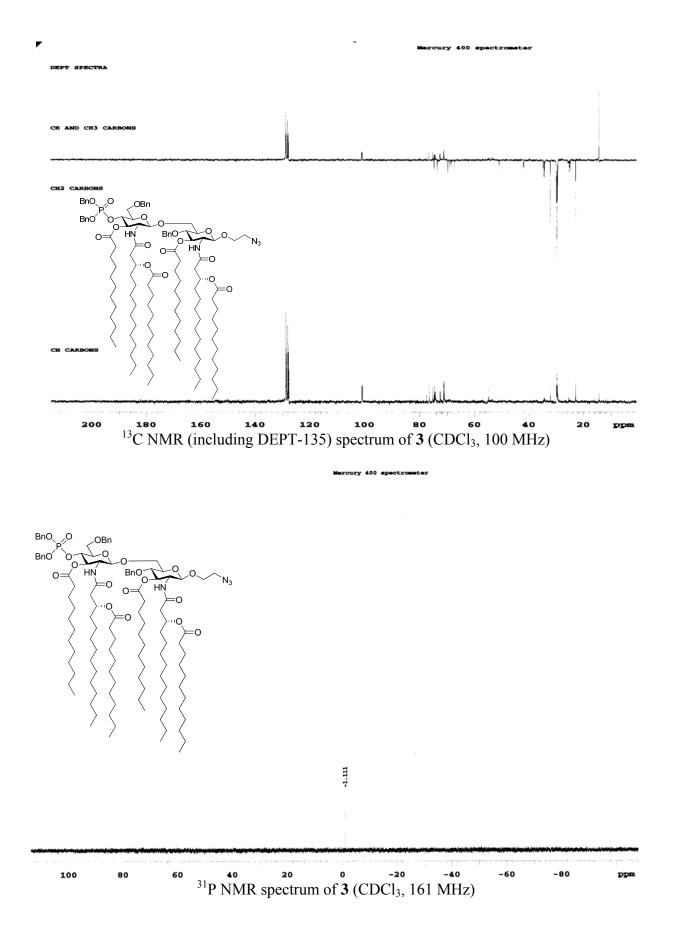


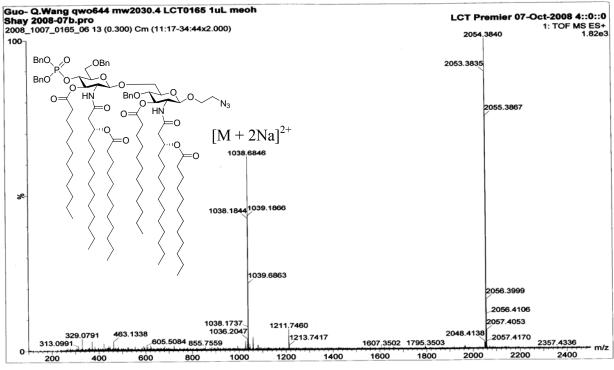


HR ESI MS spectrum of 10

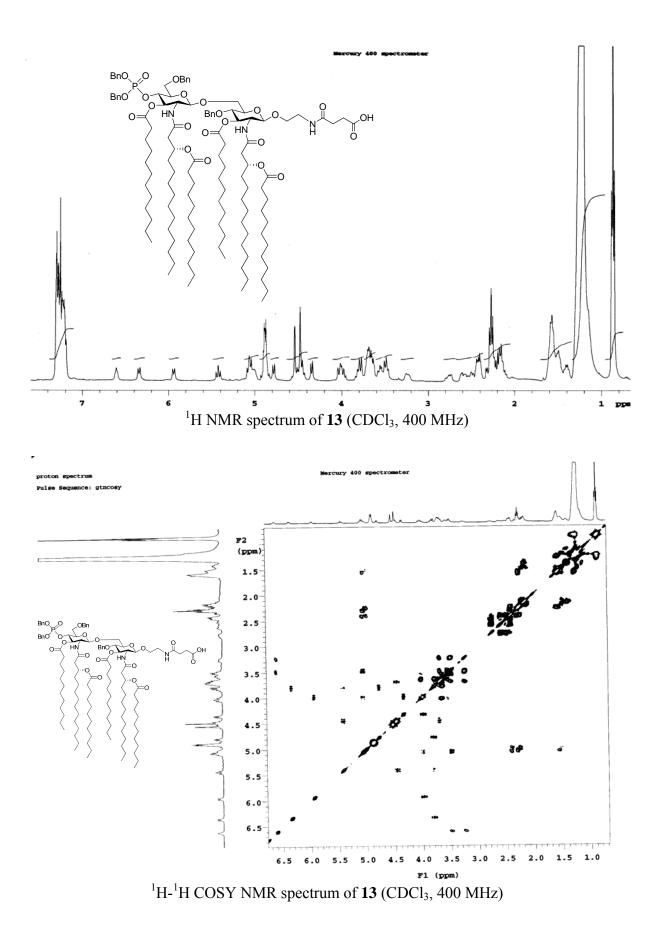

rcury 400 spectrometer

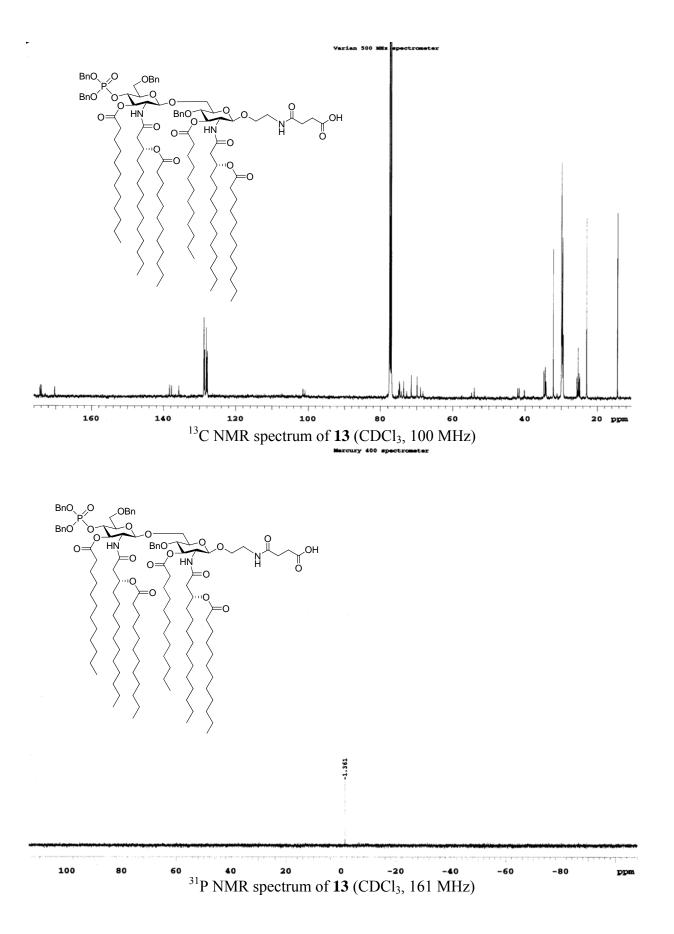


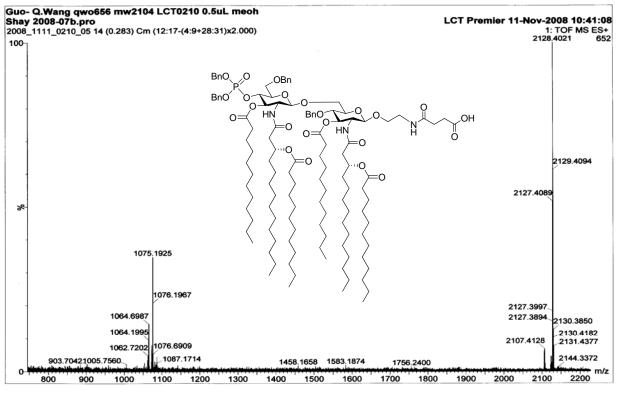

Bruker Daltonics flexControl Display Screenshot - Generated On 2008-09-25 11h49m56s

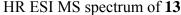

MALTI-TOF MS spectrum of **11**

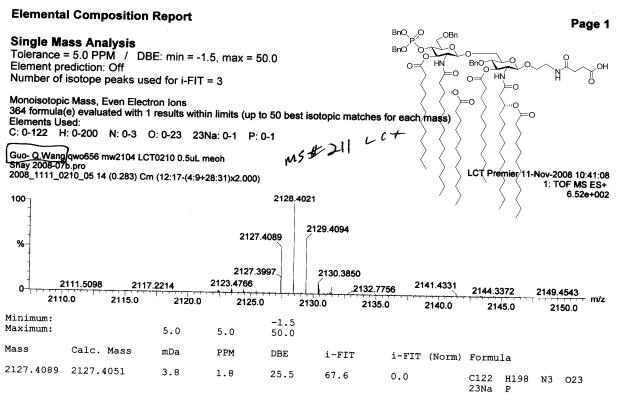
4

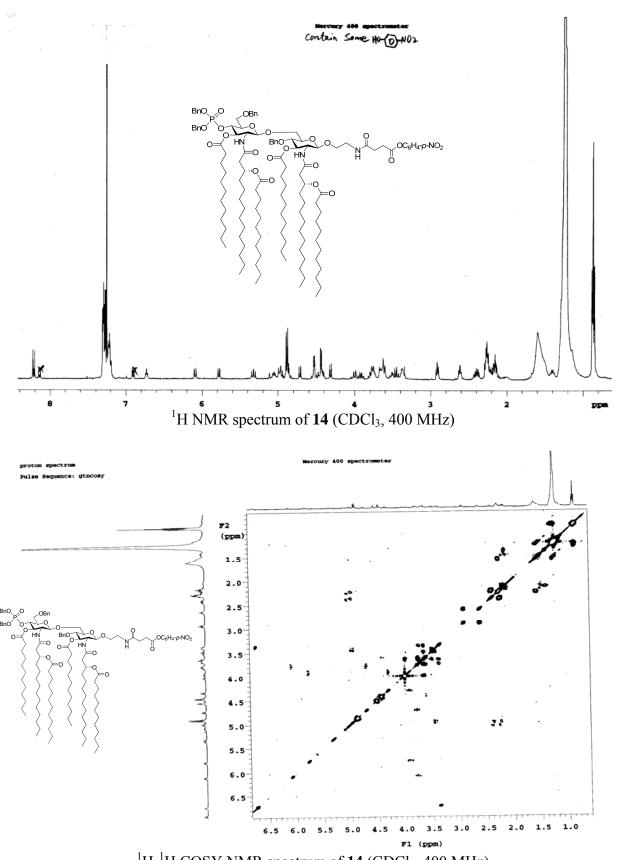


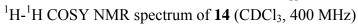


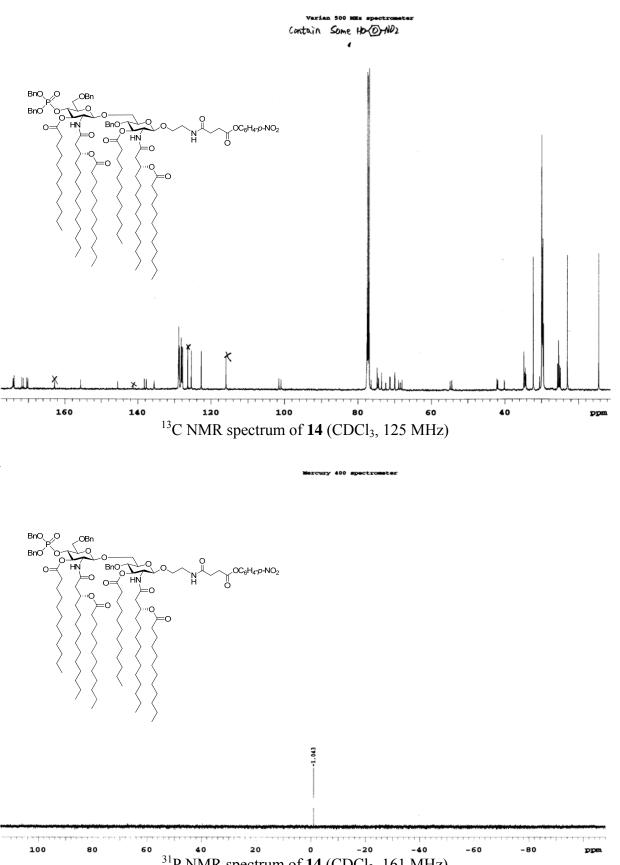

HR ESI MS spectrum of 3

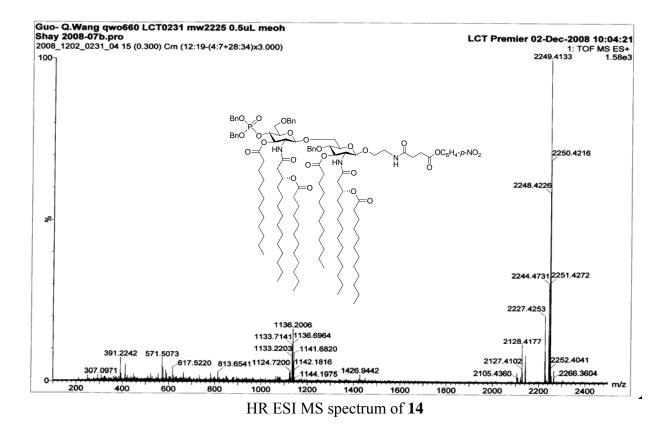

Elemental	Compo	sition R	eport					BnO	_OBn		Page 1
Single Mass Analysis Tolerance = 7.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3											
Monoisotopic Mass, Even Electron Ions 629 formula(e) evaluated with 4 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-120 H: 0-200 N: 0-6 O: 0-22 Na: 0-1 P: 0-1 Guo- Q.Wang qwo644 mw2030.4 LCT0165 1uL meoh Shay 2008-07b.pro 2008_1007_0165_06 13 (0.300) Cm (11:17-34:44x2.000)											
100						2053.383	5 2054.384	.o <	\rightarrow \langle	$\rangle \rangle$	1.020+003
-						·		55.3867	$\langle \rangle$	$\langle \rangle$	\langle
%-									$\langle \rangle$	\rangle	\langle
2042.1 0	¹²⁴ 2043.04	157_2043.8	827	2048,4138	2050,4624	2051.4377		2056.3999	2057.4053	2059.074	5
	2042.0	2044.0	2046.0	2048.0	2050.0	2052.0	2054.0	2056.0	2058.0	2060.0	2062.0
Minimum: Maximum:			5.0	7.0	-1.5 50.0						
Mass	Calc. M	lass	mDa	PPM	DBE	i-FIT	i	-FIT (Nor	m) Formu	la	
2053.3835	2053.37	96	3.9	1.9	25.5	82.9	C	.9	C118		N5 020
	2053.38	320	1.5	0.7	28.5	83.2	1	.2	Na P C120 P		N5 020
	2053.38	878	-4.3	-2.1	25.5	83.6	. 1	.6	C118 Na	H191	N5 022
	2053.39	02	-6.7	-3.3	28.5	84.6	2	.6	C120	H190	N5 022

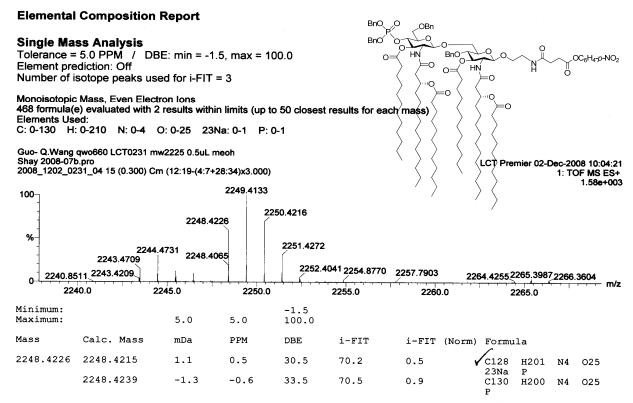

HR ESI MS spectrum of 3 (expansion)

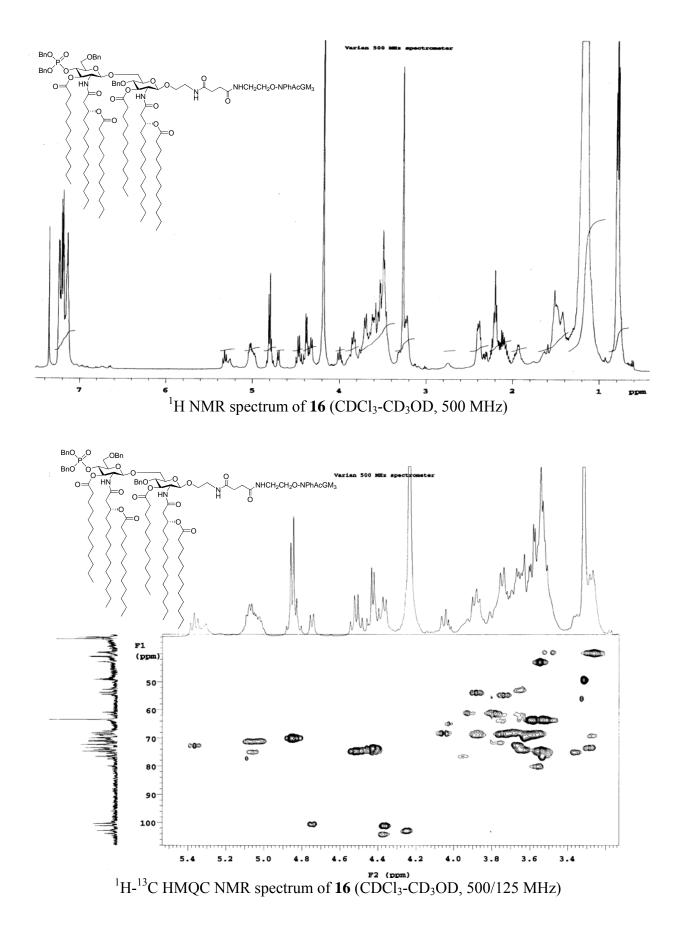


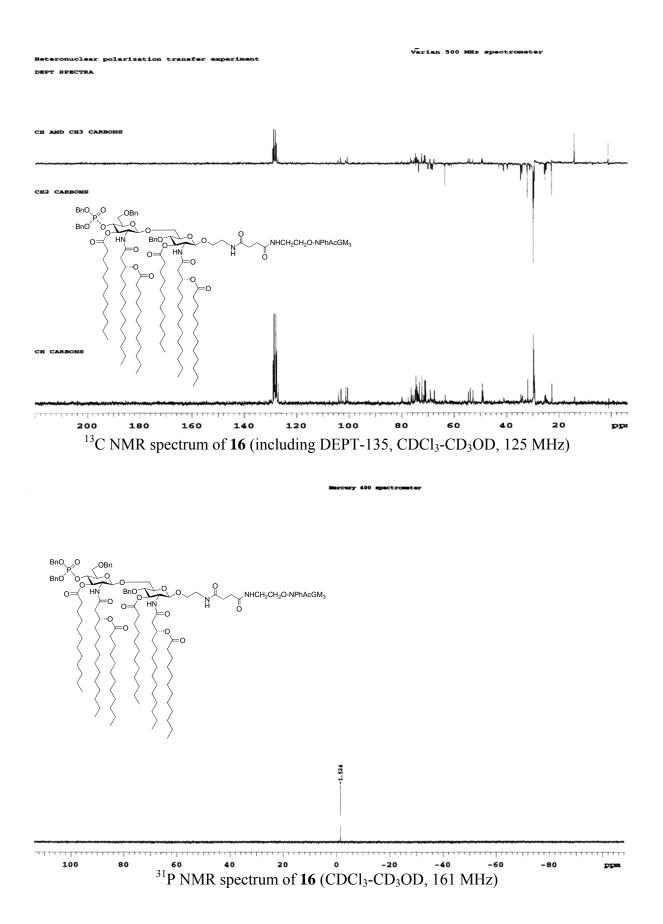


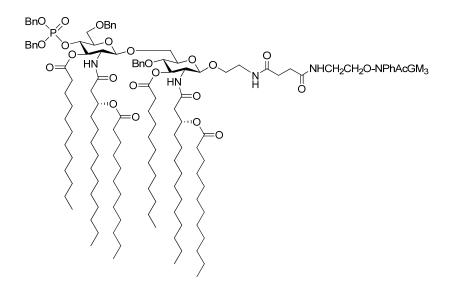



HR ESI MS spectrum of 13 (expansion)



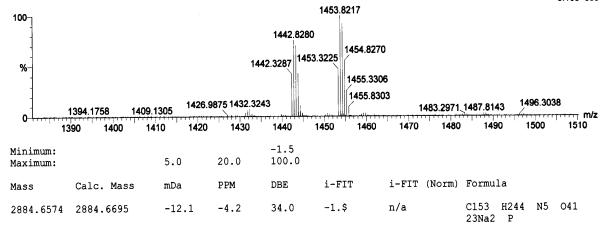



³¹P NMR spectrum of **14** (CDCl₃, 161 MHz)

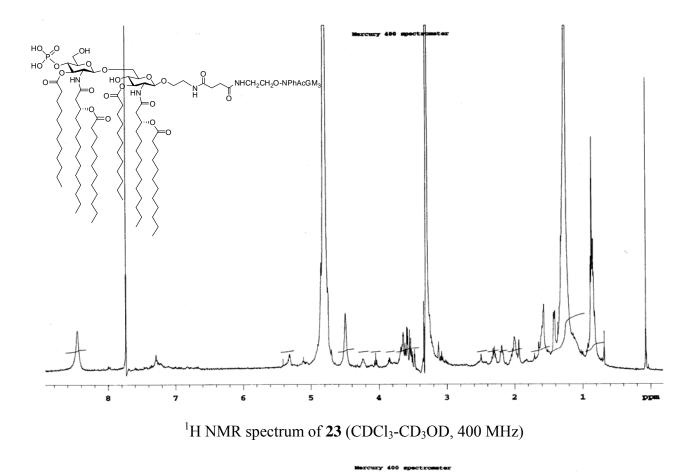


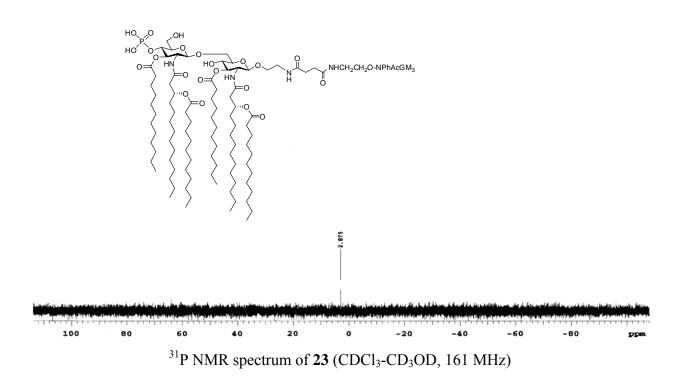
HR ESI MS spectrum of 14 (expansion)

Elemental Composition Report


Page 1

Single Mass Analysis


Tolerance = 20.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3


Monoisotopic Mass, Odd Electron Ions 1512 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 153-153 H: 0-1000 N: 0-5 O: 0-41 23Na: 0-2 P: 0-1 Guo- Q.Wang qwo663 LCT0232 mw2838 5uL meoh + Na Shay 2008-07b.pro 2008_1202_0232_08 16 (0.317) Cm (10:22-(1:7+31:41)x3.000)

LCT Premier 02-Dec-2008 10:25:52 1: TOF MS ES+ 3.10e+003

HR ESI MS spectrum of 16 (expansion)

